123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522 |
- // SPDX-License-Identifier: GPL-3.0-or-later
- #include "ad_charts.h"
- void ml_update_dimensions_chart(ml_host_t *host, const ml_machine_learning_stats_t &mls) {
- /*
- * Machine learning status
- */
- if (Cfg.enable_statistics_charts) {
- if (!host->machine_learning_status_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "machine_learning_status_on_%s", localhost->machine_guid);
- snprintfz(name_buf, 1024, "machine_learning_status_on_%s", rrdhost_hostname(localhost));
- host->machine_learning_status_rs = rrdset_create(
- host->rh,
- "netdata", // type
- id_buf,
- name_buf, // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.machine_learning_status", // ctx
- "Machine learning status", // title
- "dimensions", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(host->machine_learning_status_rs , RRDSET_FLAG_ANOMALY_DETECTION);
- host->machine_learning_status_enabled_rd =
- rrddim_add(host->machine_learning_status_rs, "enabled", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- host->machine_learning_status_disabled_sp_rd =
- rrddim_add(host->machine_learning_status_rs, "disabled-sp", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(host->machine_learning_status_rs,
- host->machine_learning_status_enabled_rd, mls.num_machine_learning_status_enabled);
- rrddim_set_by_pointer(host->machine_learning_status_rs,
- host->machine_learning_status_disabled_sp_rd, mls.num_machine_learning_status_disabled_sp);
- rrdset_done(host->machine_learning_status_rs);
- }
- /*
- * Metric type
- */
- if (Cfg.enable_statistics_charts) {
- if (!host->metric_type_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "metric_types_on_%s", localhost->machine_guid);
- snprintfz(name_buf, 1024, "metric_types_on_%s", rrdhost_hostname(localhost));
- host->metric_type_rs = rrdset_create(
- host->rh,
- "netdata", // type
- id_buf, // id
- name_buf, // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.metric_types", // ctx
- "Dimensions by metric type", // title
- "dimensions", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_METRIC_TYPES, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(host->metric_type_rs, RRDSET_FLAG_ANOMALY_DETECTION);
- host->metric_type_constant_rd =
- rrddim_add(host->metric_type_rs, "constant", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- host->metric_type_variable_rd =
- rrddim_add(host->metric_type_rs, "variable", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(host->metric_type_rs,
- host->metric_type_constant_rd, mls.num_metric_type_constant);
- rrddim_set_by_pointer(host->metric_type_rs,
- host->metric_type_variable_rd, mls.num_metric_type_variable);
- rrdset_done(host->metric_type_rs);
- }
- /*
- * Training status
- */
- if (Cfg.enable_statistics_charts) {
- if (!host->training_status_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "training_status_on_%s", localhost->machine_guid);
- snprintfz(name_buf, 1024, "training_status_on_%s", rrdhost_hostname(localhost));
- host->training_status_rs = rrdset_create(
- host->rh,
- "netdata", // type
- id_buf, // id
- name_buf, // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.training_status", // ctx
- "Training status of dimensions", // title
- "dimensions", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_TRAINING_STATUS, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(host->training_status_rs, RRDSET_FLAG_ANOMALY_DETECTION);
- host->training_status_untrained_rd =
- rrddim_add(host->training_status_rs, "untrained", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- host->training_status_pending_without_model_rd =
- rrddim_add(host->training_status_rs, "pending-without-model", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- host->training_status_trained_rd =
- rrddim_add(host->training_status_rs, "trained", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- host->training_status_pending_with_model_rd =
- rrddim_add(host->training_status_rs, "pending-with-model", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- host->training_status_silenced_rd =
- rrddim_add(host->training_status_rs, "silenced", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(host->training_status_rs,
- host->training_status_untrained_rd, mls.num_training_status_untrained);
- rrddim_set_by_pointer(host->training_status_rs,
- host->training_status_pending_without_model_rd, mls.num_training_status_pending_without_model);
- rrddim_set_by_pointer(host->training_status_rs,
- host->training_status_trained_rd, mls.num_training_status_trained);
- rrddim_set_by_pointer(host->training_status_rs,
- host->training_status_pending_with_model_rd, mls.num_training_status_pending_with_model);
- rrddim_set_by_pointer(host->training_status_rs,
- host->training_status_silenced_rd, mls.num_training_status_silenced);
- rrdset_done(host->training_status_rs);
- }
- /*
- * Prediction status
- */
- {
- if (!host->dimensions_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "dimensions_on_%s", localhost->machine_guid);
- snprintfz(name_buf, 1024, "dimensions_on_%s", rrdhost_hostname(localhost));
- host->dimensions_rs = rrdset_create(
- host->rh,
- "anomaly_detection", // type
- id_buf, // id
- name_buf, // name
- "dimensions", // family
- "anomaly_detection.dimensions", // ctx
- "Anomaly detection dimensions", // title
- "dimensions", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- ML_CHART_PRIO_DIMENSIONS, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(host->dimensions_rs, RRDSET_FLAG_ANOMALY_DETECTION);
- host->dimensions_anomalous_rd =
- rrddim_add(host->dimensions_rs, "anomalous", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- host->dimensions_normal_rd =
- rrddim_add(host->dimensions_rs, "normal", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(host->dimensions_rs,
- host->dimensions_anomalous_rd, mls.num_anomalous_dimensions);
- rrddim_set_by_pointer(host->dimensions_rs,
- host->dimensions_normal_rd, mls.num_normal_dimensions);
- rrdset_done(host->dimensions_rs);
- }
- // ML running
- {
- if (!host->ml_running_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "ml_running_on_%s", localhost->machine_guid);
- snprintfz(name_buf, 1024, "ml_running_on_%s", rrdhost_hostname(localhost));
- host->ml_running_rs = rrdset_create(
- host->rh,
- "anomaly_detection", // type
- id_buf, // id
- name_buf, // name
- "anomaly_detection", // family
- "anomaly_detection.ml_running", // ctx
- "ML running", // title
- "boolean", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_DETECTION, // module
- NETDATA_ML_CHART_RUNNING, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(host->ml_running_rs, RRDSET_FLAG_ANOMALY_DETECTION);
- host->ml_running_rd =
- rrddim_add(host->ml_running_rs, "ml_running", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(host->ml_running_rs,
- host->ml_running_rd, host->ml_running);
- rrdset_done(host->ml_running_rs);
- }
- }
- void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number AnomalyRate) {
- /*
- * Anomaly rate
- */
- {
- if (!host->anomaly_rate_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "anomaly_rate_on_%s", localhost->machine_guid);
- snprintfz(name_buf, 1024, "anomaly_rate_on_%s", rrdhost_hostname(localhost));
- host->anomaly_rate_rs = rrdset_create(
- host->rh,
- "anomaly_detection", // type
- id_buf, // id
- name_buf, // name
- "anomaly_rate", // family
- "anomaly_detection.anomaly_rate", // ctx
- "Percentage of anomalous dimensions", // title
- "percentage", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_DETECTION, // module
- ML_CHART_PRIO_ANOMALY_RATE, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(host->anomaly_rate_rs, RRDSET_FLAG_ANOMALY_DETECTION);
- host->anomaly_rate_rd =
- rrddim_add(host->anomaly_rate_rs, "anomaly_rate", NULL, 1, 100, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(host->anomaly_rate_rs, host->anomaly_rate_rd, AnomalyRate);
- rrdset_done(host->anomaly_rate_rs);
- }
- /*
- * Detector Events
- */
- {
- if (!host->detector_events_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "anomaly_detection_on_%s", localhost->machine_guid);
- snprintfz(name_buf, 1024, "anomaly_detection_on_%s", rrdhost_hostname(localhost));
- host->detector_events_rs = rrdset_create(
- host->rh,
- "anomaly_detection", // type
- id_buf, // id
- name_buf, // name
- "anomaly_detection", // family
- "anomaly_detection.detector_events", // ctx
- "Anomaly detection events", // title
- "percentage", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_DETECTION, // module
- ML_CHART_PRIO_DETECTOR_EVENTS, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(host->detector_events_rs, RRDSET_FLAG_ANOMALY_DETECTION);
- host->detector_events_above_threshold_rd =
- rrddim_add(host->detector_events_rs, "above_threshold", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- host->detector_events_new_anomaly_event_rd =
- rrddim_add(host->detector_events_rs, "new_anomaly_event", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- /*
- * Compute the values of the dimensions based on the host rate chart
- */
- if (host->ml_running) {
- ONEWAYALLOC *OWA = onewayalloc_create(0);
- time_t Now = now_realtime_sec();
- time_t Before = Now - host->rh->rrd_update_every;
- time_t After = Before - Cfg.anomaly_detection_query_duration;
- RRDR_OPTIONS Options = static_cast<RRDR_OPTIONS>(0x00000000);
- RRDR *R = rrd2rrdr_legacy(
- OWA,
- host->anomaly_rate_rs,
- 1 /* points wanted */,
- After,
- Before,
- Cfg.anomaly_detection_grouping_method,
- 0 /* resampling time */,
- Options, "anomaly_rate",
- NULL /* group options */,
- 0, /* timeout */
- 0, /* tier */
- QUERY_SOURCE_ML,
- STORAGE_PRIORITY_SYNCHRONOUS
- );
- if (R) {
- if (R->d == 1 && R->n == 1 && R->rows == 1) {
- static thread_local bool prev_above_threshold = false;
- bool above_threshold = R->v[0] >= Cfg.host_anomaly_rate_threshold;
- bool new_anomaly_event = above_threshold && !prev_above_threshold;
- prev_above_threshold = above_threshold;
- rrddim_set_by_pointer(host->detector_events_rs,
- host->detector_events_above_threshold_rd, above_threshold);
- rrddim_set_by_pointer(host->detector_events_rs,
- host->detector_events_new_anomaly_event_rd, new_anomaly_event);
- rrdset_done(host->detector_events_rs);
- }
- rrdr_free(OWA, R);
- }
- onewayalloc_destroy(OWA);
- } else {
- rrddim_set_by_pointer(host->detector_events_rs,
- host->detector_events_above_threshold_rd, 0);
- rrddim_set_by_pointer(host->detector_events_rs,
- host->detector_events_new_anomaly_event_rd, 0);
- rrdset_done(host->detector_events_rs);
- }
- }
- }
- void ml_update_training_statistics_chart(ml_training_thread_t *training_thread, const ml_training_stats_t &ts) {
- /*
- * queue stats
- */
- {
- if (!training_thread->queue_stats_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "training_queue_%zu_stats", training_thread->id);
- snprintfz(name_buf, 1024, "training_queue_%zu_stats", training_thread->id);
- training_thread->queue_stats_rs = rrdset_create(
- localhost,
- "netdata", // type
- id_buf, // id
- name_buf, // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.queue_stats", // ctx
- "Training queue stats", // title
- "items", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_QUEUE_STATS, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE// chart_type
- );
- rrdset_flag_set(training_thread->queue_stats_rs, RRDSET_FLAG_ANOMALY_DETECTION);
- training_thread->queue_stats_queue_size_rd =
- rrddim_add(training_thread->queue_stats_rs, "queue_size", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- training_thread->queue_stats_popped_items_rd =
- rrddim_add(training_thread->queue_stats_rs, "popped_items", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(training_thread->queue_stats_rs,
- training_thread->queue_stats_queue_size_rd, ts.queue_size);
- rrddim_set_by_pointer(training_thread->queue_stats_rs,
- training_thread->queue_stats_popped_items_rd, ts.num_popped_items);
- rrdset_done(training_thread->queue_stats_rs);
- }
- /*
- * training stats
- */
- {
- if (!training_thread->training_time_stats_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "training_queue_%zu_time_stats", training_thread->id);
- snprintfz(name_buf, 1024, "training_queue_%zu_time_stats", training_thread->id);
- training_thread->training_time_stats_rs = rrdset_create(
- localhost,
- "netdata", // type
- id_buf, // id
- name_buf, // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.training_time_stats", // ctx
- "Training time stats", // title
- "milliseconds", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_TRAINING_TIME_STATS, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE// chart_type
- );
- rrdset_flag_set(training_thread->training_time_stats_rs, RRDSET_FLAG_ANOMALY_DETECTION);
- training_thread->training_time_stats_allotted_rd =
- rrddim_add(training_thread->training_time_stats_rs, "allotted", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
- training_thread->training_time_stats_consumed_rd =
- rrddim_add(training_thread->training_time_stats_rs, "consumed", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
- training_thread->training_time_stats_remaining_rd =
- rrddim_add(training_thread->training_time_stats_rs, "remaining", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(training_thread->training_time_stats_rs,
- training_thread->training_time_stats_allotted_rd, ts.allotted_ut);
- rrddim_set_by_pointer(training_thread->training_time_stats_rs,
- training_thread->training_time_stats_consumed_rd, ts.consumed_ut);
- rrddim_set_by_pointer(training_thread->training_time_stats_rs,
- training_thread->training_time_stats_remaining_rd, ts.remaining_ut);
- rrdset_done(training_thread->training_time_stats_rs);
- }
- /*
- * training result stats
- */
- {
- if (!training_thread->training_results_rs) {
- char id_buf[1024];
- char name_buf[1024];
- snprintfz(id_buf, 1024, "training_queue_%zu_results", training_thread->id);
- snprintfz(name_buf, 1024, "training_queue_%zu_results", training_thread->id);
- training_thread->training_results_rs = rrdset_create(
- localhost,
- "netdata", // type
- id_buf, // id
- name_buf, // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.training_results", // ctx
- "Training results", // title
- "events", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_TRAINING_RESULTS, // priority
- localhost->rrd_update_every, // update_every
- RRDSET_TYPE_LINE// chart_type
- );
- rrdset_flag_set(training_thread->training_results_rs, RRDSET_FLAG_ANOMALY_DETECTION);
- training_thread->training_results_ok_rd =
- rrddim_add(training_thread->training_results_rs, "ok", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- training_thread->training_results_invalid_query_time_range_rd =
- rrddim_add(training_thread->training_results_rs, "invalid-queries", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- training_thread->training_results_not_enough_collected_values_rd =
- rrddim_add(training_thread->training_results_rs, "not-enough-values", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- training_thread->training_results_null_acquired_dimension_rd =
- rrddim_add(training_thread->training_results_rs, "null-acquired-dimensions", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- training_thread->training_results_chart_under_replication_rd =
- rrddim_add(training_thread->training_results_rs, "chart-under-replication", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(training_thread->training_results_rs,
- training_thread->training_results_ok_rd, ts.training_result_ok);
- rrddim_set_by_pointer(training_thread->training_results_rs,
- training_thread->training_results_invalid_query_time_range_rd, ts.training_result_invalid_query_time_range);
- rrddim_set_by_pointer(training_thread->training_results_rs,
- training_thread->training_results_not_enough_collected_values_rd, ts.training_result_not_enough_collected_values);
- rrddim_set_by_pointer(training_thread->training_results_rs,
- training_thread->training_results_null_acquired_dimension_rd, ts.training_result_null_acquired_dimension);
- rrddim_set_by_pointer(training_thread->training_results_rs,
- training_thread->training_results_chart_under_replication_rd, ts.training_result_chart_under_replication);
- rrdset_done(training_thread->training_results_rs);
- }
- }
- void ml_update_global_statistics_charts(uint64_t models_consulted) {
- if (Cfg.enable_statistics_charts) {
- static RRDSET *st = NULL;
- static RRDDIM *rd = NULL;
- if (unlikely(!st)) {
- st = rrdset_create_localhost(
- "netdata" // type
- , "ml_models_consulted" // id
- , NULL // name
- , NETDATA_ML_CHART_FAMILY // family
- , NULL // context
- , "KMeans models used for prediction" // title
- , "models" // units
- , NETDATA_ML_PLUGIN // plugin
- , NETDATA_ML_MODULE_DETECTION // module
- , NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS // priority
- , localhost->rrd_update_every // update_every
- , RRDSET_TYPE_AREA // chart_type
- );
- rd = rrddim_add(st, "num_models_consulted", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL);
- }
- rrddim_set_by_pointer(st, rd, (collected_number) models_consulted);
- rrdset_done(st);
- }
- }
|