123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- # netdata python.d.plugin configuration for pandas
- #
- # This file is in YaML format. Generally the format is:
- #
- # name: value
- #
- # There are 2 sections:
- # - global variables
- # - one or more JOBS
- #
- # JOBS allow you to collect values from multiple sources.
- # Each source will have its own set of charts.
- #
- # JOB parameters have to be indented (using spaces only, example below).
- # ----------------------------------------------------------------------
- # Global Variables
- # These variables set the defaults for all JOBs, however each JOB
- # may define its own, overriding the defaults.
- # update_every sets the default data collection frequency.
- # If unset, the python.d.plugin default is used.
- update_every: 5
- # priority controls the order of charts at the netdata dashboard.
- # Lower numbers move the charts towards the top of the page.
- # If unset, the default for python.d.plugin is used.
- # priority: 60000
- # penalty indicates whether to apply penalty to update_every in case of failures.
- # Penalty will increase every 5 failed updates in a row. Maximum penalty is 10 minutes.
- # penalty: yes
- # autodetection_retry sets the job re-check interval in seconds.
- # The job is not deleted if check fails.
- # Attempts to start the job are made once every autodetection_retry.
- # This feature is disabled by default.
- # autodetection_retry: 0
- # ----------------------------------------------------------------------
- # JOBS (data collection sources)
- #
- # The default JOBS share the same *name*. JOBS with the same name
- # are mutually exclusive. Only one of them will be allowed running at
- # any time. This allows autodetection to try several alternatives and
- # pick the one that works.
- #
- # Any number of jobs is supported.
- #
- # All python.d.plugin JOBS (for all its modules) support a set of
- # predefined parameters. These are:
- #
- # job_name:
- # name: myname # the JOB's name as it will appear on the dashboard
- # # dashboard (by default is the job_name)
- # # JOBs sharing a name are mutually exclusive
- # update_every: 1 # the JOB's data collection frequency
- # priority: 60000 # the JOB's order on the dashboard
- # penalty: yes # the JOB's penalty
- # autodetection_retry: 0 # the JOB's re-check interval in seconds
- #
- # Additionally to the above, example also supports the following:
- #
- # num_lines: 4 # the number of lines to create
- # lower: 0 # the lower bound of numbers to randomly sample from
- # upper: 100 # the upper bound of numbers to randomly sample from
- #
- # ----------------------------------------------------------------------
- # AUTO-DETECTION JOBS
- # Some example configurations, enable this collector, uncomment and example below and restart netdata to enable.
- # example pulling some hourly temperature data, a chart for today forecast (mean,min,max) and another chart for current.
- # temperature:
- # name: "temperature"
- # update_every: 5
- # chart_configs:
- # - name: "temperature_forecast_by_city"
- # title: "Temperature By City - Today Forecast"
- # family: "temperature.today"
- # context: "pandas.temperature"
- # type: "line"
- # units: "Celsius"
- # df_steps: >
- # pd.DataFrame.from_dict(
- # {city: requests.get(f'https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lng}&hourly=temperature_2m').json()['hourly']['temperature_2m']
- # for (city,lat,lng)
- # in [
- # ('dublin', 53.3441, -6.2675),
- # ('athens', 37.9792, 23.7166),
- # ('london', 51.5002, -0.1262),
- # ('berlin', 52.5235, 13.4115),
- # ('paris', 48.8567, 2.3510),
- # ('madrid', 40.4167, -3.7033),
- # ('new_york', 40.71, -74.01),
- # ('los_angeles', 34.05, -118.24),
- # ]
- # }
- # );
- # df.describe(); # get aggregate stats for each city;
- # df.transpose()[['mean', 'max', 'min']].reset_index(); # just take mean, min, max;
- # df.rename(columns={'index':'city'}); # some column renaming;
- # df.pivot(columns='city').mean().to_frame().reset_index(); # force to be one row per city;
- # df.rename(columns={0:'degrees'}); # some column renaming;
- # pd.concat([df, df['city']+'_'+df['level_0']], axis=1); # add new column combining city and summary measurement label;
- # df.rename(columns={0:'measurement'}); # some column renaming;
- # df[['measurement', 'degrees']].set_index('measurement'); # just take two columns we want;
- # df.sort_index(); # sort by city name;
- # df.transpose(); # transpose so its just one wide row;
- # - name: "temperature_current_by_city"
- # title: "Temperature By City - Current"
- # family: "temperature.current"
- # context: "pandas.temperature"
- # type: "line"
- # units: "Celsius"
- # df_steps: >
- # pd.DataFrame.from_dict(
- # {city: requests.get(f'https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lng}¤t_weather=true').json()['current_weather']
- # for (city,lat,lng)
- # in [
- # ('dublin', 53.3441, -6.2675),
- # ('athens', 37.9792, 23.7166),
- # ('london', 51.5002, -0.1262),
- # ('berlin', 52.5235, 13.4115),
- # ('paris', 48.8567, 2.3510),
- # ('madrid', 40.4167, -3.7033),
- # ('new_york', 40.71, -74.01),
- # ('los_angeles', 34.05, -118.24),
- # ]
- # }
- # );
- # df.transpose();
- # df[['temperature']];
- # df.transpose();
- # example showing a read_csv from a url and some light pandas data wrangling.
- # pull data in csv format from london demo server and then ratio of user cpus over system cpu averaged over last 60 seconds.
- # example_csv:
- # name: "example_csv"
- # update_every: 2
- # chart_configs:
- # - name: "london_system_cpu"
- # title: "London System CPU - Ratios"
- # family: "london_system_cpu"
- # context: "pandas"
- # type: "line"
- # units: "n"
- # df_steps: >
- # pd.read_csv('https://london.my-netdata.io/api/v1/data?chart=system.cpu&format=csv&after=-60', storage_options={'User-Agent': 'netdata'});
- # df.drop('time', axis=1);
- # df.mean().to_frame().transpose();
- # df.apply(lambda row: (row.user / row.system), axis = 1).to_frame();
- # df.rename(columns={0:'average_user_system_ratio'});
- # df*100;
- # example showing a read_json from a url and some light pandas data wrangling.
- # pull data in json format (using requests.get() if json data is too complex for pd.read_json() ) from london demo server and work out 'total_bandwidth'.
- # example_json:
- # name: "example_json"
- # update_every: 2
- # chart_configs:
- # - name: "london_system_net"
- # title: "London System Net - Total Bandwidth"
- # family: "london_system_net"
- # context: "pandas"
- # type: "area"
- # units: "kilobits/s"
- # df_steps: >
- # pd.DataFrame(requests.get('https://london.my-netdata.io/api/v1/data?chart=system.net&format=json&after=-1').json()['data'], columns=requests.get('https://london.my-netdata.io/api/v1/data?chart=system.net&format=json&after=-1').json()['labels']);
- # df.drop('time', axis=1);
- # abs(df);
- # df.sum(axis=1).to_frame();
- # df.rename(columns={0:'total_bandwidth'});
- # example showing a read_xml from a url and some light pandas data wrangling.
- # pull weather forecast data in xml format, use xpath to pull out temperature forecast.
- # example_xml:
- # name: "example_xml"
- # update_every: 2
- # line_sep: "|"
- # chart_configs:
- # - name: "temperature_forcast"
- # title: "Temperature Forecast"
- # family: "temp"
- # context: "pandas.temp"
- # type: "line"
- # units: "celsius"
- # df_steps: >
- # pd.read_xml('http://metwdb-openaccess.ichec.ie/metno-wdb2ts/locationforecast?lat=54.7210798611;long=-8.7237392806', xpath='./product/time[1]/location/temperature', parser='etree')|
- # df.rename(columns={'value': 'dublin'})|
- # df[['dublin']]|
- # example showing a read_sql from a postgres database using sqlalchemy.
- # note: example assumes a running postgress db on localhost with a netdata users and password netdata.
- # sql:
- # name: "sql"
- # update_every: 5
- # chart_configs:
- # - name: "sql"
- # title: "SQL Example"
- # family: "sql.example"
- # context: "example"
- # type: "line"
- # units: "percent"
- # df_steps: >
- # pd.read_sql_query(
- # sql='\
- # select \
- # random()*100 as metric_1, \
- # random()*100 as metric_2 \
- # ',
- # con=create_engine('postgresql://localhost/postgres?user=netdata&password=netdata')
- # );
|