12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- // SPDX-License-Identifier: GPL-3.0-or-later
- #include "KMeans.h"
- #include <dlib/clustering.h>
- void KMeans::train(const std::vector<DSample> &Samples, size_t MaxIterations) {
- MinDist = std::numeric_limits<CalculatedNumber>::max();
- MaxDist = std::numeric_limits<CalculatedNumber>::min();
- ClusterCenters.clear();
- dlib::pick_initial_centers(NumClusters, ClusterCenters, Samples);
- dlib::find_clusters_using_kmeans(Samples, ClusterCenters, MaxIterations);
- for (const auto &S : Samples) {
- CalculatedNumber MeanDist = 0.0;
- for (const auto &KMCenter : ClusterCenters)
- MeanDist += dlib::length(KMCenter - S);
- MeanDist /= NumClusters;
- if (MeanDist < MinDist)
- MinDist = MeanDist;
- if (MeanDist > MaxDist)
- MaxDist = MeanDist;
- }
- }
- CalculatedNumber KMeans::anomalyScore(const DSample &Sample) const {
- CalculatedNumber MeanDist = 0.0;
- for (const auto &CC: ClusterCenters)
- MeanDist += dlib::length(CC - Sample);
- MeanDist /= NumClusters;
- if (MaxDist == MinDist)
- return 0.0;
- CalculatedNumber AnomalyScore = 100.0 * std::abs((MeanDist - MinDist) / (MaxDist - MinDist));
- return (AnomalyScore > 100.0) ? 100.0 : AnomalyScore;
- }
|