123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518 |
- // SPDX-License-Identifier: GPL-3.0-or-later
- #include "ADCharts.h"
- #include "Config.h"
- void ml::updateDimensionsChart(RRDHOST *RH, const MachineLearningStats &MLS) {
- /*
- * Machine learning status
- */
- {
- static thread_local RRDSET *MachineLearningStatusRS = nullptr;
- static thread_local RRDDIM *Enabled = nullptr;
- static thread_local RRDDIM *DisabledUE = nullptr;
- static thread_local RRDDIM *DisabledSP = nullptr;
- if (!MachineLearningStatusRS) {
- std::stringstream IdSS, NameSS;
- IdSS << "machine_learning_status_on_" << localhost->machine_guid;
- NameSS << "machine_learning_status_on_" << rrdhost_hostname(localhost);
- MachineLearningStatusRS = rrdset_create(
- RH,
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.machine_learning_status", // ctx
- "Machine learning status", // title
- "dimensions", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(MachineLearningStatusRS , RRDSET_FLAG_ANOMALY_DETECTION);
- Enabled = rrddim_add(MachineLearningStatusRS, "enabled", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- DisabledUE = rrddim_add(MachineLearningStatusRS, "disabled-ue", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- DisabledSP = rrddim_add(MachineLearningStatusRS, "disabled-sp", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(MachineLearningStatusRS, Enabled, MLS.NumMachineLearningStatusEnabled);
- rrddim_set_by_pointer(MachineLearningStatusRS, DisabledUE, MLS.NumMachineLearningStatusDisabledUE);
- rrddim_set_by_pointer(MachineLearningStatusRS, DisabledSP, MLS.NumMachineLearningStatusDisabledSP);
- rrdset_done(MachineLearningStatusRS);
- }
- /*
- * Metric type
- */
- {
- static thread_local RRDSET *MetricTypesRS = nullptr;
- static thread_local RRDDIM *Constant = nullptr;
- static thread_local RRDDIM *Variable = nullptr;
- if (!MetricTypesRS) {
- std::stringstream IdSS, NameSS;
- IdSS << "metric_types_on_" << localhost->machine_guid;
- NameSS << "metric_types_on_" << rrdhost_hostname(localhost);
- MetricTypesRS = rrdset_create(
- RH,
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.metric_types", // ctx
- "Dimensions by metric type", // title
- "dimensions", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_METRIC_TYPES, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(MetricTypesRS, RRDSET_FLAG_ANOMALY_DETECTION);
- Constant = rrddim_add(MetricTypesRS, "constant", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- Variable = rrddim_add(MetricTypesRS, "variable", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(MetricTypesRS, Constant, MLS.NumMetricTypeConstant);
- rrddim_set_by_pointer(MetricTypesRS, Variable, MLS.NumMetricTypeVariable);
- rrdset_done(MetricTypesRS);
- }
- /*
- * Training status
- */
- {
- static thread_local RRDSET *TrainingStatusRS = nullptr;
- static thread_local RRDDIM *Untrained = nullptr;
- static thread_local RRDDIM *PendingWithoutModel = nullptr;
- static thread_local RRDDIM *Trained = nullptr;
- static thread_local RRDDIM *PendingWithModel = nullptr;
- if (!TrainingStatusRS) {
- std::stringstream IdSS, NameSS;
- IdSS << "training_status_on_" << localhost->machine_guid;
- NameSS << "training_status_on_" << rrdhost_hostname(localhost);
- TrainingStatusRS = rrdset_create(
- RH,
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.training_status", // ctx
- "Training status of dimensions", // title
- "dimensions", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_TRAINING_STATUS, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(TrainingStatusRS, RRDSET_FLAG_ANOMALY_DETECTION);
- Untrained = rrddim_add(TrainingStatusRS, "untrained", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- PendingWithoutModel = rrddim_add(TrainingStatusRS, "pending-without-model", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- Trained = rrddim_add(TrainingStatusRS, "trained", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- PendingWithModel = rrddim_add(TrainingStatusRS, "pending-with-model", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(TrainingStatusRS, Untrained, MLS.NumTrainingStatusUntrained);
- rrddim_set_by_pointer(TrainingStatusRS, PendingWithoutModel, MLS.NumTrainingStatusPendingWithoutModel);
- rrddim_set_by_pointer(TrainingStatusRS, Trained, MLS.NumTrainingStatusTrained);
- rrddim_set_by_pointer(TrainingStatusRS, PendingWithModel, MLS.NumTrainingStatusPendingWithModel);
- rrdset_done(TrainingStatusRS);
- }
- /*
- * Prediction status
- */
- {
- static thread_local RRDSET *PredictionRS = nullptr;
- static thread_local RRDDIM *Anomalous = nullptr;
- static thread_local RRDDIM *Normal = nullptr;
- if (!PredictionRS) {
- std::stringstream IdSS, NameSS;
- IdSS << "dimensions_on_" << localhost->machine_guid;
- NameSS << "dimensions_on_" << rrdhost_hostname(localhost);
- PredictionRS = rrdset_create(
- RH,
- "anomaly_detection", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- "dimensions", // family
- "anomaly_detection.dimensions", // ctx
- "Anomaly detection dimensions", // title
- "dimensions", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- ML_CHART_PRIO_DIMENSIONS, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(PredictionRS, RRDSET_FLAG_ANOMALY_DETECTION);
- Anomalous = rrddim_add(PredictionRS, "anomalous", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- Normal = rrddim_add(PredictionRS, "normal", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(PredictionRS, Anomalous, MLS.NumAnomalousDimensions);
- rrddim_set_by_pointer(PredictionRS, Normal, MLS.NumNormalDimensions);
- rrdset_done(PredictionRS);
- }
- }
- void ml::updateHostAndDetectionRateCharts(RRDHOST *RH, collected_number AnomalyRate) {
- static thread_local RRDSET *HostRateRS = nullptr;
- static thread_local RRDDIM *AnomalyRateRD = nullptr;
- if (!HostRateRS) {
- std::stringstream IdSS, NameSS;
- IdSS << "anomaly_rate_on_" << localhost->machine_guid;
- NameSS << "anomaly_rate_on_" << rrdhost_hostname(localhost);
- HostRateRS = rrdset_create(
- RH,
- "anomaly_detection", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- "anomaly_rate", // family
- "anomaly_detection.anomaly_rate", // ctx
- "Percentage of anomalous dimensions", // title
- "percentage", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_DETECTION, // module
- ML_CHART_PRIO_ANOMALY_RATE, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(HostRateRS, RRDSET_FLAG_ANOMALY_DETECTION);
- AnomalyRateRD = rrddim_add(HostRateRS, "anomaly_rate", NULL,
- 1, 100, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(HostRateRS, AnomalyRateRD, AnomalyRate);
- rrdset_done(HostRateRS);
- static thread_local RRDSET *AnomalyDetectionRS = nullptr;
- static thread_local RRDDIM *AboveThresholdRD = nullptr;
- static thread_local RRDDIM *NewAnomalyEventRD = nullptr;
- if (!AnomalyDetectionRS) {
- std::stringstream IdSS, NameSS;
- IdSS << "anomaly_detection_on_" << localhost->machine_guid;
- NameSS << "anomaly_detection_on_" << rrdhost_hostname(localhost);
- AnomalyDetectionRS = rrdset_create(
- RH,
- "anomaly_detection", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- "anomaly_detection", // family
- "anomaly_detection.detector_events", // ctx
- "Anomaly detection events", // title
- "percentage", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_DETECTION, // module
- ML_CHART_PRIO_DETECTOR_EVENTS, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(AnomalyDetectionRS, RRDSET_FLAG_ANOMALY_DETECTION);
- AboveThresholdRD = rrddim_add(AnomalyDetectionRS, "above_threshold", NULL,
- 1, 1, RRD_ALGORITHM_ABSOLUTE);
- NewAnomalyEventRD = rrddim_add(AnomalyDetectionRS, "new_anomaly_event", NULL,
- 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- /*
- * Compute the values of the dimensions based on the host rate chart
- */
- ONEWAYALLOC *OWA = onewayalloc_create(0);
- time_t Now = now_realtime_sec();
- time_t Before = Now - RH->rrd_update_every;
- time_t After = Before - Cfg.AnomalyDetectionQueryDuration;
- RRDR_OPTIONS Options = static_cast<RRDR_OPTIONS>(0x00000000);
- RRDR *R = rrd2rrdr_legacy(
- OWA, HostRateRS,
- 1 /* points wanted */,
- After,
- Before,
- Cfg.AnomalyDetectionGroupingMethod,
- 0 /* resampling time */,
- Options, "anomaly_rate",
- NULL /* group options */,
- 0, /* timeout */
- 0, /* tier */
- QUERY_SOURCE_ML,
- STORAGE_PRIORITY_BEST_EFFORT
- );
- if(R) {
- if(R->d == 1 && R->n == 1 && R->rows == 1) {
- static thread_local bool PrevAboveThreshold = false;
- bool AboveThreshold = R->v[0] >= Cfg.HostAnomalyRateThreshold;
- bool NewAnomalyEvent = AboveThreshold && !PrevAboveThreshold;
- PrevAboveThreshold = AboveThreshold;
- rrddim_set_by_pointer(AnomalyDetectionRS, AboveThresholdRD, AboveThreshold);
- rrddim_set_by_pointer(AnomalyDetectionRS, NewAnomalyEventRD, NewAnomalyEvent);
- rrdset_done(AnomalyDetectionRS);
- }
- rrdr_free(OWA, R);
- }
- onewayalloc_destroy(OWA);
- }
- void ml::updateResourceUsageCharts(RRDHOST *RH, const struct rusage &PredictionRU, const struct rusage &TrainingRU) {
- /*
- * prediction rusage
- */
- {
- static thread_local RRDSET *RS = nullptr;
- static thread_local RRDDIM *User = nullptr;
- static thread_local RRDDIM *System = nullptr;
- if (!RS) {
- std::stringstream IdSS, NameSS;
- IdSS << "prediction_usage_for_" << RH->machine_guid;
- NameSS << "prediction_usage_for_" << rrdhost_hostname(RH);
- RS = rrdset_create_localhost(
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.prediction_usage", // ctx
- "Prediction resource usage", // title
- "milliseconds/s", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_PREDICTION, // module
- NETDATA_ML_CHART_PRIO_PREDICTION_USAGE, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_STACKED // chart_type
- );
- rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
- User = rrddim_add(RS, "user", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
- System = rrddim_add(RS, "system", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
- }
- rrddim_set_by_pointer(RS, User, PredictionRU.ru_utime.tv_sec * 1000000ULL + PredictionRU.ru_utime.tv_usec);
- rrddim_set_by_pointer(RS, System, PredictionRU.ru_stime.tv_sec * 1000000ULL + PredictionRU.ru_stime.tv_usec);
- rrdset_done(RS);
- }
- /*
- * training rusage
- */
- {
- static thread_local RRDSET *RS = nullptr;
- static thread_local RRDDIM *User = nullptr;
- static thread_local RRDDIM *System = nullptr;
- if (!RS) {
- std::stringstream IdSS, NameSS;
- IdSS << "training_usage_for_" << RH->machine_guid;
- NameSS << "training_usage_for_" << rrdhost_hostname(RH);
- RS = rrdset_create_localhost(
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.training_usage", // ctx
- "Training resource usage", // title
- "milliseconds/s", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_TRAINING_USAGE, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_STACKED // chart_type
- );
- rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
- User = rrddim_add(RS, "user", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
- System = rrddim_add(RS, "system", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
- }
- rrddim_set_by_pointer(RS, User, TrainingRU.ru_utime.tv_sec * 1000000ULL + TrainingRU.ru_utime.tv_usec);
- rrddim_set_by_pointer(RS, System, TrainingRU.ru_stime.tv_sec * 1000000ULL + TrainingRU.ru_stime.tv_usec);
- rrdset_done(RS);
- }
- }
- void ml::updateTrainingStatisticsChart(RRDHOST *RH, const TrainingStats &TS) {
- /*
- * queue stats
- */
- {
- static thread_local RRDSET *RS = nullptr;
- static thread_local RRDDIM *QueueSize = nullptr;
- static thread_local RRDDIM *PoppedItems = nullptr;
- if (!RS) {
- std::stringstream IdSS, NameSS;
- IdSS << "queue_stats_on_" << localhost->machine_guid;
- NameSS << "queue_stats_on_" << rrdhost_hostname(localhost);
- RS = rrdset_create(
- RH,
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.queue_stats", // ctx
- "Training queue stats", // title
- "items", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_QUEUE_STATS, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE// chart_type
- );
- rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
- QueueSize = rrddim_add(RS, "queue_size", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- PoppedItems = rrddim_add(RS, "popped_items", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(RS, QueueSize, TS.QueueSize);
- rrddim_set_by_pointer(RS, PoppedItems, TS.NumPoppedItems);
- rrdset_done(RS);
- }
- /*
- * training stats
- */
- {
- static thread_local RRDSET *RS = nullptr;
- static thread_local RRDDIM *Allotted = nullptr;
- static thread_local RRDDIM *Consumed = nullptr;
- static thread_local RRDDIM *Remaining = nullptr;
- if (!RS) {
- std::stringstream IdSS, NameSS;
- IdSS << "training_time_stats_on_" << localhost->machine_guid;
- NameSS << "training_time_stats_on_" << rrdhost_hostname(localhost);
- RS = rrdset_create(
- RH,
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.training_time_stats", // ctx
- "Training time stats", // title
- "milliseconds", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_TRAINING_TIME_STATS, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE// chart_type
- );
- rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
- Allotted = rrddim_add(RS, "allotted", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
- Consumed = rrddim_add(RS, "consumed", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
- Remaining = rrddim_add(RS, "remaining", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(RS, Allotted, TS.AllottedUT);
- rrddim_set_by_pointer(RS, Consumed, TS.ConsumedUT);
- rrddim_set_by_pointer(RS, Remaining, TS.RemainingUT);
- rrdset_done(RS);
- }
- /*
- * training result stats
- */
- {
- static thread_local RRDSET *RS = nullptr;
- static thread_local RRDDIM *Ok = nullptr;
- static thread_local RRDDIM *InvalidQueryTimeRange = nullptr;
- static thread_local RRDDIM *NotEnoughCollectedValues = nullptr;
- static thread_local RRDDIM *NullAcquiredDimension = nullptr;
- static thread_local RRDDIM *ChartUnderReplication = nullptr;
- if (!RS) {
- std::stringstream IdSS, NameSS;
- IdSS << "training_results_on_" << localhost->machine_guid;
- NameSS << "training_results_on_" << rrdhost_hostname(localhost);
- RS = rrdset_create(
- RH,
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- NETDATA_ML_CHART_FAMILY, // family
- "netdata.training_results", // ctx
- "Training results", // title
- "events", // units
- NETDATA_ML_PLUGIN, // plugin
- NETDATA_ML_MODULE_TRAINING, // module
- NETDATA_ML_CHART_PRIO_TRAINING_RESULTS, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE// chart_type
- );
- rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
- Ok = rrddim_add(RS, "ok", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- InvalidQueryTimeRange = rrddim_add(RS, "invalid-queries", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- NotEnoughCollectedValues = rrddim_add(RS, "not-enough-values", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- NullAcquiredDimension = rrddim_add(RS, "null-acquired-dimensions", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- ChartUnderReplication = rrddim_add(RS, "chart-under-replication", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
- }
- rrddim_set_by_pointer(RS, Ok, TS.TrainingResultOk);
- rrddim_set_by_pointer(RS, InvalidQueryTimeRange, TS.TrainingResultInvalidQueryTimeRange);
- rrddim_set_by_pointer(RS, NotEnoughCollectedValues, TS.TrainingResultNotEnoughCollectedValues);
- rrddim_set_by_pointer(RS, NullAcquiredDimension, TS.TrainingResultNullAcquiredDimension);
- rrddim_set_by_pointer(RS, ChartUnderReplication, TS.TrainingResultChartUnderReplication);
- rrdset_done(RS);
- }
- }
|