storage_number.h 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #ifndef NETDATA_STORAGE_NUMBER_H
  3. #define NETDATA_STORAGE_NUMBER_H 1
  4. #include <math.h>
  5. #include "../libnetdata.h"
  6. #ifdef NETDATA_WITH_LONG_DOUBLE
  7. typedef long double NETDATA_DOUBLE;
  8. #define NETDATA_DOUBLE_FORMAT "%0.7Lf"
  9. #define NETDATA_DOUBLE_FORMAT_ZERO "%0.0Lf"
  10. #define NETDATA_DOUBLE_FORMAT_AUTO "%Lf"
  11. #define NETDATA_DOUBLE_MODIFIER "Lf"
  12. #define NETDATA_DOUBLE_MAX LDBL_MAX
  13. #define strtondd(s, endptr) strtold(s, endptr)
  14. #define powndd(x, y) powl(x, y)
  15. #define llrintndd(x) llrintl(x)
  16. #define roundndd(x) roundl(x)
  17. #define sqrtndd(x) sqrtl(x)
  18. #define copysignndd(x, y) copysignl(x, y)
  19. #define modfndd(x, y) modfl(x, y)
  20. #define fabsndd(x) fabsl(x)
  21. #else // NETDATA_WITH_LONG_DOUBLE
  22. typedef double NETDATA_DOUBLE;
  23. #define NETDATA_DOUBLE_FORMAT "%0.7f"
  24. #define NETDATA_DOUBLE_FORMAT_ZERO "%0.0f"
  25. #define NETDATA_DOUBLE_FORMAT_AUTO "%f"
  26. #define NETDATA_DOUBLE_MODIFIER "f"
  27. #define NETDATA_DOUBLE_MAX DBL_MAX
  28. #define strtondd(s, endptr) strtod(s, endptr)
  29. #define powndd(x, y) pow(x, y)
  30. #define llrintndd(x) llrint(x)
  31. #define roundndd(x) round(x)
  32. #define sqrtndd(x) sqrt(x)
  33. #define copysignndd(x, y) copysign(x, y)
  34. #define modfndd(x, y) modf(x, y)
  35. #define fabsndd(x) fabs(x)
  36. #endif // NETDATA_WITH_LONG_DOUBLE
  37. typedef long long collected_number;
  38. #define COLLECTED_NUMBER_FORMAT "%lld"
  39. #define epsilonndd (NETDATA_DOUBLE)0.0000001
  40. #define considered_equal_ndd(a, b) (fabsndd((a) - (b)) < epsilonndd)
  41. #if defined(HAVE_ISFINITE) || defined(isfinite)
  42. // The isfinite() macro shall determine whether its argument has a
  43. // finite value (zero, subnormal, or normal, and not infinite or NaN).
  44. #define netdata_double_isnumber(a) (isfinite(a))
  45. #elif defined(HAVE_FINITE) || defined(finite)
  46. #define netdata_double_isnumber(a) (finite(a))
  47. #else
  48. #define netdata_double_isnumber(a) (fpclassify(a) != FP_NAN && fpclassify(a) != FP_INFINITE)
  49. #endif
  50. typedef uint32_t storage_number;
  51. typedef struct storage_number_tier1 {
  52. float sum_value;
  53. float min_value;
  54. float max_value;
  55. uint16_t count;
  56. uint16_t anomaly_count;
  57. } storage_number_tier1_t;
  58. #define STORAGE_NUMBER_FORMAT "%u"
  59. typedef enum {
  60. SN_FLAG_NONE = 0,
  61. SN_FLAG_NOT_ANOMALOUS = (1 << 24), // the anomaly bit of the value (0:anomalous, 1:not anomalous)
  62. SN_FLAG_RESET = (1 << 25), // the value has been overflown
  63. SN_FLAG_NOT_EXISTS_MUL100 = (1 << 26), // very large value (multiplier is 100 instead of 10)
  64. SN_FLAG_MULTIPLY = (1 << 30), // multiply, else divide
  65. SN_FLAG_NEGATIVE = (1 << 31), // negative, else positive
  66. } SN_FLAGS;
  67. #define SN_USER_FLAGS (SN_FLAG_NOT_ANOMALOUS | SN_FLAG_RESET)
  68. // default flags for all storage numbers
  69. // anomaly bit is reversed, so we set it by default
  70. #define SN_DEFAULT_FLAGS SN_FLAG_NOT_ANOMALOUS
  71. // When the calculated number is zero and the value is anomalous (ie. it's bit
  72. // is zero) we want to return a storage_number representation that is
  73. // different from the empty slot. We achieve this by mapping zero to
  74. // SN_EXISTS_100. Unpacking the SN_EXISTS_100 value will return zero because
  75. // its fraction field (as well as its exponent factor field) will be zero.
  76. #define SN_EMPTY_SLOT SN_FLAG_NOT_EXISTS_MUL100
  77. // checks
  78. #define does_storage_number_exist(value) (((storage_number)(value)) != SN_EMPTY_SLOT)
  79. #define did_storage_number_reset(value) ((((storage_number)(value)) & SN_FLAG_RESET))
  80. #define is_storage_number_anomalous(value) (does_storage_number_exist(value) && !(((storage_number)(value)) & SN_FLAG_NOT_ANOMALOUS))
  81. storage_number pack_storage_number(NETDATA_DOUBLE value, SN_FLAGS flags) __attribute__((const));
  82. static inline NETDATA_DOUBLE unpack_storage_number(storage_number value) __attribute__((const));
  83. int print_netdata_double(char *str, NETDATA_DOUBLE value);
  84. // sign div/mul <--- multiplier / divider ---> 10/100 RESET EXISTS VALUE
  85. #define STORAGE_NUMBER_POSITIVE_MAX_RAW (storage_number)( (0 << 31) | (1 << 30) | (1 << 29) | (1 << 28) | (1 << 27) | (1 << 26) | (0 << 25) | (1 << 24) | 0x00ffffff )
  86. #define STORAGE_NUMBER_POSITIVE_MIN_RAW (storage_number)( (0 << 31) | (0 << 30) | (1 << 29) | (1 << 28) | (1 << 27) | (0 << 26) | (0 << 25) | (1 << 24) | 0x00000001 )
  87. #define STORAGE_NUMBER_NEGATIVE_MAX_RAW (storage_number)( (1 << 31) | (0 << 30) | (1 << 29) | (1 << 28) | (1 << 27) | (0 << 26) | (0 << 25) | (1 << 24) | 0x00000001 )
  88. #define STORAGE_NUMBER_NEGATIVE_MIN_RAW (storage_number)( (1 << 31) | (1 << 30) | (1 << 29) | (1 << 28) | (1 << 27) | (1 << 26) | (0 << 25) | (1 << 24) | 0x00ffffff )
  89. // accepted accuracy loss
  90. #define ACCURACY_LOSS_ACCEPTED_PERCENT 0.0001
  91. #define accuracy_loss(t1, t2) (((t1) == (t2) || (t1) == 0.0 || (t2) == 0.0) ? 0.0 : (100.0 - (((t1) > (t2)) ? ((t2) * 100.0 / (t1) ) : ((t1) * 100.0 / (t2)))))
  92. // Maximum acceptable rate of increase for counters. With a rate of 10% netdata can safely detect overflows with a
  93. // period of at least every other 10 samples.
  94. #define MAX_INCREMENTAL_PERCENT_RATE 10
  95. static inline NETDATA_DOUBLE unpack_storage_number(storage_number value) {
  96. extern NETDATA_DOUBLE unpack_storage_number_lut10x[4 * 8];
  97. if(unlikely(value == SN_EMPTY_SLOT))
  98. return NAN;
  99. int sign = 1, exp = 0;
  100. int factor = 0;
  101. // bit 32 = 0:positive, 1:negative
  102. if(unlikely(value & SN_FLAG_NEGATIVE))
  103. sign = -1;
  104. // bit 31 = 0:divide, 1:multiply
  105. if(unlikely(value & SN_FLAG_MULTIPLY))
  106. exp = 1;
  107. // bit 27 SN_FLAG_NOT_EXISTS_MUL100
  108. if(unlikely(value & SN_FLAG_NOT_EXISTS_MUL100))
  109. factor = 1;
  110. // bit 26 SN_FLAG_RESET
  111. // bit 25 SN_FLAG_NOT_ANOMALOUS
  112. // bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total)
  113. int mul = (int)((value & ((1<<29)|(1<<28)|(1<<27))) >> 27);
  114. // bit 24 to bit 1 = the value, so remove all other bits
  115. value ^= value & ((1<<31)|(1<<30)|(1<<29)|(1<<28)|(1<<27)|(1<<26)|(1<<25)|(1<<24));
  116. NETDATA_DOUBLE n = value;
  117. // fprintf(stderr, "UNPACK: %08X, sign = %d, exp = %d, mul = %d, factor = %d, n = " CALCULATED_NUMBER_FORMAT "\n", value, sign, exp, mul, factor, n);
  118. return sign * unpack_storage_number_lut10x[(factor * 16) + (exp * 8) + mul] * n;
  119. }
  120. static inline NETDATA_DOUBLE str2ndd(const char *s, char **endptr) {
  121. int negative = 0;
  122. const char *start = s;
  123. unsigned long long integer_part = 0;
  124. unsigned long decimal_part = 0;
  125. size_t decimal_digits = 0;
  126. switch(*s) {
  127. case '-':
  128. s++;
  129. negative = 1;
  130. break;
  131. case '+':
  132. s++;
  133. break;
  134. case 'n':
  135. if(s[1] == 'a' && s[2] == 'n') {
  136. if(endptr) *endptr = (char *)&s[3];
  137. return NAN;
  138. }
  139. break;
  140. case 'i':
  141. if(s[1] == 'n' && s[2] == 'f') {
  142. if(endptr) *endptr = (char *)&s[3];
  143. return INFINITY;
  144. }
  145. break;
  146. default:
  147. break;
  148. }
  149. while (*s >= '0' && *s <= '9') {
  150. integer_part = (integer_part * 10) + (*s - '0');
  151. s++;
  152. }
  153. if(unlikely(*s == '.')) {
  154. decimal_part = 0;
  155. s++;
  156. while (*s >= '0' && *s <= '9') {
  157. decimal_part = (decimal_part * 10) + (*s - '0');
  158. s++;
  159. decimal_digits++;
  160. }
  161. }
  162. if(unlikely(*s == 'e' || *s == 'E'))
  163. return strtondd(start, endptr);
  164. if(unlikely(endptr))
  165. *endptr = (char *)s;
  166. if(unlikely(negative)) {
  167. if(unlikely(decimal_digits))
  168. return -((NETDATA_DOUBLE)integer_part + (NETDATA_DOUBLE)decimal_part / powndd(10.0, decimal_digits));
  169. else
  170. return -((NETDATA_DOUBLE)integer_part);
  171. }
  172. else {
  173. if(unlikely(decimal_digits))
  174. return (NETDATA_DOUBLE)integer_part + (NETDATA_DOUBLE)decimal_part / powndd(10.0, decimal_digits);
  175. else
  176. return (NETDATA_DOUBLE)integer_part;
  177. }
  178. }
  179. #endif /* NETDATA_STORAGE_NUMBER_H */