trimmed_mean.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #include "trimmed_mean.h"
  3. // ----------------------------------------------------------------------------
  4. // median
  5. struct grouping_trimmed_mean {
  6. size_t series_size;
  7. size_t next_pos;
  8. NETDATA_DOUBLE percent;
  9. NETDATA_DOUBLE *series;
  10. };
  11. static void grouping_create_trimmed_mean_internal(RRDR *r, const char *options, NETDATA_DOUBLE def) {
  12. long entries = r->group;
  13. if(entries < 10) entries = 10;
  14. struct grouping_trimmed_mean *g = (struct grouping_trimmed_mean *)onewayalloc_callocz(r->internal.owa, 1, sizeof(struct grouping_trimmed_mean));
  15. g->series = onewayalloc_mallocz(r->internal.owa, entries * sizeof(NETDATA_DOUBLE));
  16. g->series_size = (size_t)entries;
  17. g->percent = def;
  18. if(options && *options) {
  19. g->percent = str2ndd(options, NULL);
  20. if(!netdata_double_isnumber(g->percent)) g->percent = 0.0;
  21. if(g->percent < 0.0) g->percent = 0.0;
  22. if(g->percent > 50.0) g->percent = 50.0;
  23. }
  24. g->percent = 1.0 - ((g->percent / 100.0) * 2.0);
  25. r->internal.grouping_data = g;
  26. }
  27. void grouping_create_trimmed_mean1(RRDR *r, const char *options) {
  28. grouping_create_trimmed_mean_internal(r, options, 1.0);
  29. }
  30. void grouping_create_trimmed_mean2(RRDR *r, const char *options) {
  31. grouping_create_trimmed_mean_internal(r, options, 2.0);
  32. }
  33. void grouping_create_trimmed_mean3(RRDR *r, const char *options) {
  34. grouping_create_trimmed_mean_internal(r, options, 3.0);
  35. }
  36. void grouping_create_trimmed_mean5(RRDR *r, const char *options) {
  37. grouping_create_trimmed_mean_internal(r, options, 5.0);
  38. }
  39. void grouping_create_trimmed_mean10(RRDR *r, const char *options) {
  40. grouping_create_trimmed_mean_internal(r, options, 10.0);
  41. }
  42. void grouping_create_trimmed_mean15(RRDR *r, const char *options) {
  43. grouping_create_trimmed_mean_internal(r, options, 15.0);
  44. }
  45. void grouping_create_trimmed_mean20(RRDR *r, const char *options) {
  46. grouping_create_trimmed_mean_internal(r, options, 20.0);
  47. }
  48. void grouping_create_trimmed_mean25(RRDR *r, const char *options) {
  49. grouping_create_trimmed_mean_internal(r, options, 25.0);
  50. }
  51. // resets when switches dimensions
  52. // so, clear everything to restart
  53. void grouping_reset_trimmed_mean(RRDR *r) {
  54. struct grouping_trimmed_mean *g = (struct grouping_trimmed_mean *)r->internal.grouping_data;
  55. g->next_pos = 0;
  56. }
  57. void grouping_free_trimmed_mean(RRDR *r) {
  58. struct grouping_trimmed_mean *g = (struct grouping_trimmed_mean *)r->internal.grouping_data;
  59. if(g) onewayalloc_freez(r->internal.owa, g->series);
  60. onewayalloc_freez(r->internal.owa, r->internal.grouping_data);
  61. r->internal.grouping_data = NULL;
  62. }
  63. void grouping_add_trimmed_mean(RRDR *r, NETDATA_DOUBLE value) {
  64. struct grouping_trimmed_mean *g = (struct grouping_trimmed_mean *)r->internal.grouping_data;
  65. if(unlikely(g->next_pos >= g->series_size)) {
  66. g->series = onewayalloc_doublesize( r->internal.owa, g->series, g->series_size * sizeof(NETDATA_DOUBLE));
  67. g->series_size *= 2;
  68. }
  69. g->series[g->next_pos++] = value;
  70. }
  71. NETDATA_DOUBLE grouping_flush_trimmed_mean(RRDR *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr) {
  72. struct grouping_trimmed_mean *g = (struct grouping_trimmed_mean *)r->internal.grouping_data;
  73. NETDATA_DOUBLE value;
  74. size_t available_slots = g->next_pos;
  75. if(unlikely(!available_slots)) {
  76. value = 0.0;
  77. *rrdr_value_options_ptr |= RRDR_VALUE_EMPTY;
  78. }
  79. else if(available_slots == 1) {
  80. value = g->series[0];
  81. }
  82. else {
  83. sort_series(g->series, available_slots);
  84. NETDATA_DOUBLE min = g->series[0];
  85. NETDATA_DOUBLE max = g->series[available_slots - 1];
  86. if (min != max) {
  87. size_t slots_to_use = (size_t)((NETDATA_DOUBLE)available_slots * g->percent);
  88. if(!slots_to_use) slots_to_use = 1;
  89. NETDATA_DOUBLE percent_to_use = (NETDATA_DOUBLE)slots_to_use / (NETDATA_DOUBLE)available_slots;
  90. NETDATA_DOUBLE percent_delta = g->percent - percent_to_use;
  91. NETDATA_DOUBLE percent_interpolation_slot = 0.0;
  92. NETDATA_DOUBLE percent_last_slot = 0.0;
  93. if(percent_delta > 0.0) {
  94. NETDATA_DOUBLE percent_to_use_plus_1_slot = (NETDATA_DOUBLE)(slots_to_use + 1) / (NETDATA_DOUBLE)available_slots;
  95. NETDATA_DOUBLE percent_1slot = percent_to_use_plus_1_slot - percent_to_use;
  96. percent_interpolation_slot = percent_delta / percent_1slot;
  97. percent_last_slot = 1 - percent_interpolation_slot;
  98. }
  99. int start_slot, stop_slot, step, last_slot, interpolation_slot;
  100. if(min >= 0.0 && max >= 0.0) {
  101. start_slot = (int)((available_slots - slots_to_use) / 2);
  102. stop_slot = start_slot + (int)slots_to_use;
  103. last_slot = stop_slot - 1;
  104. interpolation_slot = stop_slot;
  105. step = 1;
  106. }
  107. else {
  108. start_slot = (int)available_slots - 1 - (int)((available_slots - slots_to_use) / 2);
  109. stop_slot = start_slot - (int)slots_to_use;
  110. last_slot = stop_slot + 1;
  111. interpolation_slot = stop_slot;
  112. step = -1;
  113. }
  114. value = 0.0;
  115. for(int slot = start_slot; slot != stop_slot ; slot += step)
  116. value += g->series[slot];
  117. size_t counted = slots_to_use;
  118. if(percent_interpolation_slot > 0.0 && interpolation_slot >= 0 && interpolation_slot < (int)available_slots) {
  119. value += g->series[interpolation_slot] * percent_interpolation_slot;
  120. value += g->series[last_slot] * percent_last_slot;
  121. counted++;
  122. }
  123. value = value / (NETDATA_DOUBLE)counted;
  124. }
  125. else
  126. value = min;
  127. }
  128. if(unlikely(!netdata_double_isnumber(value))) {
  129. value = 0.0;
  130. *rrdr_value_options_ptr |= RRDR_VALUE_EMPTY;
  131. }
  132. //log_series_to_stderr(g->series, g->next_pos, value, "trimmed_mean");
  133. g->next_pos = 0;
  134. return value;
  135. }