123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- // SPDX-License-Identifier: GPL-3.0-or-later
- #ifndef NETDATA_STORAGE_NUMBER_H
- #define NETDATA_STORAGE_NUMBER_H 1
- #include <math.h>
- #include "../libnetdata.h"
- #ifdef NETDATA_WITH_LONG_DOUBLE
- typedef long double NETDATA_DOUBLE;
- #define NETDATA_DOUBLE_FORMAT "%0.7Lf"
- #define NETDATA_DOUBLE_FORMAT_ZERO "%0.0Lf"
- #define NETDATA_DOUBLE_FORMAT_AUTO "%Lf"
- #define NETDATA_DOUBLE_MODIFIER "Lf"
- #define NETDATA_DOUBLE_MAX LDBL_MAX
- #define strtondd(s, endptr) strtold(s, endptr)
- #define powndd(x, y) powl(x, y)
- #define llrintndd(x) llrintl(x)
- #define roundndd(x) roundl(x)
- #define sqrtndd(x) sqrtl(x)
- #define copysignndd(x, y) copysignl(x, y)
- #define modfndd(x, y) modfl(x, y)
- #define fabsndd(x) fabsl(x)
- #else // NETDATA_WITH_LONG_DOUBLE
- typedef double NETDATA_DOUBLE;
- #define NETDATA_DOUBLE_FORMAT "%0.7f"
- #define NETDATA_DOUBLE_FORMAT_ZERO "%0.0f"
- #define NETDATA_DOUBLE_FORMAT_AUTO "%f"
- #define NETDATA_DOUBLE_MODIFIER "f"
- #define NETDATA_DOUBLE_MAX DBL_MAX
- #define strtondd(s, endptr) strtod(s, endptr)
- #define powndd(x, y) pow(x, y)
- #define llrintndd(x) llrint(x)
- #define roundndd(x) round(x)
- #define sqrtndd(x) sqrt(x)
- #define copysignndd(x, y) copysign(x, y)
- #define modfndd(x, y) modf(x, y)
- #define fabsndd(x) fabs(x)
- #endif // NETDATA_WITH_LONG_DOUBLE
- typedef long long collected_number;
- #define COLLECTED_NUMBER_FORMAT "%lld"
- #define epsilonndd (NETDATA_DOUBLE)0.0000001
- #define considered_equal_ndd(a, b) (fabsndd((a) - (b)) < epsilonndd)
- #if defined(HAVE_ISFINITE) || defined(isfinite)
- // The isfinite() macro shall determine whether its argument has a
- // finite value (zero, subnormal, or normal, and not infinite or NaN).
- #define netdata_double_isnumber(a) (isfinite(a))
- #elif defined(HAVE_FINITE) || defined(finite)
- #define netdata_double_isnumber(a) (finite(a))
- #else
- #define netdata_double_isnumber(a) (fpclassify(a) != FP_NAN && fpclassify(a) != FP_INFINITE)
- #endif
- typedef uint32_t storage_number;
- typedef struct storage_number_tier1 {
- float sum_value;
- float min_value;
- float max_value;
- uint16_t count;
- uint16_t anomaly_count;
- } storage_number_tier1_t;
- #define STORAGE_NUMBER_FORMAT "%u"
- typedef enum {
- SN_ANOMALY_BIT = (1 << 24), // the anomaly bit of the value
- SN_EXISTS_RESET = (1 << 25), // the value has been overflown
- SN_EXISTS_100 = (1 << 26) // very large value (multiplier is 100 instead of 10)
- } SN_FLAGS;
- #define SN_ALL_FLAGS (SN_ANOMALY_BIT|SN_EXISTS_RESET|SN_EXISTS_100)
- #define SN_EMPTY_SLOT 0x00000000
- #define SN_DEFAULT_FLAGS SN_ANOMALY_BIT
- // When the calculated number is zero and the value is anomalous (ie. it's bit
- // is zero) we want to return a storage_number representation that is
- // different from the empty slot. We achieve this by mapping zero to
- // SN_EXISTS_100. Unpacking the SN_EXISTS_100 value will return zero because
- // its fraction field (as well as its exponent factor field) will be zero.
- #define SN_ANOMALOUS_ZERO SN_EXISTS_100
- // checks
- #define does_storage_number_exist(value) (((storage_number) (value)) != SN_EMPTY_SLOT)
- #define did_storage_number_reset(value) ((((storage_number) (value)) & SN_EXISTS_RESET) != 0)
- storage_number pack_storage_number(NETDATA_DOUBLE value, SN_FLAGS flags);
- static inline NETDATA_DOUBLE unpack_storage_number(storage_number value) __attribute__((const));
- int print_netdata_double(char *str, NETDATA_DOUBLE value);
- // sign div/mul <--- multiplier / divider ---> 10/100 RESET EXISTS VALUE
- #define STORAGE_NUMBER_POSITIVE_MAX_RAW (storage_number)( (0 << 31) | (1 << 30) | (1 << 29) | (1 << 28) | (1<<27) | (1 << 26) | (0 << 25) | (1 << 24) | 0x00ffffff )
- #define STORAGE_NUMBER_POSITIVE_MIN_RAW (storage_number)( (0 << 31) | (0 << 30) | (1 << 29) | (1 << 28) | (1<<27) | (0 << 26) | (0 << 25) | (1 << 24) | 0x00000001 )
- #define STORAGE_NUMBER_NEGATIVE_MAX_RAW (storage_number)( (1 << 31) | (0 << 30) | (1 << 29) | (1 << 28) | (1<<27) | (0 << 26) | (0 << 25) | (1 << 24) | 0x00000001 )
- #define STORAGE_NUMBER_NEGATIVE_MIN_RAW (storage_number)( (1 << 31) | (1 << 30) | (1 << 29) | (1 << 28) | (1<<27) | (1 << 26) | (0 << 25) | (1 << 24) | 0x00ffffff )
- // accepted accuracy loss
- #define ACCURACY_LOSS_ACCEPTED_PERCENT 0.0001
- #define accuracy_loss(t1, t2) (((t1) == (t2) || (t1) == 0.0 || (t2) == 0.0) ? 0.0 : (100.0 - (((t1) > (t2)) ? ((t2) * 100.0 / (t1) ) : ((t1) * 100.0 / (t2)))))
- // Maximum acceptable rate of increase for counters. With a rate of 10% netdata can safely detect overflows with a
- // period of at least every other 10 samples.
- #define MAX_INCREMENTAL_PERCENT_RATE 10
- static inline NETDATA_DOUBLE unpack_storage_number(storage_number value) {
- extern NETDATA_DOUBLE unpack_storage_number_lut10x[4 * 8];
- if(unlikely(value == SN_EMPTY_SLOT))
- return NAN;
- int sign = 1, exp = 0;
- int factor = 0;
- // bit 32 = 0:positive, 1:negative
- if(unlikely(value & (1 << 31)))
- sign = -1;
- // bit 31 = 0:divide, 1:multiply
- if(unlikely(value & (1 << 30)))
- exp = 1;
- // bit 27 SN_EXISTS_100
- if(unlikely(value & (1 << 26)))
- factor = 1;
- // bit 26 SN_EXISTS_RESET
- // bit 25 SN_ANOMALY_BIT
- // bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total)
- int mul = (int)((value & ((1<<29)|(1<<28)|(1<<27))) >> 27);
- // bit 24 to bit 1 = the value, so remove all other bits
- value ^= value & ((1<<31)|(1<<30)|(1<<29)|(1<<28)|(1<<27)|(1<<26)|(1<<25)|(1<<24));
- NETDATA_DOUBLE n = value;
- // fprintf(stderr, "UNPACK: %08X, sign = %d, exp = %d, mul = %d, factor = %d, n = " CALCULATED_NUMBER_FORMAT "\n", value, sign, exp, mul, factor, n);
- return sign * unpack_storage_number_lut10x[(factor * 16) + (exp * 8) + mul] * n;
- }
- static inline NETDATA_DOUBLE str2ndd(const char *s, char **endptr) {
- int negative = 0;
- const char *start = s;
- unsigned long long integer_part = 0;
- unsigned long decimal_part = 0;
- size_t decimal_digits = 0;
- switch(*s) {
- case '-':
- s++;
- negative = 1;
- break;
- case '+':
- s++;
- break;
- case 'n':
- if(s[1] == 'a' && s[2] == 'n') {
- if(endptr) *endptr = (char *)&s[3];
- return NAN;
- }
- break;
- case 'i':
- if(s[1] == 'n' && s[2] == 'f') {
- if(endptr) *endptr = (char *)&s[3];
- return INFINITY;
- }
- break;
- default:
- break;
- }
- while (*s >= '0' && *s <= '9') {
- integer_part = (integer_part * 10) + (*s - '0');
- s++;
- }
- if(unlikely(*s == '.')) {
- decimal_part = 0;
- s++;
- while (*s >= '0' && *s <= '9') {
- decimal_part = (decimal_part * 10) + (*s - '0');
- s++;
- decimal_digits++;
- }
- }
- if(unlikely(*s == 'e' || *s == 'E'))
- return strtondd(start, endptr);
- if(unlikely(endptr))
- *endptr = (char *)s;
- if(unlikely(negative)) {
- if(unlikely(decimal_digits))
- return -((NETDATA_DOUBLE)integer_part + (NETDATA_DOUBLE)decimal_part / powndd(10.0, decimal_digits));
- else
- return -((NETDATA_DOUBLE)integer_part);
- }
- else {
- if(unlikely(decimal_digits))
- return (NETDATA_DOUBLE)integer_part + (NETDATA_DOUBLE)decimal_part / powndd(10.0, decimal_digits);
- else
- return (NETDATA_DOUBLE)integer_part;
- }
- }
- #endif /* NETDATA_STORAGE_NUMBER_H */
|