123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 |
- // SPDX-License-Identifier: GPL-3.0-or-later
- #include "../libnetdata.h"
- LONG_DOUBLE default_single_exponential_smoothing_alpha = 0.1;
- void log_series_to_stderr(LONG_DOUBLE *series, size_t entries, calculated_number result, const char *msg) {
- const LONG_DOUBLE *value, *end = &series[entries];
- fprintf(stderr, "%s of %zu entries [ ", msg, entries);
- for(value = series; value < end ;value++) {
- if(value != series) fprintf(stderr, ", ");
- fprintf(stderr, "%" LONG_DOUBLE_MODIFIER, *value);
- }
- fprintf(stderr, " ] results in " CALCULATED_NUMBER_FORMAT "\n", result);
- }
- // --------------------------------------------------------------------------------------------------------------------
- inline LONG_DOUBLE sum_and_count(const LONG_DOUBLE *series, size_t entries, size_t *count) {
- const LONG_DOUBLE *value, *end = &series[entries];
- LONG_DOUBLE sum = 0;
- size_t c = 0;
- for(value = series; value < end ; value++) {
- if(calculated_number_isnumber(*value)) {
- sum += *value;
- c++;
- }
- }
- if(unlikely(!c)) sum = NAN;
- if(likely(count)) *count = c;
- return sum;
- }
- inline LONG_DOUBLE sum(const LONG_DOUBLE *series, size_t entries) {
- return sum_and_count(series, entries, NULL);
- }
- inline LONG_DOUBLE average(const LONG_DOUBLE *series, size_t entries) {
- size_t count = 0;
- LONG_DOUBLE sum = sum_and_count(series, entries, &count);
- if(unlikely(!count)) return NAN;
- return sum / (LONG_DOUBLE)count;
- }
- // --------------------------------------------------------------------------------------------------------------------
- LONG_DOUBLE moving_average(const LONG_DOUBLE *series, size_t entries, size_t period) {
- if(unlikely(period <= 0))
- return 0.0;
- size_t i, count;
- LONG_DOUBLE sum = 0, avg = 0;
- LONG_DOUBLE p[period];
- for(count = 0; count < period ; count++)
- p[count] = 0.0;
- for(i = 0, count = 0; i < entries; i++) {
- LONG_DOUBLE value = series[i];
- if(unlikely(!calculated_number_isnumber(value))) continue;
- if(unlikely(count < period)) {
- sum += value;
- avg = (count == period - 1) ? sum / (LONG_DOUBLE)period : 0;
- }
- else {
- sum = sum - p[count % period] + value;
- avg = sum / (LONG_DOUBLE)period;
- }
- p[count % period] = value;
- count++;
- }
- return avg;
- }
- // --------------------------------------------------------------------------------------------------------------------
- static int qsort_compare(const void *a, const void *b) {
- LONG_DOUBLE *p1 = (LONG_DOUBLE *)a, *p2 = (LONG_DOUBLE *)b;
- LONG_DOUBLE n1 = *p1, n2 = *p2;
- if(unlikely(isnan(n1) || isnan(n2))) {
- if(isnan(n1) && !isnan(n2)) return -1;
- if(!isnan(n1) && isnan(n2)) return 1;
- return 0;
- }
- if(unlikely(isinf(n1) || isinf(n2))) {
- if(!isinf(n1) && isinf(n2)) return -1;
- if(isinf(n1) && !isinf(n2)) return 1;
- return 0;
- }
- if(unlikely(n1 < n2)) return -1;
- if(unlikely(n1 > n2)) return 1;
- return 0;
- }
- inline void sort_series(LONG_DOUBLE *series, size_t entries) {
- qsort(series, entries, sizeof(LONG_DOUBLE), qsort_compare);
- }
- inline LONG_DOUBLE *copy_series(const LONG_DOUBLE *series, size_t entries) {
- LONG_DOUBLE *copy = mallocz(sizeof(LONG_DOUBLE) * entries);
- memcpy(copy, series, sizeof(LONG_DOUBLE) * entries);
- return copy;
- }
- LONG_DOUBLE median_on_sorted_series(const LONG_DOUBLE *series, size_t entries) {
- if(unlikely(entries == 0)) return NAN;
- if(unlikely(entries == 1)) return series[0];
- if(unlikely(entries == 2)) return (series[0] + series[1]) / 2;
- LONG_DOUBLE average;
- if(entries % 2 == 0) {
- size_t m = entries / 2;
- average = (series[m] + series[m + 1]) / 2;
- }
- else {
- average = series[entries / 2];
- }
- return average;
- }
- LONG_DOUBLE median(const LONG_DOUBLE *series, size_t entries) {
- if(unlikely(entries == 0)) return NAN;
- if(unlikely(entries == 1)) return series[0];
- if(unlikely(entries == 2))
- return (series[0] + series[1]) / 2;
- LONG_DOUBLE *copy = copy_series(series, entries);
- sort_series(copy, entries);
- LONG_DOUBLE avg = median_on_sorted_series(copy, entries);
- freez(copy);
- return avg;
- }
- // --------------------------------------------------------------------------------------------------------------------
- LONG_DOUBLE moving_median(const LONG_DOUBLE *series, size_t entries, size_t period) {
- if(entries <= period)
- return median(series, entries);
- LONG_DOUBLE *data = copy_series(series, entries);
- size_t i;
- for(i = period; i < entries; i++) {
- data[i - period] = median(&series[i - period], period);
- }
- LONG_DOUBLE avg = median(data, entries - period);
- freez(data);
- return avg;
- }
- // --------------------------------------------------------------------------------------------------------------------
- // http://stackoverflow.com/a/15150143/4525767
- LONG_DOUBLE running_median_estimate(const LONG_DOUBLE *series, size_t entries) {
- LONG_DOUBLE median = 0.0f;
- LONG_DOUBLE average = 0.0f;
- size_t i;
- for(i = 0; i < entries ; i++) {
- LONG_DOUBLE value = series[i];
- if(unlikely(!calculated_number_isnumber(value))) continue;
- average += ( value - average ) * 0.1f; // rough running average.
- median += copysignl( average * 0.01, value - median );
- }
- return median;
- }
- // --------------------------------------------------------------------------------------------------------------------
- LONG_DOUBLE standard_deviation(const LONG_DOUBLE *series, size_t entries) {
- if(unlikely(entries == 0)) return NAN;
- if(unlikely(entries == 1)) return series[0];
- const LONG_DOUBLE *value, *end = &series[entries];
- size_t count;
- LONG_DOUBLE sum;
- for(count = 0, sum = 0, value = series ; value < end ;value++) {
- if(likely(calculated_number_isnumber(*value))) {
- count++;
- sum += *value;
- }
- }
- if(unlikely(count == 0)) return NAN;
- if(unlikely(count == 1)) return sum;
- LONG_DOUBLE average = sum / (LONG_DOUBLE)count;
- for(count = 0, sum = 0, value = series ; value < end ;value++) {
- if(calculated_number_isnumber(*value)) {
- count++;
- sum += powl(*value - average, 2);
- }
- }
- if(unlikely(count == 0)) return NAN;
- if(unlikely(count == 1)) return average;
- LONG_DOUBLE variance = sum / (LONG_DOUBLE)(count); // remove -1 from count to have a population stddev
- LONG_DOUBLE stddev = sqrtl(variance);
- return stddev;
- }
- // --------------------------------------------------------------------------------------------------------------------
- LONG_DOUBLE single_exponential_smoothing(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE alpha) {
- if(unlikely(entries == 0))
- return NAN;
- if(unlikely(isnan(alpha)))
- alpha = default_single_exponential_smoothing_alpha;
- const LONG_DOUBLE *value = series, *end = &series[entries];
- LONG_DOUBLE level = (1.0 - alpha) * (*value);
- for(value++ ; value < end; value++) {
- if(likely(calculated_number_isnumber(*value)))
- level = alpha * (*value) + (1.0 - alpha) * level;
- }
- return level;
- }
- LONG_DOUBLE single_exponential_smoothing_reverse(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE alpha) {
- if(unlikely(entries == 0))
- return NAN;
- if(unlikely(isnan(alpha)))
- alpha = default_single_exponential_smoothing_alpha;
- const LONG_DOUBLE *value = &series[entries -1];
- LONG_DOUBLE level = (1.0 - alpha) * (*value);
- for(value++ ; value >= series; value--) {
- if(likely(calculated_number_isnumber(*value)))
- level = alpha * (*value) + (1.0 - alpha) * level;
- }
- return level;
- }
- // --------------------------------------------------------------------------------------------------------------------
- // http://grisha.org/blog/2016/02/16/triple-exponential-smoothing-forecasting-part-ii/
- LONG_DOUBLE double_exponential_smoothing(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE alpha, LONG_DOUBLE beta, LONG_DOUBLE *forecast) {
- if(unlikely(entries == 0))
- return NAN;
- LONG_DOUBLE level, trend;
- if(unlikely(isnan(alpha)))
- alpha = 0.3;
- if(unlikely(isnan(beta)))
- beta = 0.05;
- level = series[0];
- if(likely(entries > 1))
- trend = series[1] - series[0];
- else
- trend = 0;
- const LONG_DOUBLE *value = series;
- for(value++ ; value >= series; value--) {
- if(likely(calculated_number_isnumber(*value))) {
- LONG_DOUBLE last_level = level;
- level = alpha * *value + (1.0 - alpha) * (level + trend);
- trend = beta * (level - last_level) + (1.0 - beta) * trend;
- }
- }
- if(forecast)
- *forecast = level + trend;
- return level;
- }
- // --------------------------------------------------------------------------------------------------------------------
- /*
- * Based on th R implementation
- *
- * a: level component
- * b: trend component
- * s: seasonal component
- *
- * Additive:
- *
- * Yhat[t+h] = a[t] + h * b[t] + s[t + 1 + (h - 1) mod p],
- * a[t] = α (Y[t] - s[t-p]) + (1-α) (a[t-1] + b[t-1])
- * b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
- * s[t] = γ (Y[t] - a[t]) + (1-γ) s[t-p]
- *
- * Multiplicative:
- *
- * Yhat[t+h] = (a[t] + h * b[t]) * s[t + 1 + (h - 1) mod p],
- * a[t] = α (Y[t] / s[t-p]) + (1-α) (a[t-1] + b[t-1])
- * b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
- * s[t] = γ (Y[t] / a[t]) + (1-γ) s[t-p]
- */
- static int __HoltWinters(
- const LONG_DOUBLE *series,
- int entries, // start_time + h
- LONG_DOUBLE alpha, // alpha parameter of Holt-Winters Filter.
- LONG_DOUBLE beta, // beta parameter of Holt-Winters Filter. If set to 0, the function will do exponential smoothing.
- LONG_DOUBLE gamma, // gamma parameter used for the seasonal component. If set to 0, an non-seasonal model is fitted.
- const int *seasonal,
- const int *period,
- const LONG_DOUBLE *a, // Start value for level (a[0]).
- const LONG_DOUBLE *b, // Start value for trend (b[0]).
- LONG_DOUBLE *s, // Vector of start values for the seasonal component (s_1[0] ... s_p[0])
- /* return values */
- LONG_DOUBLE *SSE, // The final sum of squared errors achieved in optimizing
- LONG_DOUBLE *level, // Estimated values for the level component (size entries - t + 2)
- LONG_DOUBLE *trend, // Estimated values for the trend component (size entries - t + 2)
- LONG_DOUBLE *season // Estimated values for the seasonal component (size entries - t + 2)
- )
- {
- if(unlikely(entries < 4))
- return 0;
- int start_time = 2;
- LONG_DOUBLE res = 0, xhat = 0, stmp = 0;
- int i, i0, s0;
- /* copy start values to the beginning of the vectors */
- level[0] = *a;
- if(beta > 0) trend[0] = *b;
- if(gamma > 0) memcpy(season, s, *period * sizeof(LONG_DOUBLE));
- for(i = start_time - 1; i < entries; i++) {
- /* indices for period i */
- i0 = i - start_time + 2;
- s0 = i0 + *period - 1;
- /* forecast *for* period i */
- xhat = level[i0 - 1] + (beta > 0 ? trend[i0 - 1] : 0);
- stmp = gamma > 0 ? season[s0 - *period] : (*seasonal != 1);
- if (*seasonal == 1)
- xhat += stmp;
- else
- xhat *= stmp;
- /* Sum of Squared Errors */
- res = series[i] - xhat;
- *SSE += res * res;
- /* estimate of level *in* period i */
- if (*seasonal == 1)
- level[i0] = alpha * (series[i] - stmp)
- + (1 - alpha) * (level[i0 - 1] + trend[i0 - 1]);
- else
- level[i0] = alpha * (series[i] / stmp)
- + (1 - alpha) * (level[i0 - 1] + trend[i0 - 1]);
- /* estimate of trend *in* period i */
- if (beta > 0)
- trend[i0] = beta * (level[i0] - level[i0 - 1])
- + (1 - beta) * trend[i0 - 1];
- /* estimate of seasonal component *in* period i */
- if (gamma > 0) {
- if (*seasonal == 1)
- season[s0] = gamma * (series[i] - level[i0])
- + (1 - gamma) * stmp;
- else
- season[s0] = gamma * (series[i] / level[i0])
- + (1 - gamma) * stmp;
- }
- }
- return 1;
- }
- LONG_DOUBLE holtwinters(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE alpha, LONG_DOUBLE beta, LONG_DOUBLE gamma, LONG_DOUBLE *forecast) {
- if(unlikely(isnan(alpha)))
- alpha = 0.3;
- if(unlikely(isnan(beta)))
- beta = 0.05;
- if(unlikely(isnan(gamma)))
- gamma = 0;
- int seasonal = 0;
- int period = 0;
- LONG_DOUBLE a0 = series[0];
- LONG_DOUBLE b0 = 0;
- LONG_DOUBLE s[] = {};
- LONG_DOUBLE errors = 0.0;
- size_t nb_computations = entries;
- LONG_DOUBLE *estimated_level = callocz(nb_computations, sizeof(LONG_DOUBLE));
- LONG_DOUBLE *estimated_trend = callocz(nb_computations, sizeof(LONG_DOUBLE));
- LONG_DOUBLE *estimated_season = callocz(nb_computations, sizeof(LONG_DOUBLE));
- int ret = __HoltWinters(
- series,
- (int)entries,
- alpha,
- beta,
- gamma,
- &seasonal,
- &period,
- &a0,
- &b0,
- s,
- &errors,
- estimated_level,
- estimated_trend,
- estimated_season
- );
- LONG_DOUBLE value = estimated_level[nb_computations - 1];
- if(forecast)
- *forecast = 0.0;
- freez(estimated_level);
- freez(estimated_trend);
- freez(estimated_season);
- if(!ret)
- return 0.0;
- return value;
- }
|