ebpf_socket.c 146 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #include <sys/resource.h>
  3. #include "ebpf.h"
  4. #include "ebpf_socket.h"
  5. /*****************************************************************
  6. *
  7. * GLOBAL VARIABLES
  8. *
  9. *****************************************************************/
  10. static char *socket_dimension_names[NETDATA_MAX_SOCKET_VECTOR] = { "received", "sent", "close",
  11. "received", "sent", "retransmitted",
  12. "connected_V4", "connected_V6", "connected_tcp",
  13. "connected_udp"};
  14. static char *socket_id_names[NETDATA_MAX_SOCKET_VECTOR] = { "tcp_cleanup_rbuf", "tcp_sendmsg", "tcp_close",
  15. "udp_recvmsg", "udp_sendmsg", "tcp_retransmit_skb",
  16. "tcp_connect_v4", "tcp_connect_v6", "inet_csk_accept_tcp",
  17. "inet_csk_accept_udp" };
  18. static ebpf_local_maps_t socket_maps[] = {{.name = "tbl_bandwidth",
  19. .internal_input = NETDATA_COMPILED_CONNECTIONS_ALLOWED,
  20. .user_input = NETDATA_MAXIMUM_CONNECTIONS_ALLOWED,
  21. .type = NETDATA_EBPF_MAP_STATIC,
  22. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED},
  23. {.name = "tbl_global_sock",
  24. .internal_input = NETDATA_SOCKET_COUNTER,
  25. .user_input = 0, .type = NETDATA_EBPF_MAP_STATIC,
  26. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED},
  27. {.name = "tbl_lports",
  28. .internal_input = NETDATA_SOCKET_COUNTER,
  29. .user_input = 0, .type = NETDATA_EBPF_MAP_STATIC,
  30. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED},
  31. {.name = "tbl_conn_ipv4",
  32. .internal_input = NETDATA_COMPILED_CONNECTIONS_ALLOWED,
  33. .user_input = NETDATA_MAXIMUM_CONNECTIONS_ALLOWED,
  34. .type = NETDATA_EBPF_MAP_STATIC,
  35. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED},
  36. {.name = "tbl_conn_ipv6",
  37. .internal_input = NETDATA_COMPILED_CONNECTIONS_ALLOWED,
  38. .user_input = NETDATA_MAXIMUM_CONNECTIONS_ALLOWED,
  39. .type = NETDATA_EBPF_MAP_STATIC,
  40. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED},
  41. {.name = "tbl_nv_udp",
  42. .internal_input = NETDATA_COMPILED_UDP_CONNECTIONS_ALLOWED,
  43. .user_input = NETDATA_MAXIMUM_UDP_CONNECTIONS_ALLOWED,
  44. .type = NETDATA_EBPF_MAP_STATIC,
  45. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED},
  46. {.name = "socket_ctrl", .internal_input = NETDATA_CONTROLLER_END,
  47. .user_input = 0,
  48. .type = NETDATA_EBPF_MAP_CONTROLLER,
  49. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED},
  50. {.name = NULL, .internal_input = 0, .user_input = 0}};
  51. static netdata_idx_t *socket_hash_values = NULL;
  52. static netdata_syscall_stat_t socket_aggregated_data[NETDATA_MAX_SOCKET_VECTOR];
  53. static netdata_publish_syscall_t socket_publish_aggregated[NETDATA_MAX_SOCKET_VECTOR];
  54. ebpf_socket_publish_apps_t **socket_bandwidth_curr = NULL;
  55. static ebpf_bandwidth_t *bandwidth_vector = NULL;
  56. static int socket_apps_created = 0;
  57. pthread_mutex_t nv_mutex;
  58. int wait_to_plot = 0;
  59. int read_thread_closed = 1;
  60. netdata_vector_plot_t inbound_vectors = { .plot = NULL, .next = 0, .last = 0 };
  61. netdata_vector_plot_t outbound_vectors = { .plot = NULL, .next = 0, .last = 0 };
  62. netdata_socket_t *socket_values;
  63. ebpf_network_viewer_port_list_t *listen_ports = NULL;
  64. static struct bpf_object *objects = NULL;
  65. static struct bpf_link **probe_links = NULL;
  66. struct config socket_config = { .first_section = NULL,
  67. .last_section = NULL,
  68. .mutex = NETDATA_MUTEX_INITIALIZER,
  69. .index = { .avl_tree = { .root = NULL, .compar = appconfig_section_compare },
  70. .rwlock = AVL_LOCK_INITIALIZER } };
  71. netdata_ebpf_targets_t socket_targets[] = { {.name = "inet_csk_accept", .mode = EBPF_LOAD_TRAMPOLINE},
  72. {.name = "tcp_retransmit_skb", .mode = EBPF_LOAD_TRAMPOLINE},
  73. {.name = "tcp_cleanup_rbuf", .mode = EBPF_LOAD_TRAMPOLINE},
  74. {.name = "tcp_close", .mode = EBPF_LOAD_TRAMPOLINE},
  75. {.name = "udp_recvmsg", .mode = EBPF_LOAD_TRAMPOLINE},
  76. {.name = "tcp_sendmsg", .mode = EBPF_LOAD_TRAMPOLINE},
  77. {.name = "udp_sendmsg", .mode = EBPF_LOAD_TRAMPOLINE},
  78. {.name = "tcp_v4_connect", .mode = EBPF_LOAD_TRAMPOLINE},
  79. {.name = "tcp_v6_connect", .mode = EBPF_LOAD_TRAMPOLINE},
  80. {.name = NULL, .mode = EBPF_LOAD_TRAMPOLINE}};
  81. #ifdef LIBBPF_MAJOR_VERSION
  82. #include "includes/socket.skel.h" // BTF code
  83. static struct socket_bpf *bpf_obj = NULL;
  84. /**
  85. * Disable Probe
  86. *
  87. * Disable probes to use trampoline.
  88. *
  89. * @param obj is the main structure for bpf objects.
  90. */
  91. static void ebpf_socket_disable_probes(struct socket_bpf *obj)
  92. {
  93. bpf_program__set_autoload(obj->progs.netdata_inet_csk_accept_kretprobe, false);
  94. bpf_program__set_autoload(obj->progs.netdata_tcp_v4_connect_kretprobe, false);
  95. bpf_program__set_autoload(obj->progs.netdata_tcp_v6_connect_kretprobe, false);
  96. bpf_program__set_autoload(obj->progs.netdata_tcp_retransmit_skb_kprobe, false);
  97. bpf_program__set_autoload(obj->progs.netdata_tcp_cleanup_rbuf_kprobe, false);
  98. bpf_program__set_autoload(obj->progs.netdata_tcp_close_kprobe, false);
  99. bpf_program__set_autoload(obj->progs.netdata_udp_recvmsg_kprobe, false);
  100. bpf_program__set_autoload(obj->progs.netdata_udp_recvmsg_kretprobe, false);
  101. bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_kretprobe, false);
  102. bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_kprobe, false);
  103. bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_kretprobe, false);
  104. bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_kprobe, false);
  105. bpf_program__set_autoload(obj->progs.netdata_socket_release_task_kprobe, false);
  106. }
  107. /**
  108. * Disable Trampoline
  109. *
  110. * Disable trampoline to use probes.
  111. *
  112. * @param obj is the main structure for bpf objects.
  113. */
  114. static void ebpf_socket_disable_trampoline(struct socket_bpf *obj)
  115. {
  116. bpf_program__set_autoload(obj->progs.netdata_inet_csk_accept_fentry, false);
  117. bpf_program__set_autoload(obj->progs.netdata_tcp_v4_connect_fexit, false);
  118. bpf_program__set_autoload(obj->progs.netdata_tcp_v6_connect_fexit, false);
  119. bpf_program__set_autoload(obj->progs.netdata_tcp_retransmit_skb_fentry, false);
  120. bpf_program__set_autoload(obj->progs.netdata_tcp_cleanup_rbuf_fentry, false);
  121. bpf_program__set_autoload(obj->progs.netdata_tcp_close_fentry, false);
  122. bpf_program__set_autoload(obj->progs.netdata_udp_recvmsg_fentry, false);
  123. bpf_program__set_autoload(obj->progs.netdata_udp_recvmsg_fexit, false);
  124. bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_fentry, false);
  125. bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_fexit, false);
  126. bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_fentry, false);
  127. bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_fexit, false);
  128. bpf_program__set_autoload(obj->progs.netdata_socket_release_task_fentry, false);
  129. }
  130. /**
  131. * Set trampoline target.
  132. *
  133. * @param obj is the main structure for bpf objects.
  134. */
  135. static void ebpf_set_trampoline_target(struct socket_bpf *obj)
  136. {
  137. bpf_program__set_attach_target(obj->progs.netdata_inet_csk_accept_fentry, 0,
  138. socket_targets[NETDATA_FCNT_INET_CSK_ACCEPT].name);
  139. bpf_program__set_attach_target(obj->progs.netdata_tcp_v4_connect_fexit, 0,
  140. socket_targets[NETDATA_FCNT_TCP_V4_CONNECT].name);
  141. bpf_program__set_attach_target(obj->progs.netdata_tcp_v6_connect_fexit, 0,
  142. socket_targets[NETDATA_FCNT_TCP_V6_CONNECT].name);
  143. bpf_program__set_attach_target(obj->progs.netdata_tcp_retransmit_skb_fentry, 0,
  144. socket_targets[NETDATA_FCNT_TCP_RETRANSMIT].name);
  145. bpf_program__set_attach_target(obj->progs.netdata_tcp_cleanup_rbuf_fentry, 0,
  146. socket_targets[NETDATA_FCNT_CLEANUP_RBUF].name);
  147. bpf_program__set_attach_target(obj->progs.netdata_tcp_close_fentry, 0, socket_targets[NETDATA_FCNT_TCP_CLOSE].name);
  148. bpf_program__set_attach_target(obj->progs.netdata_udp_recvmsg_fentry, 0,
  149. socket_targets[NETDATA_FCNT_UDP_RECEVMSG].name);
  150. bpf_program__set_attach_target(obj->progs.netdata_udp_recvmsg_fexit, 0,
  151. socket_targets[NETDATA_FCNT_UDP_RECEVMSG].name);
  152. bpf_program__set_attach_target(obj->progs.netdata_tcp_sendmsg_fentry, 0,
  153. socket_targets[NETDATA_FCNT_TCP_SENDMSG].name);
  154. bpf_program__set_attach_target(obj->progs.netdata_tcp_sendmsg_fexit, 0,
  155. socket_targets[NETDATA_FCNT_TCP_SENDMSG].name);
  156. bpf_program__set_attach_target(obj->progs.netdata_udp_sendmsg_fentry, 0,
  157. socket_targets[NETDATA_FCNT_UDP_SENDMSG].name);
  158. bpf_program__set_attach_target(obj->progs.netdata_udp_sendmsg_fexit, 0,
  159. socket_targets[NETDATA_FCNT_UDP_SENDMSG].name);
  160. bpf_program__set_attach_target(obj->progs.netdata_socket_release_task_fentry, 0, EBPF_COMMON_FNCT_CLEAN_UP);
  161. }
  162. /**
  163. * Disable specific trampoline
  164. *
  165. * Disable specific trampoline to match user selection.
  166. *
  167. * @param obj is the main structure for bpf objects.
  168. * @param sel option selected by user.
  169. */
  170. static inline void ebpf_socket_disable_specific_trampoline(struct socket_bpf *obj, netdata_run_mode_t sel)
  171. {
  172. if (sel == MODE_RETURN) {
  173. bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_fentry, false);
  174. bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_fentry, false);
  175. } else {
  176. bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_fexit, false);
  177. bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_fexit, false);
  178. }
  179. }
  180. /**
  181. * Disable specific probe
  182. *
  183. * Disable specific probe to match user selection.
  184. *
  185. * @param obj is the main structure for bpf objects.
  186. * @param sel option selected by user.
  187. */
  188. static inline void ebpf_socket_disable_specific_probe(struct socket_bpf *obj, netdata_run_mode_t sel)
  189. {
  190. if (sel == MODE_RETURN) {
  191. bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_kprobe, false);
  192. bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_kprobe, false);
  193. } else {
  194. bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_kretprobe, false);
  195. bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_kretprobe, false);
  196. }
  197. }
  198. /**
  199. * Attach probes
  200. *
  201. * Attach probes to targets.
  202. *
  203. * @param obj is the main structure for bpf objects.
  204. * @param sel option selected by user.
  205. */
  206. static int ebpf_socket_attach_probes(struct socket_bpf *obj, netdata_run_mode_t sel)
  207. {
  208. obj->links.netdata_inet_csk_accept_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_inet_csk_accept_kretprobe,
  209. true,
  210. socket_targets[NETDATA_FCNT_INET_CSK_ACCEPT].name);
  211. int ret = libbpf_get_error(obj->links.netdata_inet_csk_accept_kretprobe);
  212. if (ret)
  213. return -1;
  214. obj->links.netdata_tcp_v4_connect_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_v4_connect_kretprobe,
  215. true,
  216. socket_targets[NETDATA_FCNT_TCP_V4_CONNECT].name);
  217. ret = libbpf_get_error(obj->links.netdata_tcp_v4_connect_kretprobe);
  218. if (ret)
  219. return -1;
  220. obj->links.netdata_tcp_v6_connect_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_v6_connect_kretprobe,
  221. true,
  222. socket_targets[NETDATA_FCNT_TCP_V6_CONNECT].name);
  223. ret = libbpf_get_error(obj->links.netdata_tcp_v6_connect_kretprobe);
  224. if (ret)
  225. return -1;
  226. obj->links.netdata_tcp_retransmit_skb_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_retransmit_skb_kprobe,
  227. false,
  228. socket_targets[NETDATA_FCNT_TCP_RETRANSMIT].name);
  229. ret = libbpf_get_error(obj->links.netdata_tcp_retransmit_skb_kprobe);
  230. if (ret)
  231. return -1;
  232. obj->links.netdata_tcp_cleanup_rbuf_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_cleanup_rbuf_kprobe,
  233. false,
  234. socket_targets[NETDATA_FCNT_CLEANUP_RBUF].name);
  235. ret = libbpf_get_error(obj->links.netdata_tcp_cleanup_rbuf_kprobe);
  236. if (ret)
  237. return -1;
  238. obj->links.netdata_tcp_close_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_close_kprobe,
  239. false,
  240. socket_targets[NETDATA_FCNT_TCP_CLOSE].name);
  241. ret = libbpf_get_error(obj->links.netdata_tcp_close_kprobe);
  242. if (ret)
  243. return -1;
  244. obj->links.netdata_udp_recvmsg_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_udp_recvmsg_kprobe,
  245. false,
  246. socket_targets[NETDATA_FCNT_UDP_RECEVMSG].name);
  247. ret = libbpf_get_error(obj->links.netdata_udp_recvmsg_kprobe);
  248. if (ret)
  249. return -1;
  250. obj->links.netdata_udp_recvmsg_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_udp_recvmsg_kretprobe,
  251. true,
  252. socket_targets[NETDATA_FCNT_UDP_RECEVMSG].name);
  253. ret = libbpf_get_error(obj->links.netdata_udp_recvmsg_kretprobe);
  254. if (ret)
  255. return -1;
  256. if (sel == MODE_RETURN) {
  257. obj->links.netdata_tcp_sendmsg_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_sendmsg_kretprobe,
  258. true,
  259. socket_targets[NETDATA_FCNT_TCP_SENDMSG].name);
  260. ret = libbpf_get_error(obj->links.netdata_tcp_sendmsg_kretprobe);
  261. if (ret)
  262. return -1;
  263. obj->links.netdata_udp_sendmsg_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_udp_sendmsg_kretprobe,
  264. true,
  265. socket_targets[NETDATA_FCNT_UDP_SENDMSG].name);
  266. ret = libbpf_get_error(obj->links.netdata_udp_sendmsg_kretprobe);
  267. if (ret)
  268. return -1;
  269. } else {
  270. obj->links.netdata_tcp_sendmsg_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_sendmsg_kprobe,
  271. false,
  272. socket_targets[NETDATA_FCNT_TCP_SENDMSG].name);
  273. ret = libbpf_get_error(obj->links.netdata_tcp_sendmsg_kprobe);
  274. if (ret)
  275. return -1;
  276. obj->links.netdata_udp_sendmsg_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_udp_sendmsg_kprobe,
  277. false,
  278. socket_targets[NETDATA_FCNT_UDP_SENDMSG].name);
  279. ret = libbpf_get_error(obj->links.netdata_udp_sendmsg_kprobe);
  280. if (ret)
  281. return -1;
  282. }
  283. obj->links.netdata_socket_release_task_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_socket_release_task_kprobe,
  284. false, EBPF_COMMON_FNCT_CLEAN_UP);
  285. ret = libbpf_get_error(obj->links.netdata_socket_release_task_kprobe);
  286. if (ret)
  287. return -1;
  288. return 0;
  289. }
  290. /**
  291. * Set hash tables
  292. *
  293. * Set the values for maps according the value given by kernel.
  294. *
  295. * @param obj is the main structure for bpf objects.
  296. */
  297. static void ebpf_socket_set_hash_tables(struct socket_bpf *obj)
  298. {
  299. socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH].map_fd = bpf_map__fd(obj->maps.tbl_bandwidth);
  300. socket_maps[NETDATA_SOCKET_GLOBAL].map_fd = bpf_map__fd(obj->maps.tbl_global_sock);
  301. socket_maps[NETDATA_SOCKET_LPORTS].map_fd = bpf_map__fd(obj->maps.tbl_lports);
  302. socket_maps[NETDATA_SOCKET_TABLE_IPV4].map_fd = bpf_map__fd(obj->maps.tbl_conn_ipv4);
  303. socket_maps[NETDATA_SOCKET_TABLE_IPV6].map_fd = bpf_map__fd(obj->maps.tbl_conn_ipv6);
  304. socket_maps[NETDATA_SOCKET_TABLE_UDP].map_fd = bpf_map__fd(obj->maps.tbl_nv_udp);
  305. socket_maps[NETDATA_SOCKET_TABLE_CTRL].map_fd = bpf_map__fd(obj->maps.socket_ctrl);
  306. }
  307. /**
  308. * Adjust Map Size
  309. *
  310. * Resize maps according input from users.
  311. *
  312. * @param obj is the main structure for bpf objects.
  313. * @param em structure with configuration
  314. */
  315. static void ebpf_socket_adjust_map_size(struct socket_bpf *obj, ebpf_module_t *em)
  316. {
  317. ebpf_update_map_size(obj->maps.tbl_bandwidth, &socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH],
  318. em, bpf_map__name(obj->maps.tbl_bandwidth));
  319. ebpf_update_map_size(obj->maps.tbl_conn_ipv4, &socket_maps[NETDATA_SOCKET_TABLE_IPV4],
  320. em, bpf_map__name(obj->maps.tbl_conn_ipv4));
  321. ebpf_update_map_size(obj->maps.tbl_conn_ipv6, &socket_maps[NETDATA_SOCKET_TABLE_IPV6],
  322. em, bpf_map__name(obj->maps.tbl_conn_ipv6));
  323. ebpf_update_map_size(obj->maps.tbl_nv_udp, &socket_maps[NETDATA_SOCKET_TABLE_UDP],
  324. em, bpf_map__name(obj->maps.tbl_nv_udp));
  325. }
  326. /**
  327. * Load and attach
  328. *
  329. * Load and attach the eBPF code in kernel.
  330. *
  331. * @param obj is the main structure for bpf objects.
  332. * @param em structure with configuration
  333. *
  334. * @return it returns 0 on succes and -1 otherwise
  335. */
  336. static inline int ebpf_socket_load_and_attach(struct socket_bpf *obj, ebpf_module_t *em)
  337. {
  338. netdata_ebpf_targets_t *mt = em->targets;
  339. netdata_ebpf_program_loaded_t test = mt[NETDATA_FCNT_INET_CSK_ACCEPT].mode;
  340. if (test == EBPF_LOAD_TRAMPOLINE) {
  341. ebpf_socket_disable_probes(obj);
  342. ebpf_set_trampoline_target(obj);
  343. ebpf_socket_disable_specific_trampoline(obj, em->mode);
  344. } else { // We are not using tracepoints for this thread.
  345. ebpf_socket_disable_trampoline(obj);
  346. ebpf_socket_disable_specific_probe(obj, em->mode);
  347. }
  348. int ret = socket_bpf__load(obj);
  349. if (ret) {
  350. fprintf(stderr, "failed to load BPF object: %d\n", ret);
  351. return ret;
  352. }
  353. ebpf_socket_adjust_map_size(obj, em);
  354. if (test == EBPF_LOAD_TRAMPOLINE) {
  355. ret = socket_bpf__attach(obj);
  356. } else {
  357. ret = ebpf_socket_attach_probes(obj, em->mode);
  358. }
  359. if (!ret) {
  360. ebpf_socket_set_hash_tables(obj);
  361. ebpf_update_controller(socket_maps[NETDATA_SOCKET_TABLE_CTRL].map_fd, em);
  362. }
  363. return ret;
  364. }
  365. #endif
  366. /*****************************************************************
  367. *
  368. * PROCESS DATA AND SEND TO NETDATA
  369. *
  370. *****************************************************************/
  371. /**
  372. * Update publish structure before to send data to Netdata.
  373. *
  374. * @param publish the first output structure with independent dimensions
  375. * @param tcp structure to store IO from tcp sockets
  376. * @param udp structure to store IO from udp sockets
  377. * @param input the structure with the input data.
  378. */
  379. static void ebpf_update_global_publish(
  380. netdata_publish_syscall_t *publish, netdata_publish_vfs_common_t *tcp, netdata_publish_vfs_common_t *udp,
  381. netdata_syscall_stat_t *input)
  382. {
  383. netdata_publish_syscall_t *move = publish;
  384. while (move) {
  385. if (input->call != move->pcall) {
  386. // This condition happens to avoid initial values with dimensions higher than normal values.
  387. if (move->pcall) {
  388. move->ncall = (input->call > move->pcall) ? input->call - move->pcall : move->pcall - input->call;
  389. move->nbyte = (input->bytes > move->pbyte) ? input->bytes - move->pbyte : move->pbyte - input->bytes;
  390. move->nerr = (input->ecall > move->nerr) ? input->ecall - move->perr : move->perr - input->ecall;
  391. } else {
  392. move->ncall = 0;
  393. move->nbyte = 0;
  394. move->nerr = 0;
  395. }
  396. move->pcall = input->call;
  397. move->pbyte = input->bytes;
  398. move->perr = input->ecall;
  399. } else {
  400. move->ncall = 0;
  401. move->nbyte = 0;
  402. move->nerr = 0;
  403. }
  404. input = input->next;
  405. move = move->next;
  406. }
  407. tcp->write = -(long)publish[0].nbyte;
  408. tcp->read = (long)publish[1].nbyte;
  409. udp->write = -(long)publish[3].nbyte;
  410. udp->read = (long)publish[4].nbyte;
  411. }
  412. /**
  413. * Update Network Viewer plot data
  414. *
  415. * @param plot the structure where the data will be stored
  416. * @param sock the last update from the socket
  417. */
  418. static inline void update_nv_plot_data(netdata_plot_values_t *plot, netdata_socket_t *sock)
  419. {
  420. if (sock->ct > plot->last_time) {
  421. plot->last_time = sock->ct;
  422. plot->plot_recv_packets = sock->recv_packets;
  423. plot->plot_sent_packets = sock->sent_packets;
  424. plot->plot_recv_bytes = sock->recv_bytes;
  425. plot->plot_sent_bytes = sock->sent_bytes;
  426. plot->plot_retransmit = sock->retransmit;
  427. }
  428. sock->recv_packets = 0;
  429. sock->sent_packets = 0;
  430. sock->recv_bytes = 0;
  431. sock->sent_bytes = 0;
  432. sock->retransmit = 0;
  433. }
  434. /**
  435. * Calculate Network Viewer Plot
  436. *
  437. * Do math with collected values before to plot data.
  438. */
  439. static inline void calculate_nv_plot()
  440. {
  441. uint32_t i;
  442. uint32_t end = inbound_vectors.next;
  443. for (i = 0; i < end; i++) {
  444. update_nv_plot_data(&inbound_vectors.plot[i].plot, &inbound_vectors.plot[i].sock);
  445. }
  446. inbound_vectors.max_plot = end;
  447. // The 'Other' dimension is always calculated for the chart to have at least one dimension
  448. update_nv_plot_data(&inbound_vectors.plot[inbound_vectors.last].plot,
  449. &inbound_vectors.plot[inbound_vectors.last].sock);
  450. end = outbound_vectors.next;
  451. for (i = 0; i < end; i++) {
  452. update_nv_plot_data(&outbound_vectors.plot[i].plot, &outbound_vectors.plot[i].sock);
  453. }
  454. outbound_vectors.max_plot = end;
  455. // The 'Other' dimension is always calculated for the chart to have at least one dimension
  456. update_nv_plot_data(&outbound_vectors.plot[outbound_vectors.last].plot,
  457. &outbound_vectors.plot[outbound_vectors.last].sock);
  458. }
  459. /**
  460. * Network viewer send bytes
  461. *
  462. * @param ptr the structure with values to plot
  463. * @param chart the chart name.
  464. */
  465. static inline void ebpf_socket_nv_send_bytes(netdata_vector_plot_t *ptr, char *chart)
  466. {
  467. uint32_t i;
  468. uint32_t end = ptr->last_plot;
  469. netdata_socket_plot_t *w = ptr->plot;
  470. collected_number value;
  471. write_begin_chart(NETDATA_EBPF_FAMILY, chart);
  472. for (i = 0; i < end; i++) {
  473. value = ((collected_number) w[i].plot.plot_sent_bytes);
  474. write_chart_dimension(w[i].dimension_sent, value);
  475. value = (collected_number) w[i].plot.plot_recv_bytes;
  476. write_chart_dimension(w[i].dimension_recv, value);
  477. }
  478. i = ptr->last;
  479. value = ((collected_number) w[i].plot.plot_sent_bytes);
  480. write_chart_dimension(w[i].dimension_sent, value);
  481. value = (collected_number) w[i].plot.plot_recv_bytes;
  482. write_chart_dimension(w[i].dimension_recv, value);
  483. write_end_chart();
  484. }
  485. /**
  486. * Network Viewer Send packets
  487. *
  488. * @param ptr the structure with values to plot
  489. * @param chart the chart name.
  490. */
  491. static inline void ebpf_socket_nv_send_packets(netdata_vector_plot_t *ptr, char *chart)
  492. {
  493. uint32_t i;
  494. uint32_t end = ptr->last_plot;
  495. netdata_socket_plot_t *w = ptr->plot;
  496. collected_number value;
  497. write_begin_chart(NETDATA_EBPF_FAMILY, chart);
  498. for (i = 0; i < end; i++) {
  499. value = ((collected_number)w[i].plot.plot_sent_packets);
  500. write_chart_dimension(w[i].dimension_sent, value);
  501. value = (collected_number) w[i].plot.plot_recv_packets;
  502. write_chart_dimension(w[i].dimension_recv, value);
  503. }
  504. i = ptr->last;
  505. value = ((collected_number)w[i].plot.plot_sent_packets);
  506. write_chart_dimension(w[i].dimension_sent, value);
  507. value = (collected_number)w[i].plot.plot_recv_packets;
  508. write_chart_dimension(w[i].dimension_recv, value);
  509. write_end_chart();
  510. }
  511. /**
  512. * Network Viewer Send Retransmit
  513. *
  514. * @param ptr the structure with values to plot
  515. * @param chart the chart name.
  516. */
  517. static inline void ebpf_socket_nv_send_retransmit(netdata_vector_plot_t *ptr, char *chart)
  518. {
  519. uint32_t i;
  520. uint32_t end = ptr->last_plot;
  521. netdata_socket_plot_t *w = ptr->plot;
  522. collected_number value;
  523. write_begin_chart(NETDATA_EBPF_FAMILY, chart);
  524. for (i = 0; i < end; i++) {
  525. value = (collected_number) w[i].plot.plot_retransmit;
  526. write_chart_dimension(w[i].dimension_retransmit, value);
  527. }
  528. i = ptr->last;
  529. value = (collected_number)w[i].plot.plot_retransmit;
  530. write_chart_dimension(w[i].dimension_retransmit, value);
  531. write_end_chart();
  532. }
  533. /**
  534. * Send network viewer data
  535. *
  536. * @param ptr the pointer to plot data
  537. */
  538. static void ebpf_socket_send_nv_data(netdata_vector_plot_t *ptr)
  539. {
  540. if (!ptr->flags)
  541. return;
  542. if (ptr == (netdata_vector_plot_t *)&outbound_vectors) {
  543. ebpf_socket_nv_send_bytes(ptr, NETDATA_NV_OUTBOUND_BYTES);
  544. fflush(stdout);
  545. ebpf_socket_nv_send_packets(ptr, NETDATA_NV_OUTBOUND_PACKETS);
  546. fflush(stdout);
  547. ebpf_socket_nv_send_retransmit(ptr, NETDATA_NV_OUTBOUND_RETRANSMIT);
  548. fflush(stdout);
  549. } else {
  550. ebpf_socket_nv_send_bytes(ptr, NETDATA_NV_INBOUND_BYTES);
  551. fflush(stdout);
  552. ebpf_socket_nv_send_packets(ptr, NETDATA_NV_INBOUND_PACKETS);
  553. fflush(stdout);
  554. }
  555. }
  556. /**
  557. * Send Global Inbound connection
  558. *
  559. * Send number of connections read per protocol.
  560. */
  561. static void ebpf_socket_send_global_inbound_conn()
  562. {
  563. uint64_t udp_conn = 0;
  564. uint64_t tcp_conn = 0;
  565. ebpf_network_viewer_port_list_t *move = listen_ports;
  566. while (move) {
  567. if (move->protocol == IPPROTO_TCP)
  568. tcp_conn += move->connections;
  569. else
  570. udp_conn += move->connections;
  571. move = move->next;
  572. }
  573. write_begin_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_INBOUND_CONNECTIONS);
  574. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_INCOMING_CONNECTION_TCP].name, (long long) tcp_conn);
  575. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_INCOMING_CONNECTION_UDP].name, (long long) udp_conn);
  576. write_end_chart();
  577. }
  578. /**
  579. * Send data to Netdata calling auxiliary functions.
  580. *
  581. * @param em the structure with thread information
  582. */
  583. static void ebpf_socket_send_data(ebpf_module_t *em)
  584. {
  585. netdata_publish_vfs_common_t common_tcp;
  586. netdata_publish_vfs_common_t common_udp;
  587. ebpf_update_global_publish(socket_publish_aggregated, &common_tcp, &common_udp, socket_aggregated_data);
  588. ebpf_socket_send_global_inbound_conn();
  589. write_count_chart(NETDATA_TCP_OUTBOUND_CONNECTIONS, NETDATA_EBPF_IP_FAMILY,
  590. &socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V4], 2);
  591. // We read bytes from function arguments, but bandwidth is given in bits,
  592. // so we need to multiply by 8 to convert for the final value.
  593. write_count_chart(NETDATA_TCP_FUNCTION_COUNT, NETDATA_EBPF_IP_FAMILY, socket_publish_aggregated, 3);
  594. write_io_chart(NETDATA_TCP_FUNCTION_BITS, NETDATA_EBPF_IP_FAMILY, socket_id_names[0],
  595. common_tcp.read * 8/BITS_IN_A_KILOBIT, socket_id_names[1],
  596. common_tcp.write * 8/BITS_IN_A_KILOBIT);
  597. if (em->mode < MODE_ENTRY) {
  598. write_err_chart(NETDATA_TCP_FUNCTION_ERROR, NETDATA_EBPF_IP_FAMILY, socket_publish_aggregated, 2);
  599. }
  600. write_count_chart(NETDATA_TCP_RETRANSMIT, NETDATA_EBPF_IP_FAMILY,
  601. &socket_publish_aggregated[NETDATA_IDX_TCP_RETRANSMIT],1);
  602. write_count_chart(NETDATA_UDP_FUNCTION_COUNT, NETDATA_EBPF_IP_FAMILY,
  603. &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF],2);
  604. write_io_chart(NETDATA_UDP_FUNCTION_BITS, NETDATA_EBPF_IP_FAMILY,
  605. socket_id_names[3], (long long)common_udp.read * 8/BITS_IN_A_KILOBIT,
  606. socket_id_names[4], (long long)common_udp.write * 8/BITS_IN_A_KILOBIT);
  607. if (em->mode < MODE_ENTRY) {
  608. write_err_chart(NETDATA_UDP_FUNCTION_ERROR, NETDATA_EBPF_IP_FAMILY,
  609. &socket_publish_aggregated[NETDATA_UDP_START], 2);
  610. }
  611. }
  612. /**
  613. * Sum values for pid
  614. *
  615. * @param root the structure with all available PIDs
  616. *
  617. * @param offset the address that we are reading
  618. *
  619. * @return it returns the sum of all PIDs
  620. */
  621. long long ebpf_socket_sum_values_for_pids(struct pid_on_target *root, size_t offset)
  622. {
  623. long long ret = 0;
  624. while (root) {
  625. int32_t pid = root->pid;
  626. ebpf_socket_publish_apps_t *w = socket_bandwidth_curr[pid];
  627. if (w) {
  628. ret += get_value_from_structure((char *)w, offset);
  629. }
  630. root = root->next;
  631. }
  632. return ret;
  633. }
  634. /**
  635. * Send data to Netdata calling auxiliary functions.
  636. *
  637. * @param em the structure with thread information
  638. * @param root the target list.
  639. */
  640. void ebpf_socket_send_apps_data(ebpf_module_t *em, struct target *root)
  641. {
  642. UNUSED(em);
  643. if (!socket_apps_created)
  644. return;
  645. struct target *w;
  646. collected_number value;
  647. write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_CONNECTION_TCP_V4);
  648. for (w = root; w; w = w->next) {
  649. if (unlikely(w->exposed && w->processes)) {
  650. value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t,
  651. call_tcp_v4_connection));
  652. write_chart_dimension(w->name, value);
  653. }
  654. }
  655. write_end_chart();
  656. write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_CONNECTION_TCP_V6);
  657. for (w = root; w; w = w->next) {
  658. if (unlikely(w->exposed && w->processes)) {
  659. value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t,
  660. call_tcp_v6_connection));
  661. write_chart_dimension(w->name, value);
  662. }
  663. }
  664. write_end_chart();
  665. write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_SENT);
  666. for (w = root; w; w = w->next) {
  667. if (unlikely(w->exposed && w->processes)) {
  668. value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t,
  669. bytes_sent));
  670. // We multiply by 0.008, because we read bytes, but we display bits
  671. write_chart_dimension(w->name, ((value)*8)/1000);
  672. }
  673. }
  674. write_end_chart();
  675. write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_RECV);
  676. for (w = root; w; w = w->next) {
  677. if (unlikely(w->exposed && w->processes)) {
  678. value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t,
  679. bytes_received));
  680. // We multiply by 0.008, because we read bytes, but we display bits
  681. write_chart_dimension(w->name, ((value)*8)/1000);
  682. }
  683. }
  684. write_end_chart();
  685. write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS);
  686. for (w = root; w; w = w->next) {
  687. if (unlikely(w->exposed && w->processes)) {
  688. value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t,
  689. call_tcp_sent));
  690. write_chart_dimension(w->name, value);
  691. }
  692. }
  693. write_end_chart();
  694. write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS);
  695. for (w = root; w; w = w->next) {
  696. if (unlikely(w->exposed && w->processes)) {
  697. value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t,
  698. call_tcp_received));
  699. write_chart_dimension(w->name, value);
  700. }
  701. }
  702. write_end_chart();
  703. write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT);
  704. for (w = root; w; w = w->next) {
  705. if (unlikely(w->exposed && w->processes)) {
  706. value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t,
  707. retransmit));
  708. write_chart_dimension(w->name, value);
  709. }
  710. }
  711. write_end_chart();
  712. write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS);
  713. for (w = root; w; w = w->next) {
  714. if (unlikely(w->exposed && w->processes)) {
  715. value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t,
  716. call_udp_sent));
  717. write_chart_dimension(w->name, value);
  718. }
  719. }
  720. write_end_chart();
  721. write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS);
  722. for (w = root; w; w = w->next) {
  723. if (unlikely(w->exposed && w->processes)) {
  724. value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t,
  725. call_udp_received));
  726. write_chart_dimension(w->name, value);
  727. }
  728. }
  729. write_end_chart();
  730. }
  731. /*****************************************************************
  732. *
  733. * FUNCTIONS TO CREATE CHARTS
  734. *
  735. *****************************************************************/
  736. /**
  737. * Create global charts
  738. *
  739. * Call ebpf_create_chart to create the charts for the collector.
  740. *
  741. * @param em a pointer to the structure with the default values.
  742. */
  743. static void ebpf_create_global_charts(ebpf_module_t *em)
  744. {
  745. int order = 21070;
  746. ebpf_create_chart(NETDATA_EBPF_IP_FAMILY,
  747. NETDATA_INBOUND_CONNECTIONS,
  748. "Inbound connections.",
  749. EBPF_COMMON_DIMENSION_CONNECTIONS,
  750. NETDATA_SOCKET_KERNEL_FUNCTIONS,
  751. NULL,
  752. NETDATA_EBPF_CHART_TYPE_LINE,
  753. order++,
  754. ebpf_create_global_dimension,
  755. &socket_publish_aggregated[NETDATA_IDX_INCOMING_CONNECTION_TCP],
  756. 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  757. ebpf_create_chart(NETDATA_EBPF_IP_FAMILY,
  758. NETDATA_TCP_OUTBOUND_CONNECTIONS,
  759. "TCP outbound connections.",
  760. EBPF_COMMON_DIMENSION_CONNECTIONS,
  761. NETDATA_SOCKET_KERNEL_FUNCTIONS,
  762. NULL,
  763. NETDATA_EBPF_CHART_TYPE_LINE,
  764. order++,
  765. ebpf_create_global_dimension,
  766. &socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V4],
  767. 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  768. ebpf_create_chart(NETDATA_EBPF_IP_FAMILY,
  769. NETDATA_TCP_FUNCTION_COUNT,
  770. "Calls to internal functions",
  771. EBPF_COMMON_DIMENSION_CALL,
  772. NETDATA_SOCKET_KERNEL_FUNCTIONS,
  773. NULL,
  774. NETDATA_EBPF_CHART_TYPE_LINE,
  775. order++,
  776. ebpf_create_global_dimension,
  777. socket_publish_aggregated,
  778. 3, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  779. ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_TCP_FUNCTION_BITS,
  780. "TCP bandwidth", EBPF_COMMON_DIMENSION_BITS,
  781. NETDATA_SOCKET_KERNEL_FUNCTIONS,
  782. NULL,
  783. NETDATA_EBPF_CHART_TYPE_LINE,
  784. order++,
  785. ebpf_create_global_dimension,
  786. socket_publish_aggregated,
  787. 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  788. if (em->mode < MODE_ENTRY) {
  789. ebpf_create_chart(NETDATA_EBPF_IP_FAMILY,
  790. NETDATA_TCP_FUNCTION_ERROR,
  791. "TCP errors",
  792. EBPF_COMMON_DIMENSION_CALL,
  793. NETDATA_SOCKET_KERNEL_FUNCTIONS,
  794. NULL,
  795. NETDATA_EBPF_CHART_TYPE_LINE,
  796. order++,
  797. ebpf_create_global_dimension,
  798. socket_publish_aggregated,
  799. 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  800. }
  801. ebpf_create_chart(NETDATA_EBPF_IP_FAMILY,
  802. NETDATA_TCP_RETRANSMIT,
  803. "Packages retransmitted",
  804. EBPF_COMMON_DIMENSION_CALL,
  805. NETDATA_SOCKET_KERNEL_FUNCTIONS,
  806. NULL,
  807. NETDATA_EBPF_CHART_TYPE_LINE,
  808. order++,
  809. ebpf_create_global_dimension,
  810. &socket_publish_aggregated[NETDATA_IDX_TCP_RETRANSMIT],
  811. 1, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  812. ebpf_create_chart(NETDATA_EBPF_IP_FAMILY,
  813. NETDATA_UDP_FUNCTION_COUNT,
  814. "UDP calls",
  815. EBPF_COMMON_DIMENSION_CALL,
  816. NETDATA_SOCKET_KERNEL_FUNCTIONS,
  817. NULL,
  818. NETDATA_EBPF_CHART_TYPE_LINE,
  819. order++,
  820. ebpf_create_global_dimension,
  821. &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF],
  822. 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  823. ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_UDP_FUNCTION_BITS,
  824. "UDP bandwidth", EBPF_COMMON_DIMENSION_BITS,
  825. NETDATA_SOCKET_KERNEL_FUNCTIONS,
  826. NULL,
  827. NETDATA_EBPF_CHART_TYPE_LINE,
  828. order++,
  829. ebpf_create_global_dimension,
  830. &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF],
  831. 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  832. if (em->mode < MODE_ENTRY) {
  833. ebpf_create_chart(NETDATA_EBPF_IP_FAMILY,
  834. NETDATA_UDP_FUNCTION_ERROR,
  835. "UDP errors",
  836. EBPF_COMMON_DIMENSION_CALL,
  837. NETDATA_SOCKET_KERNEL_FUNCTIONS,
  838. NULL,
  839. NETDATA_EBPF_CHART_TYPE_LINE,
  840. order++,
  841. ebpf_create_global_dimension,
  842. &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF],
  843. 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  844. }
  845. }
  846. /**
  847. * Create apps charts
  848. *
  849. * Call ebpf_create_chart to create the charts on apps submenu.
  850. *
  851. * @param em a pointer to the structure with the default values.
  852. * @param ptr a pointer for targets
  853. */
  854. void ebpf_socket_create_apps_charts(struct ebpf_module *em, void *ptr)
  855. {
  856. struct target *root = ptr;
  857. int order = 20080;
  858. ebpf_create_charts_on_apps(NETDATA_NET_APPS_CONNECTION_TCP_V4,
  859. "Calls to tcp_v4_connection", EBPF_COMMON_DIMENSION_CONNECTIONS,
  860. NETDATA_APPS_NET_GROUP,
  861. NETDATA_EBPF_CHART_TYPE_STACKED,
  862. order++,
  863. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  864. root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  865. ebpf_create_charts_on_apps(NETDATA_NET_APPS_CONNECTION_TCP_V6,
  866. "Calls to tcp_v6_connection", EBPF_COMMON_DIMENSION_CONNECTIONS,
  867. NETDATA_APPS_NET_GROUP,
  868. NETDATA_EBPF_CHART_TYPE_STACKED,
  869. order++,
  870. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  871. root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  872. ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_SENT,
  873. "Bytes sent", EBPF_COMMON_DIMENSION_BITS,
  874. NETDATA_APPS_NET_GROUP,
  875. NETDATA_EBPF_CHART_TYPE_STACKED,
  876. order++,
  877. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  878. root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  879. ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_RECV,
  880. "bytes received", EBPF_COMMON_DIMENSION_BITS,
  881. NETDATA_APPS_NET_GROUP,
  882. NETDATA_EBPF_CHART_TYPE_STACKED,
  883. order++,
  884. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  885. root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  886. ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS,
  887. "Calls for tcp_sendmsg",
  888. EBPF_COMMON_DIMENSION_CALL,
  889. NETDATA_APPS_NET_GROUP,
  890. NETDATA_EBPF_CHART_TYPE_STACKED,
  891. order++,
  892. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  893. root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  894. ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS,
  895. "Calls for tcp_cleanup_rbuf",
  896. EBPF_COMMON_DIMENSION_CALL,
  897. NETDATA_APPS_NET_GROUP,
  898. NETDATA_EBPF_CHART_TYPE_STACKED,
  899. order++,
  900. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  901. root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  902. ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT,
  903. "Calls for tcp_retransmit",
  904. EBPF_COMMON_DIMENSION_CALL,
  905. NETDATA_APPS_NET_GROUP,
  906. NETDATA_EBPF_CHART_TYPE_STACKED,
  907. order++,
  908. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  909. root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  910. ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS,
  911. "Calls for udp_sendmsg",
  912. EBPF_COMMON_DIMENSION_CALL,
  913. NETDATA_APPS_NET_GROUP,
  914. NETDATA_EBPF_CHART_TYPE_STACKED,
  915. order++,
  916. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  917. root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  918. ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS,
  919. "Calls for udp_recvmsg",
  920. EBPF_COMMON_DIMENSION_CALL,
  921. NETDATA_APPS_NET_GROUP,
  922. NETDATA_EBPF_CHART_TYPE_STACKED,
  923. order++,
  924. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  925. root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  926. socket_apps_created = 1;
  927. }
  928. /**
  929. * Create network viewer chart
  930. *
  931. * Create common charts.
  932. *
  933. * @param id chart id
  934. * @param title chart title
  935. * @param units units label
  936. * @param family group name used to attach the chart on dashboard
  937. * @param order chart order
  938. * @param update_every value to overwrite the update frequency set by the server.
  939. * @param ptr plot structure with values.
  940. */
  941. static void ebpf_socket_create_nv_chart(char *id, char *title, char *units,
  942. char *family, int order, int update_every, netdata_vector_plot_t *ptr)
  943. {
  944. ebpf_write_chart_cmd(NETDATA_EBPF_FAMILY,
  945. id,
  946. title,
  947. units,
  948. family,
  949. NETDATA_EBPF_CHART_TYPE_STACKED,
  950. NULL,
  951. order,
  952. update_every,
  953. NETDATA_EBPF_MODULE_NAME_SOCKET);
  954. uint32_t i;
  955. uint32_t end = ptr->last_plot;
  956. netdata_socket_plot_t *w = ptr->plot;
  957. for (i = 0; i < end; i++) {
  958. fprintf(stdout, "DIMENSION %s '' incremental -1 1\n", w[i].dimension_sent);
  959. fprintf(stdout, "DIMENSION %s '' incremental 1 1\n", w[i].dimension_recv);
  960. }
  961. end = ptr->last;
  962. fprintf(stdout, "DIMENSION %s '' incremental -1 1\n", w[end].dimension_sent);
  963. fprintf(stdout, "DIMENSION %s '' incremental 1 1\n", w[end].dimension_recv);
  964. }
  965. /**
  966. * Create network viewer retransmit
  967. *
  968. * Create a specific chart.
  969. *
  970. * @param id the chart id
  971. * @param title the chart title
  972. * @param units the units label
  973. * @param family the group name used to attach the chart on dashboard
  974. * @param order the chart order
  975. * @param update_every value to overwrite the update frequency set by the server.
  976. * @param ptr the plot structure with values.
  977. */
  978. static void ebpf_socket_create_nv_retransmit(char *id, char *title, char *units,
  979. char *family, int order, int update_every, netdata_vector_plot_t *ptr)
  980. {
  981. ebpf_write_chart_cmd(NETDATA_EBPF_FAMILY,
  982. id,
  983. title,
  984. units,
  985. family,
  986. NETDATA_EBPF_CHART_TYPE_STACKED,
  987. NULL,
  988. order,
  989. update_every,
  990. NETDATA_EBPF_MODULE_NAME_SOCKET);
  991. uint32_t i;
  992. uint32_t end = ptr->last_plot;
  993. netdata_socket_plot_t *w = ptr->plot;
  994. for (i = 0; i < end; i++) {
  995. fprintf(stdout, "DIMENSION %s '' incremental 1 1\n", w[i].dimension_retransmit);
  996. }
  997. end = ptr->last;
  998. fprintf(stdout, "DIMENSION %s '' incremental 1 1\n", w[end].dimension_retransmit);
  999. }
  1000. /**
  1001. * Create Network Viewer charts
  1002. *
  1003. * Recreate the charts when new sockets are created.
  1004. *
  1005. * @param ptr a pointer for inbound or outbound vectors.
  1006. * @param update_every value to overwrite the update frequency set by the server.
  1007. */
  1008. static void ebpf_socket_create_nv_charts(netdata_vector_plot_t *ptr, int update_every)
  1009. {
  1010. // We do not have new sockets, so we do not need move forward
  1011. if (ptr->max_plot == ptr->last_plot)
  1012. return;
  1013. ptr->last_plot = ptr->max_plot;
  1014. if (ptr == (netdata_vector_plot_t *)&outbound_vectors) {
  1015. ebpf_socket_create_nv_chart(NETDATA_NV_OUTBOUND_BYTES,
  1016. "Outbound connections (bytes).", EBPF_COMMON_DIMENSION_BYTES,
  1017. NETDATA_NETWORK_CONNECTIONS_GROUP,
  1018. 21080,
  1019. update_every, ptr);
  1020. ebpf_socket_create_nv_chart(NETDATA_NV_OUTBOUND_PACKETS,
  1021. "Outbound connections (packets)",
  1022. EBPF_COMMON_DIMENSION_PACKETS,
  1023. NETDATA_NETWORK_CONNECTIONS_GROUP,
  1024. 21082,
  1025. update_every, ptr);
  1026. ebpf_socket_create_nv_retransmit(NETDATA_NV_OUTBOUND_RETRANSMIT,
  1027. "Retransmitted packets",
  1028. EBPF_COMMON_DIMENSION_CALL,
  1029. NETDATA_NETWORK_CONNECTIONS_GROUP,
  1030. 21083,
  1031. update_every, ptr);
  1032. } else {
  1033. ebpf_socket_create_nv_chart(NETDATA_NV_INBOUND_BYTES,
  1034. "Inbound connections (bytes)", EBPF_COMMON_DIMENSION_BYTES,
  1035. NETDATA_NETWORK_CONNECTIONS_GROUP,
  1036. 21084,
  1037. update_every, ptr);
  1038. ebpf_socket_create_nv_chart(NETDATA_NV_INBOUND_PACKETS,
  1039. "Inbound connections (packets)",
  1040. EBPF_COMMON_DIMENSION_PACKETS,
  1041. NETDATA_NETWORK_CONNECTIONS_GROUP,
  1042. 21085,
  1043. update_every, ptr);
  1044. }
  1045. ptr->flags |= NETWORK_VIEWER_CHARTS_CREATED;
  1046. }
  1047. /*****************************************************************
  1048. *
  1049. * READ INFORMATION FROM KERNEL RING
  1050. *
  1051. *****************************************************************/
  1052. /**
  1053. * Is specific ip inside the range
  1054. *
  1055. * Check if the ip is inside a IP range previously defined
  1056. *
  1057. * @param cmp the IP to compare
  1058. * @param family the IP family
  1059. *
  1060. * @return It returns 1 if the IP is inside the range and 0 otherwise
  1061. */
  1062. static int is_specific_ip_inside_range(union netdata_ip_t *cmp, int family)
  1063. {
  1064. if (!network_viewer_opt.excluded_ips && !network_viewer_opt.included_ips)
  1065. return 1;
  1066. uint32_t ipv4_test = ntohl(cmp->addr32[0]);
  1067. ebpf_network_viewer_ip_list_t *move = network_viewer_opt.excluded_ips;
  1068. while (move) {
  1069. if (family == AF_INET) {
  1070. if (ntohl(move->first.addr32[0]) <= ipv4_test &&
  1071. ipv4_test <= ntohl(move->last.addr32[0]) )
  1072. return 0;
  1073. } else {
  1074. if (memcmp(move->first.addr8, cmp->addr8, sizeof(union netdata_ip_t)) <= 0 &&
  1075. memcmp(move->last.addr8, cmp->addr8, sizeof(union netdata_ip_t)) >= 0) {
  1076. return 0;
  1077. }
  1078. }
  1079. move = move->next;
  1080. }
  1081. move = network_viewer_opt.included_ips;
  1082. while (move) {
  1083. if (family == AF_INET) {
  1084. if (ntohl(move->first.addr32[0]) <= ipv4_test &&
  1085. ntohl(move->last.addr32[0]) >= ipv4_test)
  1086. return 1;
  1087. } else {
  1088. if (memcmp(move->first.addr8, cmp->addr8, sizeof(union netdata_ip_t)) <= 0 &&
  1089. memcmp(move->last.addr8, cmp->addr8, sizeof(union netdata_ip_t)) >= 0) {
  1090. return 1;
  1091. }
  1092. }
  1093. move = move->next;
  1094. }
  1095. return 0;
  1096. }
  1097. /**
  1098. * Is port inside range
  1099. *
  1100. * Verify if the cmp port is inside the range [first, last].
  1101. * This function expects only the last parameter as big endian.
  1102. *
  1103. * @param cmp the value to compare
  1104. *
  1105. * @return It returns 1 when cmp is inside and 0 otherwise.
  1106. */
  1107. static int is_port_inside_range(uint16_t cmp)
  1108. {
  1109. // We do not have restrictions for ports.
  1110. if (!network_viewer_opt.excluded_port && !network_viewer_opt.included_port)
  1111. return 1;
  1112. // Test if port is excluded
  1113. ebpf_network_viewer_port_list_t *move = network_viewer_opt.excluded_port;
  1114. cmp = htons(cmp);
  1115. while (move) {
  1116. if (move->cmp_first <= cmp && cmp <= move->cmp_last)
  1117. return 0;
  1118. move = move->next;
  1119. }
  1120. // Test if the port is inside allowed range
  1121. move = network_viewer_opt.included_port;
  1122. while (move) {
  1123. if (move->cmp_first <= cmp && cmp <= move->cmp_last)
  1124. return 1;
  1125. move = move->next;
  1126. }
  1127. return 0;
  1128. }
  1129. /**
  1130. * Hostname matches pattern
  1131. *
  1132. * @param cmp the value to compare
  1133. *
  1134. * @return It returns 1 when the value matches and zero otherwise.
  1135. */
  1136. int hostname_matches_pattern(char *cmp)
  1137. {
  1138. if (!network_viewer_opt.included_hostnames && !network_viewer_opt.excluded_hostnames)
  1139. return 1;
  1140. ebpf_network_viewer_hostname_list_t *move = network_viewer_opt.excluded_hostnames;
  1141. while (move) {
  1142. if (simple_pattern_matches(move->value_pattern, cmp))
  1143. return 0;
  1144. move = move->next;
  1145. }
  1146. move = network_viewer_opt.included_hostnames;
  1147. while (move) {
  1148. if (simple_pattern_matches(move->value_pattern, cmp))
  1149. return 1;
  1150. move = move->next;
  1151. }
  1152. return 0;
  1153. }
  1154. /**
  1155. * Is socket allowed?
  1156. *
  1157. * Compare destination addresses and destination ports to define next steps
  1158. *
  1159. * @param key the socket read from kernel ring
  1160. * @param family the family used to compare IPs (AF_INET and AF_INET6)
  1161. *
  1162. * @return It returns 1 if this socket is inside the ranges and 0 otherwise.
  1163. */
  1164. int is_socket_allowed(netdata_socket_idx_t *key, int family)
  1165. {
  1166. if (!is_port_inside_range(key->dport))
  1167. return 0;
  1168. return is_specific_ip_inside_range(&key->daddr, family);
  1169. }
  1170. /**
  1171. * Compare sockets
  1172. *
  1173. * Compare destination address and destination port.
  1174. * We do not compare source port, because it is random.
  1175. * We also do not compare source address, because inbound and outbound connections are stored in separated AVL trees.
  1176. *
  1177. * @param a pointer to netdata_socket_plot
  1178. * @param b pointer to netdata_socket_plot
  1179. *
  1180. * @return It returns 0 case the values are equal, 1 case a is bigger than b and -1 case a is smaller than b.
  1181. */
  1182. static int compare_sockets(void *a, void *b)
  1183. {
  1184. struct netdata_socket_plot *val1 = a;
  1185. struct netdata_socket_plot *val2 = b;
  1186. int cmp;
  1187. // We do not need to compare val2 family, because data inside hash table is always from the same family
  1188. if (val1->family == AF_INET) { //IPV4
  1189. if (val1->flags & NETDATA_INBOUND_DIRECTION) {
  1190. if (val1->index.sport == val2->index.sport)
  1191. cmp = 0;
  1192. else {
  1193. cmp = (val1->index.sport > val2->index.sport)?1:-1;
  1194. }
  1195. } else {
  1196. cmp = memcmp(&val1->index.dport, &val2->index.dport, sizeof(uint16_t));
  1197. if (!cmp) {
  1198. cmp = memcmp(&val1->index.daddr.addr32[0], &val2->index.daddr.addr32[0], sizeof(uint32_t));
  1199. }
  1200. }
  1201. } else {
  1202. if (val1->flags & NETDATA_INBOUND_DIRECTION) {
  1203. if (val1->index.sport == val2->index.sport)
  1204. cmp = 0;
  1205. else {
  1206. cmp = (val1->index.sport > val2->index.sport)?1:-1;
  1207. }
  1208. } else {
  1209. cmp = memcmp(&val1->index.dport, &val2->index.dport, sizeof(uint16_t));
  1210. if (!cmp) {
  1211. cmp = memcmp(&val1->index.daddr.addr32, &val2->index.daddr.addr32, 4*sizeof(uint32_t));
  1212. }
  1213. }
  1214. }
  1215. return cmp;
  1216. }
  1217. /**
  1218. * Build dimension name
  1219. *
  1220. * Fill dimension name vector with values given
  1221. *
  1222. * @param dimname the output vector
  1223. * @param hostname the hostname for the socket.
  1224. * @param service_name the service used to connect.
  1225. * @param proto the protocol used in this connection
  1226. * @param family is this IPV4(AF_INET) or IPV6(AF_INET6)
  1227. *
  1228. * @return it returns the size of the data copied on success and -1 otherwise.
  1229. */
  1230. static inline int build_outbound_dimension_name(char *dimname, char *hostname, char *service_name,
  1231. char *proto, int family)
  1232. {
  1233. return snprintf(dimname, CONFIG_MAX_NAME - 7, (family == AF_INET)?"%s:%s:%s_":"%s:%s:[%s]_",
  1234. service_name, proto,
  1235. hostname);
  1236. }
  1237. /**
  1238. * Fill inbound dimension name
  1239. *
  1240. * Mount the dimension name with the input given
  1241. *
  1242. * @param dimname the output vector
  1243. * @param service_name the service used to connect.
  1244. * @param proto the protocol used in this connection
  1245. *
  1246. * @return it returns the size of the data copied on success and -1 otherwise.
  1247. */
  1248. static inline int build_inbound_dimension_name(char *dimname, char *service_name, char *proto)
  1249. {
  1250. return snprintf(dimname, CONFIG_MAX_NAME - 7, "%s:%s_", service_name,
  1251. proto);
  1252. }
  1253. /**
  1254. * Fill Resolved Name
  1255. *
  1256. * Fill the resolved name structure with the value given.
  1257. * The hostname is the largest value possible, if it is necessary to cut some value, it must be cut.
  1258. *
  1259. * @param ptr the output vector
  1260. * @param hostname the hostname resolved or IP.
  1261. * @param length the length for the hostname.
  1262. * @param service_name the service name associated to the connection
  1263. * @param is_outbound the is this an outbound connection
  1264. */
  1265. static inline void fill_resolved_name(netdata_socket_plot_t *ptr, char *hostname, size_t length,
  1266. char *service_name, int is_outbound)
  1267. {
  1268. if (length < NETDATA_MAX_NETWORK_COMBINED_LENGTH)
  1269. ptr->resolved_name = strdupz(hostname);
  1270. else {
  1271. length = NETDATA_MAX_NETWORK_COMBINED_LENGTH;
  1272. ptr->resolved_name = mallocz( NETDATA_MAX_NETWORK_COMBINED_LENGTH + 1);
  1273. memcpy(ptr->resolved_name, hostname, length);
  1274. ptr->resolved_name[length] = '\0';
  1275. }
  1276. char dimname[CONFIG_MAX_NAME];
  1277. int size;
  1278. char *protocol;
  1279. if (ptr->sock.protocol == IPPROTO_UDP) {
  1280. protocol = "UDP";
  1281. } else if (ptr->sock.protocol == IPPROTO_TCP) {
  1282. protocol = "TCP";
  1283. } else {
  1284. protocol = "ALL";
  1285. }
  1286. if (is_outbound)
  1287. size = build_outbound_dimension_name(dimname, hostname, service_name, protocol, ptr->family);
  1288. else
  1289. size = build_inbound_dimension_name(dimname,service_name, protocol);
  1290. if (size > 0) {
  1291. strcpy(&dimname[size], "sent");
  1292. dimname[size + 4] = '\0';
  1293. ptr->dimension_sent = strdupz(dimname);
  1294. strcpy(&dimname[size], "recv");
  1295. ptr->dimension_recv = strdupz(dimname);
  1296. dimname[size - 1] = '\0';
  1297. ptr->dimension_retransmit = strdupz(dimname);
  1298. }
  1299. }
  1300. /**
  1301. * Mount dimension names
  1302. *
  1303. * Fill the vector names after to resolve the addresses
  1304. *
  1305. * @param ptr a pointer to the structure where the values are stored.
  1306. * @param is_outbound is a outbound ptr value?
  1307. *
  1308. * @return It returns 1 if the name is valid and 0 otherwise.
  1309. */
  1310. int fill_names(netdata_socket_plot_t *ptr, int is_outbound)
  1311. {
  1312. char hostname[NI_MAXHOST], service_name[NI_MAXSERV];
  1313. if (ptr->resolved)
  1314. return 1;
  1315. int ret;
  1316. static int resolve_name = -1;
  1317. static int resolve_service = -1;
  1318. if (resolve_name == -1)
  1319. resolve_name = network_viewer_opt.hostname_resolution_enabled;
  1320. if (resolve_service == -1)
  1321. resolve_service = network_viewer_opt.service_resolution_enabled;
  1322. netdata_socket_idx_t *idx = &ptr->index;
  1323. char *errname = { "Not resolved" };
  1324. // Resolve Name
  1325. if (ptr->family == AF_INET) { //IPV4
  1326. struct sockaddr_in myaddr;
  1327. memset(&myaddr, 0 , sizeof(myaddr));
  1328. myaddr.sin_family = ptr->family;
  1329. if (is_outbound) {
  1330. myaddr.sin_port = idx->dport;
  1331. myaddr.sin_addr.s_addr = idx->daddr.addr32[0];
  1332. } else {
  1333. myaddr.sin_port = idx->sport;
  1334. myaddr.sin_addr.s_addr = idx->saddr.addr32[0];
  1335. }
  1336. ret = (!resolve_name)?-1:getnameinfo((struct sockaddr *)&myaddr, sizeof(myaddr), hostname,
  1337. sizeof(hostname), service_name, sizeof(service_name), NI_NAMEREQD);
  1338. if (!ret && !resolve_service) {
  1339. snprintf(service_name, sizeof(service_name), "%u", ntohs(myaddr.sin_port));
  1340. }
  1341. if (ret) {
  1342. // I cannot resolve the name, I will use the IP
  1343. if (!inet_ntop(AF_INET, &myaddr.sin_addr.s_addr, hostname, NI_MAXHOST)) {
  1344. strncpy(hostname, errname, 13);
  1345. }
  1346. snprintf(service_name, sizeof(service_name), "%u", ntohs(myaddr.sin_port));
  1347. ret = 1;
  1348. }
  1349. } else { // IPV6
  1350. struct sockaddr_in6 myaddr6;
  1351. memset(&myaddr6, 0 , sizeof(myaddr6));
  1352. myaddr6.sin6_family = AF_INET6;
  1353. if (is_outbound) {
  1354. myaddr6.sin6_port = idx->dport;
  1355. memcpy(myaddr6.sin6_addr.s6_addr, idx->daddr.addr8, sizeof(union netdata_ip_t));
  1356. } else {
  1357. myaddr6.sin6_port = idx->sport;
  1358. memcpy(myaddr6.sin6_addr.s6_addr, idx->saddr.addr8, sizeof(union netdata_ip_t));
  1359. }
  1360. ret = (!resolve_name)?-1:getnameinfo((struct sockaddr *)&myaddr6, sizeof(myaddr6), hostname,
  1361. sizeof(hostname), service_name, sizeof(service_name), NI_NAMEREQD);
  1362. if (!ret && !resolve_service) {
  1363. snprintf(service_name, sizeof(service_name), "%u", ntohs(myaddr6.sin6_port));
  1364. }
  1365. if (ret) {
  1366. // I cannot resolve the name, I will use the IP
  1367. if (!inet_ntop(AF_INET6, myaddr6.sin6_addr.s6_addr, hostname, NI_MAXHOST)) {
  1368. strncpy(hostname, errname, 13);
  1369. }
  1370. snprintf(service_name, sizeof(service_name), "%u", ntohs(myaddr6.sin6_port));
  1371. ret = 1;
  1372. }
  1373. }
  1374. fill_resolved_name(ptr, hostname,
  1375. strlen(hostname) + strlen(service_name)+ NETDATA_DOTS_PROTOCOL_COMBINED_LENGTH,
  1376. service_name, is_outbound);
  1377. if (resolve_name && !ret)
  1378. ret = hostname_matches_pattern(hostname);
  1379. ptr->resolved++;
  1380. return ret;
  1381. }
  1382. /**
  1383. * Fill last Network Viewer Dimension
  1384. *
  1385. * Fill the unique dimension that is always plotted.
  1386. *
  1387. * @param ptr the pointer for the last dimension
  1388. * @param is_outbound is this an inbound structure?
  1389. */
  1390. static void fill_last_nv_dimension(netdata_socket_plot_t *ptr, int is_outbound)
  1391. {
  1392. char hostname[NI_MAXHOST], service_name[NI_MAXSERV];
  1393. char *other = { "other" };
  1394. // We are also copying the NULL bytes to avoid warnings in new compilers
  1395. strncpy(hostname, other, 6);
  1396. strncpy(service_name, other, 6);
  1397. ptr->family = AF_INET;
  1398. ptr->sock.protocol = 255;
  1399. ptr->flags = (!is_outbound)?NETDATA_INBOUND_DIRECTION:NETDATA_OUTBOUND_DIRECTION;
  1400. fill_resolved_name(ptr, hostname, 10 + NETDATA_DOTS_PROTOCOL_COMBINED_LENGTH, service_name, is_outbound);
  1401. #ifdef NETDATA_INTERNAL_CHECKS
  1402. info("Last %s dimension added: ID = %u, IP = OTHER, NAME = %s, DIM1 = %s, DIM2 = %s, DIM3 = %s",
  1403. (is_outbound)?"outbound":"inbound", network_viewer_opt.max_dim - 1, ptr->resolved_name,
  1404. ptr->dimension_recv, ptr->dimension_sent, ptr->dimension_retransmit);
  1405. #endif
  1406. }
  1407. /**
  1408. * Update Socket Data
  1409. *
  1410. * Update the socket information with last collected data
  1411. *
  1412. * @param sock
  1413. * @param lvalues
  1414. */
  1415. static inline void update_socket_data(netdata_socket_t *sock, netdata_socket_t *lvalues)
  1416. {
  1417. sock->recv_packets += lvalues->recv_packets;
  1418. sock->sent_packets += lvalues->sent_packets;
  1419. sock->recv_bytes += lvalues->recv_bytes;
  1420. sock->sent_bytes += lvalues->sent_bytes;
  1421. sock->retransmit += lvalues->retransmit;
  1422. if (lvalues->ct > sock->ct)
  1423. sock->ct = lvalues->ct;
  1424. }
  1425. /**
  1426. * Store socket inside avl
  1427. *
  1428. * Store the socket values inside the avl tree.
  1429. *
  1430. * @param out the structure with information used to plot charts.
  1431. * @param lvalues Values read from socket ring.
  1432. * @param lindex the index information, the real socket.
  1433. * @param family the family associated to the socket
  1434. * @param flags the connection flags
  1435. */
  1436. static void store_socket_inside_avl(netdata_vector_plot_t *out, netdata_socket_t *lvalues,
  1437. netdata_socket_idx_t *lindex, int family, uint32_t flags)
  1438. {
  1439. netdata_socket_plot_t test, *ret ;
  1440. memcpy(&test.index, lindex, sizeof(netdata_socket_idx_t));
  1441. test.flags = flags;
  1442. ret = (netdata_socket_plot_t *) avl_search_lock(&out->tree, (avl_t *)&test);
  1443. if (ret) {
  1444. if (lvalues->ct > ret->plot.last_time) {
  1445. update_socket_data(&ret->sock, lvalues);
  1446. }
  1447. } else {
  1448. uint32_t curr = out->next;
  1449. uint32_t last = out->last;
  1450. netdata_socket_plot_t *w = &out->plot[curr];
  1451. int resolved;
  1452. if (curr == last) {
  1453. if (lvalues->ct > w->plot.last_time) {
  1454. update_socket_data(&w->sock, lvalues);
  1455. }
  1456. return;
  1457. } else {
  1458. memcpy(&w->sock, lvalues, sizeof(netdata_socket_t));
  1459. memcpy(&w->index, lindex, sizeof(netdata_socket_idx_t));
  1460. w->family = family;
  1461. resolved = fill_names(w, out != (netdata_vector_plot_t *)&inbound_vectors);
  1462. }
  1463. if (!resolved) {
  1464. freez(w->resolved_name);
  1465. freez(w->dimension_sent);
  1466. freez(w->dimension_recv);
  1467. freez(w->dimension_retransmit);
  1468. memset(w, 0, sizeof(netdata_socket_plot_t));
  1469. return;
  1470. }
  1471. w->flags = flags;
  1472. netdata_socket_plot_t *check ;
  1473. check = (netdata_socket_plot_t *) avl_insert_lock(&out->tree, (avl_t *)w);
  1474. if (check != w)
  1475. error("Internal error, cannot insert the AVL tree.");
  1476. #ifdef NETDATA_INTERNAL_CHECKS
  1477. char iptext[INET6_ADDRSTRLEN];
  1478. if (inet_ntop(family, &w->index.daddr.addr8, iptext, sizeof(iptext)))
  1479. info("New %s dimension added: ID = %u, IP = %s, NAME = %s, DIM1 = %s, DIM2 = %s, DIM3 = %s",
  1480. (out == &inbound_vectors)?"inbound":"outbound", curr, iptext, w->resolved_name,
  1481. w->dimension_recv, w->dimension_sent, w->dimension_retransmit);
  1482. #endif
  1483. curr++;
  1484. if (curr > last)
  1485. curr = last;
  1486. out->next = curr;
  1487. }
  1488. }
  1489. /**
  1490. * Compare Vector to store
  1491. *
  1492. * Compare input values with local address to select table to store.
  1493. *
  1494. * @param direction store inbound and outbound direction.
  1495. * @param cmp index read from hash table.
  1496. * @param proto the protocol read.
  1497. *
  1498. * @return It returns the structure with address to compare.
  1499. */
  1500. netdata_vector_plot_t * select_vector_to_store(uint32_t *direction, netdata_socket_idx_t *cmp, uint8_t proto)
  1501. {
  1502. if (!listen_ports) {
  1503. *direction = NETDATA_OUTBOUND_DIRECTION;
  1504. return &outbound_vectors;
  1505. }
  1506. ebpf_network_viewer_port_list_t *move_ports = listen_ports;
  1507. while (move_ports) {
  1508. if (move_ports->protocol == proto && move_ports->first == cmp->sport) {
  1509. *direction = NETDATA_INBOUND_DIRECTION;
  1510. return &inbound_vectors;
  1511. }
  1512. move_ports = move_ports->next;
  1513. }
  1514. *direction = NETDATA_OUTBOUND_DIRECTION;
  1515. return &outbound_vectors;
  1516. }
  1517. /**
  1518. * Hash accumulator
  1519. *
  1520. * @param values the values used to calculate the data.
  1521. * @param key the key to store data.
  1522. * @param family the connection family
  1523. * @param end the values size.
  1524. */
  1525. static void hash_accumulator(netdata_socket_t *values, netdata_socket_idx_t *key, int family, int end)
  1526. {
  1527. uint64_t bsent = 0, brecv = 0, psent = 0, precv = 0;
  1528. uint16_t retransmit = 0;
  1529. int i;
  1530. uint8_t protocol = values[0].protocol;
  1531. uint64_t ct = values[0].ct;
  1532. for (i = 1; i < end; i++) {
  1533. netdata_socket_t *w = &values[i];
  1534. precv += w->recv_packets;
  1535. psent += w->sent_packets;
  1536. brecv += w->recv_bytes;
  1537. bsent += w->sent_bytes;
  1538. retransmit += w->retransmit;
  1539. if (!protocol)
  1540. protocol = w->protocol;
  1541. if (w->ct > ct)
  1542. ct = w->ct;
  1543. }
  1544. values[0].recv_packets += precv;
  1545. values[0].sent_packets += psent;
  1546. values[0].recv_bytes += brecv;
  1547. values[0].sent_bytes += bsent;
  1548. values[0].retransmit += retransmit;
  1549. values[0].protocol = (!protocol)?IPPROTO_TCP:protocol;
  1550. values[0].ct = ct;
  1551. if (is_socket_allowed(key, family)) {
  1552. uint32_t dir;
  1553. netdata_vector_plot_t *table = select_vector_to_store(&dir, key, protocol);
  1554. store_socket_inside_avl(table, &values[0], key, family, dir);
  1555. }
  1556. }
  1557. /**
  1558. * Read socket hash table
  1559. *
  1560. * Read data from hash tables created on kernel ring.
  1561. *
  1562. * @param fd the hash table with data.
  1563. * @param family the family associated to the hash table
  1564. *
  1565. * @return it returns 0 on success and -1 otherwise.
  1566. */
  1567. static void read_socket_hash_table(int fd, int family, int network_connection)
  1568. {
  1569. if (wait_to_plot)
  1570. return;
  1571. netdata_socket_idx_t key = {};
  1572. netdata_socket_idx_t next_key = {};
  1573. netdata_socket_t *values = socket_values;
  1574. size_t length = ebpf_nprocs*sizeof(netdata_socket_t);
  1575. int test, end = (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs;
  1576. while (bpf_map_get_next_key(fd, &key, &next_key) == 0) {
  1577. // We need to reset the values when we are working on kernel 4.15 or newer, because kernel does not create
  1578. // values for specific processor unless it is used to store data. As result of this behavior one the next socket
  1579. // can have values from the previous one.
  1580. memset(values, 0, length);
  1581. test = bpf_map_lookup_elem(fd, &key, values);
  1582. if (test < 0) {
  1583. key = next_key;
  1584. continue;
  1585. }
  1586. if (network_connection) {
  1587. hash_accumulator(values, &key, family, end);
  1588. }
  1589. key = next_key;
  1590. }
  1591. test = bpf_map_lookup_elem(fd, &next_key, values);
  1592. if (test < 0) {
  1593. return;
  1594. }
  1595. if (network_connection) {
  1596. hash_accumulator(values, &next_key, family, end);
  1597. }
  1598. }
  1599. /**
  1600. * Fill Network Viewer Port list
  1601. *
  1602. * Fill the strcture with values read from /proc or hash table.
  1603. *
  1604. * @param out the structure where we will store data.
  1605. * @param value the ports we are listen to.
  1606. * @param proto the protocol used for this connection.
  1607. * @param in the strcuture with values read form different sources.
  1608. */
  1609. static inline void fill_nv_port_list(ebpf_network_viewer_port_list_t *out, uint16_t value, uint16_t proto,
  1610. netdata_passive_connection_t *in)
  1611. {
  1612. out->first = value;
  1613. out->protocol = proto;
  1614. out->pid = in->pid;
  1615. out->tgid = in->tgid;
  1616. out->connections = in->counter;
  1617. }
  1618. /**
  1619. * Update listen table
  1620. *
  1621. * Update link list when it is necessary.
  1622. *
  1623. * @param value the ports we are listen to.
  1624. * @param proto the protocol used with port connection.
  1625. * @param in the strcuture with values read form different sources.
  1626. */
  1627. void update_listen_table(uint16_t value, uint16_t proto, netdata_passive_connection_t *in)
  1628. {
  1629. ebpf_network_viewer_port_list_t *w;
  1630. if (likely(listen_ports)) {
  1631. ebpf_network_viewer_port_list_t *move = listen_ports, *store = listen_ports;
  1632. while (move) {
  1633. if (move->protocol == proto && move->first == value) {
  1634. move->pid = in->pid;
  1635. move->tgid = in->tgid;
  1636. move->connections = in->counter;
  1637. return;
  1638. }
  1639. store = move;
  1640. move = move->next;
  1641. }
  1642. w = callocz(1, sizeof(ebpf_network_viewer_port_list_t));
  1643. store->next = w;
  1644. } else {
  1645. w = callocz(1, sizeof(ebpf_network_viewer_port_list_t));
  1646. listen_ports = w;
  1647. }
  1648. fill_nv_port_list(w, value, proto, in);
  1649. #ifdef NETDATA_INTERNAL_CHECKS
  1650. info("The network viewer is monitoring inbound connections for port %u", ntohs(value));
  1651. #endif
  1652. }
  1653. /**
  1654. * Read listen table
  1655. *
  1656. * Read the table with all ports that we are listen on host.
  1657. */
  1658. static void read_listen_table()
  1659. {
  1660. netdata_passive_connection_idx_t key = {};
  1661. netdata_passive_connection_idx_t next_key = {};
  1662. int fd = socket_maps[NETDATA_SOCKET_LPORTS].map_fd;
  1663. netdata_passive_connection_t value = {};
  1664. while (bpf_map_get_next_key(fd, &key, &next_key) == 0) {
  1665. int test = bpf_map_lookup_elem(fd, &key, &value);
  1666. if (test < 0) {
  1667. key = next_key;
  1668. continue;
  1669. }
  1670. // The correct protocol must come from kernel
  1671. update_listen_table(key.port, key.protocol, &value);
  1672. key = next_key;
  1673. memset(&value, 0, sizeof(value));
  1674. }
  1675. if (next_key.port && value.pid) {
  1676. // The correct protocol must come from kernel
  1677. update_listen_table(next_key.port, next_key.protocol, &value);
  1678. }
  1679. }
  1680. /**
  1681. * Socket read hash
  1682. *
  1683. * This is the thread callback.
  1684. * This thread is necessary, because we cannot freeze the whole plugin to read the data on very busy socket.
  1685. *
  1686. * @param ptr It is a NULL value for this thread.
  1687. *
  1688. * @return It always returns NULL.
  1689. */
  1690. void *ebpf_socket_read_hash(void *ptr)
  1691. {
  1692. ebpf_module_t *em = (ebpf_module_t *)ptr;
  1693. read_thread_closed = 0;
  1694. heartbeat_t hb;
  1695. heartbeat_init(&hb);
  1696. usec_t step = NETDATA_SOCKET_READ_SLEEP_MS * em->update_every;
  1697. int fd_ipv4 = socket_maps[NETDATA_SOCKET_TABLE_IPV4].map_fd;
  1698. int fd_ipv6 = socket_maps[NETDATA_SOCKET_TABLE_IPV6].map_fd;
  1699. int network_connection = em->optional;
  1700. while (!close_ebpf_plugin) {
  1701. usec_t dt = heartbeat_next(&hb, step);
  1702. (void)dt;
  1703. pthread_mutex_lock(&nv_mutex);
  1704. read_listen_table();
  1705. read_socket_hash_table(fd_ipv4, AF_INET, network_connection);
  1706. read_socket_hash_table(fd_ipv6, AF_INET6, network_connection);
  1707. wait_to_plot = 1;
  1708. pthread_mutex_unlock(&nv_mutex);
  1709. }
  1710. read_thread_closed = 1;
  1711. return NULL;
  1712. }
  1713. /**
  1714. * Read the hash table and store data to allocated vectors.
  1715. */
  1716. static void read_hash_global_tables()
  1717. {
  1718. uint64_t idx;
  1719. netdata_idx_t res[NETDATA_SOCKET_COUNTER];
  1720. netdata_idx_t *val = socket_hash_values;
  1721. int fd = socket_maps[NETDATA_SOCKET_GLOBAL].map_fd;
  1722. for (idx = 0; idx < NETDATA_SOCKET_COUNTER; idx++) {
  1723. if (!bpf_map_lookup_elem(fd, &idx, val)) {
  1724. uint64_t total = 0;
  1725. int i;
  1726. int end = ebpf_nprocs;
  1727. for (i = 0; i < end; i++)
  1728. total += val[i];
  1729. res[idx] = total;
  1730. } else {
  1731. res[idx] = 0;
  1732. }
  1733. }
  1734. socket_aggregated_data[NETDATA_IDX_TCP_SENDMSG].call = res[NETDATA_KEY_CALLS_TCP_SENDMSG];
  1735. socket_aggregated_data[NETDATA_IDX_TCP_CLEANUP_RBUF].call = res[NETDATA_KEY_CALLS_TCP_CLEANUP_RBUF];
  1736. socket_aggregated_data[NETDATA_IDX_TCP_CLOSE].call = res[NETDATA_KEY_CALLS_TCP_CLOSE];
  1737. socket_aggregated_data[NETDATA_IDX_UDP_RECVBUF].call = res[NETDATA_KEY_CALLS_UDP_RECVMSG];
  1738. socket_aggregated_data[NETDATA_IDX_UDP_SENDMSG].call = res[NETDATA_KEY_CALLS_UDP_SENDMSG];
  1739. socket_aggregated_data[NETDATA_IDX_TCP_RETRANSMIT].call = res[NETDATA_KEY_TCP_RETRANSMIT];
  1740. socket_aggregated_data[NETDATA_IDX_TCP_CONNECTION_V4].call = res[NETDATA_KEY_CALLS_TCP_CONNECT_IPV4];
  1741. socket_aggregated_data[NETDATA_IDX_TCP_CONNECTION_V6].call = res[NETDATA_KEY_CALLS_TCP_CONNECT_IPV6];
  1742. socket_aggregated_data[NETDATA_IDX_TCP_SENDMSG].ecall = res[NETDATA_KEY_ERROR_TCP_SENDMSG];
  1743. socket_aggregated_data[NETDATA_IDX_TCP_CLEANUP_RBUF].ecall = res[NETDATA_KEY_ERROR_TCP_CLEANUP_RBUF];
  1744. socket_aggregated_data[NETDATA_IDX_UDP_RECVBUF].ecall = res[NETDATA_KEY_ERROR_UDP_RECVMSG];
  1745. socket_aggregated_data[NETDATA_IDX_UDP_SENDMSG].ecall = res[NETDATA_KEY_ERROR_UDP_SENDMSG];
  1746. socket_aggregated_data[NETDATA_IDX_TCP_CONNECTION_V4].ecall = res[NETDATA_KEY_ERROR_TCP_CONNECT_IPV4];
  1747. socket_aggregated_data[NETDATA_IDX_TCP_CONNECTION_V6].ecall = res[NETDATA_KEY_ERROR_TCP_CONNECT_IPV6];
  1748. socket_aggregated_data[NETDATA_IDX_TCP_SENDMSG].bytes = res[NETDATA_KEY_BYTES_TCP_SENDMSG];
  1749. socket_aggregated_data[NETDATA_IDX_TCP_CLEANUP_RBUF].bytes = res[NETDATA_KEY_BYTES_TCP_CLEANUP_RBUF];
  1750. socket_aggregated_data[NETDATA_IDX_UDP_RECVBUF].bytes = res[NETDATA_KEY_BYTES_UDP_RECVMSG];
  1751. socket_aggregated_data[NETDATA_IDX_UDP_SENDMSG].bytes = res[NETDATA_KEY_BYTES_UDP_SENDMSG];
  1752. }
  1753. /**
  1754. * Fill publish apps when necessary.
  1755. *
  1756. * @param current_pid the PID that I am updating
  1757. * @param eb the structure with data read from memory.
  1758. */
  1759. void ebpf_socket_fill_publish_apps(uint32_t current_pid, ebpf_bandwidth_t *eb)
  1760. {
  1761. ebpf_socket_publish_apps_t *curr = socket_bandwidth_curr[current_pid];
  1762. if (!curr) {
  1763. curr = callocz(1, sizeof(ebpf_socket_publish_apps_t));
  1764. socket_bandwidth_curr[current_pid] = curr;
  1765. }
  1766. curr->bytes_sent = eb->bytes_sent;
  1767. curr->bytes_received = eb->bytes_received;
  1768. curr->call_tcp_sent = eb->call_tcp_sent;
  1769. curr->call_tcp_received = eb->call_tcp_received;
  1770. curr->retransmit = eb->retransmit;
  1771. curr->call_udp_sent = eb->call_udp_sent;
  1772. curr->call_udp_received = eb->call_udp_received;
  1773. curr->call_close = eb->close;
  1774. curr->call_tcp_v4_connection = eb->tcp_v4_connection;
  1775. curr->call_tcp_v6_connection = eb->tcp_v6_connection;
  1776. }
  1777. /**
  1778. * Bandwidth accumulator.
  1779. *
  1780. * @param out the vector with the values to sum
  1781. */
  1782. void ebpf_socket_bandwidth_accumulator(ebpf_bandwidth_t *out)
  1783. {
  1784. int i, end = (running_on_kernel >= NETDATA_KERNEL_V4_15) ? ebpf_nprocs : 1;
  1785. ebpf_bandwidth_t *total = &out[0];
  1786. for (i = 1; i < end; i++) {
  1787. ebpf_bandwidth_t *move = &out[i];
  1788. total->bytes_sent += move->bytes_sent;
  1789. total->bytes_received += move->bytes_received;
  1790. total->call_tcp_sent += move->call_tcp_sent;
  1791. total->call_tcp_received += move->call_tcp_received;
  1792. total->retransmit += move->retransmit;
  1793. total->call_udp_sent += move->call_udp_sent;
  1794. total->call_udp_received += move->call_udp_received;
  1795. total->close += move->close;
  1796. total->tcp_v4_connection += move->tcp_v4_connection;
  1797. total->tcp_v6_connection += move->tcp_v6_connection;
  1798. }
  1799. }
  1800. /**
  1801. * Update the apps data reading information from the hash table
  1802. */
  1803. static void ebpf_socket_update_apps_data()
  1804. {
  1805. int fd = socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH].map_fd;
  1806. ebpf_bandwidth_t *eb = bandwidth_vector;
  1807. uint32_t key;
  1808. struct pid_stat *pids = root_of_pids;
  1809. while (pids) {
  1810. key = pids->pid;
  1811. if (bpf_map_lookup_elem(fd, &key, eb)) {
  1812. pids = pids->next;
  1813. continue;
  1814. }
  1815. ebpf_socket_bandwidth_accumulator(eb);
  1816. ebpf_socket_fill_publish_apps(key, eb);
  1817. pids = pids->next;
  1818. }
  1819. }
  1820. /**
  1821. * Update cgroup
  1822. *
  1823. * Update cgroup data based in
  1824. */
  1825. static void ebpf_update_socket_cgroup()
  1826. {
  1827. ebpf_cgroup_target_t *ect ;
  1828. ebpf_bandwidth_t *eb = bandwidth_vector;
  1829. int fd = socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH].map_fd;
  1830. pthread_mutex_lock(&mutex_cgroup_shm);
  1831. for (ect = ebpf_cgroup_pids; ect; ect = ect->next) {
  1832. struct pid_on_target2 *pids;
  1833. for (pids = ect->pids; pids; pids = pids->next) {
  1834. int pid = pids->pid;
  1835. ebpf_bandwidth_t *out = &pids->socket;
  1836. ebpf_socket_publish_apps_t *publish = &ect->publish_socket;
  1837. if (likely(socket_bandwidth_curr) && socket_bandwidth_curr[pid]) {
  1838. ebpf_socket_publish_apps_t *in = socket_bandwidth_curr[pid];
  1839. publish->bytes_sent = in->bytes_sent;
  1840. publish->bytes_received = in->bytes_received;
  1841. publish->call_tcp_sent = in->call_tcp_sent;
  1842. publish->call_tcp_received = in->call_tcp_received;
  1843. publish->retransmit = in->retransmit;
  1844. publish->call_udp_sent = in->call_udp_sent;
  1845. publish->call_udp_received = in->call_udp_received;
  1846. publish->call_close = in->call_close;
  1847. publish->call_tcp_v4_connection = in->call_tcp_v4_connection;
  1848. publish->call_tcp_v6_connection = in->call_tcp_v6_connection;
  1849. } else {
  1850. if (!bpf_map_lookup_elem(fd, &pid, eb)) {
  1851. ebpf_socket_bandwidth_accumulator(eb);
  1852. memcpy(out, eb, sizeof(ebpf_bandwidth_t));
  1853. publish->bytes_sent = out->bytes_sent;
  1854. publish->bytes_received = out->bytes_received;
  1855. publish->call_tcp_sent = out->call_tcp_sent;
  1856. publish->call_tcp_received = out->call_tcp_received;
  1857. publish->retransmit = out->retransmit;
  1858. publish->call_udp_sent = out->call_udp_sent;
  1859. publish->call_udp_received = out->call_udp_received;
  1860. publish->call_close = out->close;
  1861. publish->call_tcp_v4_connection = out->tcp_v4_connection;
  1862. publish->call_tcp_v6_connection = out->tcp_v6_connection;
  1863. }
  1864. }
  1865. }
  1866. }
  1867. pthread_mutex_unlock(&mutex_cgroup_shm);
  1868. }
  1869. /**
  1870. * Sum PIDs
  1871. *
  1872. * Sum values for all targets.
  1873. *
  1874. * @param fd structure used to store data
  1875. * @param pids input data
  1876. */
  1877. static void ebpf_socket_sum_cgroup_pids(ebpf_socket_publish_apps_t *socket, struct pid_on_target2 *pids)
  1878. {
  1879. ebpf_socket_publish_apps_t accumulator;
  1880. memset(&accumulator, 0, sizeof(accumulator));
  1881. while (pids) {
  1882. ebpf_bandwidth_t *w = &pids->socket;
  1883. accumulator.bytes_received += w->bytes_received;
  1884. accumulator.bytes_sent += w->bytes_sent;
  1885. accumulator.call_tcp_received += w->call_tcp_received;
  1886. accumulator.call_tcp_sent += w->call_tcp_sent;
  1887. accumulator.retransmit += w->retransmit;
  1888. accumulator.call_udp_received += w->call_udp_received;
  1889. accumulator.call_udp_sent += w->call_udp_sent;
  1890. accumulator.call_close += w->close;
  1891. accumulator.call_tcp_v4_connection += w->tcp_v4_connection;
  1892. accumulator.call_tcp_v6_connection += w->tcp_v6_connection;
  1893. pids = pids->next;
  1894. }
  1895. socket->bytes_sent = (accumulator.bytes_sent >= socket->bytes_sent) ? accumulator.bytes_sent : socket->bytes_sent;
  1896. socket->bytes_received = (accumulator.bytes_received >= socket->bytes_received) ? accumulator.bytes_received : socket->bytes_received;
  1897. socket->call_tcp_sent = (accumulator.call_tcp_sent >= socket->call_tcp_sent) ? accumulator.call_tcp_sent : socket->call_tcp_sent;
  1898. socket->call_tcp_received = (accumulator.call_tcp_received >= socket->call_tcp_received) ? accumulator.call_tcp_received : socket->call_tcp_received;
  1899. socket->retransmit = (accumulator.retransmit >= socket->retransmit) ? accumulator.retransmit : socket->retransmit;
  1900. socket->call_udp_sent = (accumulator.call_udp_sent >= socket->call_udp_sent) ? accumulator.call_udp_sent : socket->call_udp_sent;
  1901. socket->call_udp_received = (accumulator.call_udp_received >= socket->call_udp_received) ? accumulator.call_udp_received : socket->call_udp_received;
  1902. socket->call_close = (accumulator.call_close >= socket->call_close) ? accumulator.call_close : socket->call_close;
  1903. socket->call_tcp_v4_connection = (accumulator.call_tcp_v4_connection >= socket->call_tcp_v4_connection) ?
  1904. accumulator.call_tcp_v4_connection : socket->call_tcp_v4_connection;
  1905. socket->call_tcp_v6_connection = (accumulator.call_tcp_v6_connection >= socket->call_tcp_v6_connection) ?
  1906. accumulator.call_tcp_v6_connection : socket->call_tcp_v6_connection;
  1907. }
  1908. /**
  1909. * Create specific socket charts
  1910. *
  1911. * Create charts for cgroup/application.
  1912. *
  1913. * @param type the chart type.
  1914. * @param update_every value to overwrite the update frequency set by the server.
  1915. */
  1916. static void ebpf_create_specific_socket_charts(char *type, int update_every)
  1917. {
  1918. int order_basis = 5300;
  1919. ebpf_create_chart(type, NETDATA_NET_APPS_CONNECTION_TCP_V4,
  1920. "Calls to tcp_v4_connection",
  1921. EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_CGROUP_NET_GROUP,
  1922. NETDATA_CGROUP_TCP_V4_CONN_CONTEXT,
  1923. NETDATA_EBPF_CHART_TYPE_LINE,
  1924. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++,
  1925. ebpf_create_global_dimension,
  1926. &socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V4], 1,
  1927. update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  1928. ebpf_create_chart(type, NETDATA_NET_APPS_CONNECTION_TCP_V6,
  1929. "Calls to tcp_v6_connection",
  1930. EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_CGROUP_NET_GROUP,
  1931. NETDATA_CGROUP_TCP_V6_CONN_CONTEXT,
  1932. NETDATA_EBPF_CHART_TYPE_LINE,
  1933. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++,
  1934. ebpf_create_global_dimension,
  1935. &socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V6], 1,
  1936. update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  1937. ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_RECV,
  1938. "Bytes received",
  1939. EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP,
  1940. NETDATA_CGROUP_SOCKET_BYTES_RECV_CONTEXT,
  1941. NETDATA_EBPF_CHART_TYPE_LINE,
  1942. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++,
  1943. ebpf_create_global_dimension,
  1944. &socket_publish_aggregated[NETDATA_IDX_TCP_CLEANUP_RBUF], 1,
  1945. update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  1946. ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_SENT,
  1947. "Bytes sent",
  1948. EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP,
  1949. NETDATA_CGROUP_SOCKET_BYTES_SEND_CONTEXT,
  1950. NETDATA_EBPF_CHART_TYPE_LINE,
  1951. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++,
  1952. ebpf_create_global_dimension,
  1953. socket_publish_aggregated, 1,
  1954. update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  1955. ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS,
  1956. "Calls to tcp_cleanup_rbuf.",
  1957. EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP,
  1958. NETDATA_CGROUP_SOCKET_TCP_RECV_CONTEXT,
  1959. NETDATA_EBPF_CHART_TYPE_LINE,
  1960. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++,
  1961. ebpf_create_global_dimension,
  1962. &socket_publish_aggregated[NETDATA_IDX_TCP_CLEANUP_RBUF], 1,
  1963. update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  1964. ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS,
  1965. "Calls to tcp_sendmsg.",
  1966. EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP,
  1967. NETDATA_CGROUP_SOCKET_TCP_SEND_CONTEXT,
  1968. NETDATA_EBPF_CHART_TYPE_LINE,
  1969. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++,
  1970. ebpf_create_global_dimension,
  1971. socket_publish_aggregated, 1,
  1972. update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  1973. ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT,
  1974. "Calls to tcp_retransmit.",
  1975. EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP,
  1976. NETDATA_CGROUP_SOCKET_TCP_RETRANSMIT_CONTEXT,
  1977. NETDATA_EBPF_CHART_TYPE_LINE,
  1978. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++,
  1979. ebpf_create_global_dimension,
  1980. &socket_publish_aggregated[NETDATA_IDX_TCP_RETRANSMIT], 1,
  1981. update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  1982. ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS,
  1983. "Calls to udp_sendmsg",
  1984. EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP,
  1985. NETDATA_CGROUP_SOCKET_UDP_SEND_CONTEXT,
  1986. NETDATA_EBPF_CHART_TYPE_LINE,
  1987. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++,
  1988. ebpf_create_global_dimension,
  1989. &socket_publish_aggregated[NETDATA_IDX_UDP_SENDMSG], 1,
  1990. update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  1991. ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS,
  1992. "Calls to udp_recvmsg",
  1993. EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP,
  1994. NETDATA_CGROUP_SOCKET_UDP_RECV_CONTEXT,
  1995. NETDATA_EBPF_CHART_TYPE_LINE,
  1996. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++,
  1997. ebpf_create_global_dimension,
  1998. &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF], 1,
  1999. update_every, NETDATA_EBPF_MODULE_NAME_SOCKET);
  2000. }
  2001. /**
  2002. * Obsolete specific socket charts
  2003. *
  2004. * Obsolete charts for cgroup/application.
  2005. *
  2006. * @param type the chart type.
  2007. * @param update_every value to overwrite the update frequency set by the server.
  2008. */
  2009. static void ebpf_obsolete_specific_socket_charts(char *type, int update_every)
  2010. {
  2011. int order_basis = 5300;
  2012. ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_CONNECTION_TCP_V4, "Calls to tcp_v4_connection",
  2013. EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_APPS_NET_GROUP,
  2014. NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_V4_CONN_CONTEXT,
  2015. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every);
  2016. ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_CONNECTION_TCP_V6,"Calls to tcp_v6_connection",
  2017. EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_APPS_NET_GROUP,
  2018. NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_V6_CONN_CONTEXT,
  2019. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every);
  2020. ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_RECV, "Bytes received",
  2021. EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP,
  2022. NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_BYTES_RECV_CONTEXT,
  2023. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every);
  2024. ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_SENT,"Bytes sent",
  2025. EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP,
  2026. NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_BYTES_SEND_CONTEXT,
  2027. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every);
  2028. ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS, "Calls to tcp_cleanup_rbuf.",
  2029. EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP,
  2030. NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_RECV_CONTEXT,
  2031. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every);
  2032. ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS, "Calls to tcp_sendmsg.",
  2033. EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP,
  2034. NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_SEND_CONTEXT,
  2035. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every);
  2036. ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT, "Calls to tcp_retransmit.",
  2037. EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP,
  2038. NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_RETRANSMIT_CONTEXT,
  2039. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every);
  2040. ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS, "Calls to udp_sendmsg",
  2041. EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP,
  2042. NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_UDP_SEND_CONTEXT,
  2043. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every);
  2044. ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS, "Calls to udp_recvmsg",
  2045. EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE,
  2046. NETDATA_SERVICES_SOCKET_UDP_RECV_CONTEXT,
  2047. NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every);
  2048. }
  2049. /*
  2050. * Send Specific Swap data
  2051. *
  2052. * Send data for specific cgroup/apps.
  2053. *
  2054. * @param type chart type
  2055. * @param values structure with values that will be sent to netdata
  2056. */
  2057. static void ebpf_send_specific_socket_data(char *type, ebpf_socket_publish_apps_t *values)
  2058. {
  2059. write_begin_chart(type, NETDATA_NET_APPS_CONNECTION_TCP_V4);
  2060. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V4].name,
  2061. (long long) values->call_tcp_v4_connection);
  2062. write_end_chart();
  2063. write_begin_chart(type, NETDATA_NET_APPS_CONNECTION_TCP_V6);
  2064. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V6].name,
  2065. (long long) values->call_tcp_v6_connection);
  2066. write_end_chart();
  2067. write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_SENT);
  2068. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_SENDMSG].name,
  2069. (long long) values->bytes_sent);
  2070. write_end_chart();
  2071. write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_RECV);
  2072. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_CLEANUP_RBUF].name,
  2073. (long long) values->bytes_received);
  2074. write_end_chart();
  2075. write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS);
  2076. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_SENDMSG].name,
  2077. (long long) values->call_tcp_sent);
  2078. write_end_chart();
  2079. write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS);
  2080. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_CLEANUP_RBUF].name,
  2081. (long long) values->call_tcp_received);
  2082. write_end_chart();
  2083. write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT);
  2084. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_RETRANSMIT].name,
  2085. (long long) values->retransmit);
  2086. write_end_chart();
  2087. write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS);
  2088. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_UDP_SENDMSG].name,
  2089. (long long) values->call_udp_sent);
  2090. write_end_chart();
  2091. write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS);
  2092. write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF].name,
  2093. (long long) values->call_udp_received);
  2094. write_end_chart();
  2095. }
  2096. /**
  2097. * Create Systemd Socket Charts
  2098. *
  2099. * Create charts when systemd is enabled
  2100. *
  2101. * @param update_every value to overwrite the update frequency set by the server.
  2102. **/
  2103. static void ebpf_create_systemd_socket_charts(int update_every)
  2104. {
  2105. int order = 20080;
  2106. ebpf_create_charts_on_systemd(NETDATA_NET_APPS_CONNECTION_TCP_V4,
  2107. "Calls to tcp_v4_connection", EBPF_COMMON_DIMENSION_CONNECTIONS,
  2108. NETDATA_APPS_NET_GROUP,
  2109. NETDATA_EBPF_CHART_TYPE_STACKED,
  2110. order++,
  2111. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  2112. NETDATA_SERVICES_SOCKET_TCP_V4_CONN_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET,
  2113. update_every);
  2114. ebpf_create_charts_on_systemd(NETDATA_NET_APPS_CONNECTION_TCP_V6,
  2115. "Calls to tcp_v6_connection", EBPF_COMMON_DIMENSION_CONNECTIONS,
  2116. NETDATA_APPS_NET_GROUP,
  2117. NETDATA_EBPF_CHART_TYPE_STACKED,
  2118. order++,
  2119. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  2120. NETDATA_SERVICES_SOCKET_TCP_V6_CONN_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET,
  2121. update_every);
  2122. ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_RECV,
  2123. "Bytes received", EBPF_COMMON_DIMENSION_BITS,
  2124. NETDATA_APPS_NET_GROUP,
  2125. NETDATA_EBPF_CHART_TYPE_STACKED,
  2126. order++,
  2127. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  2128. NETDATA_SERVICES_SOCKET_BYTES_RECV_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET,
  2129. update_every);
  2130. ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_SENT,
  2131. "Bytes sent", EBPF_COMMON_DIMENSION_BITS,
  2132. NETDATA_APPS_NET_GROUP,
  2133. NETDATA_EBPF_CHART_TYPE_STACKED,
  2134. order++,
  2135. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  2136. NETDATA_SERVICES_SOCKET_BYTES_SEND_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET,
  2137. update_every);
  2138. ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS,
  2139. "Calls to tcp_cleanup_rbuf.",
  2140. EBPF_COMMON_DIMENSION_CALL,
  2141. NETDATA_APPS_NET_GROUP,
  2142. NETDATA_EBPF_CHART_TYPE_STACKED,
  2143. order++,
  2144. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  2145. NETDATA_SERVICES_SOCKET_TCP_RECV_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET,
  2146. update_every);
  2147. ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS,
  2148. "Calls to tcp_sendmsg.",
  2149. EBPF_COMMON_DIMENSION_CALL,
  2150. NETDATA_APPS_NET_GROUP,
  2151. NETDATA_EBPF_CHART_TYPE_STACKED,
  2152. order++,
  2153. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  2154. NETDATA_SERVICES_SOCKET_TCP_SEND_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET,
  2155. update_every);
  2156. ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT,
  2157. "Calls to tcp_retransmit",
  2158. EBPF_COMMON_DIMENSION_CALL,
  2159. NETDATA_APPS_NET_GROUP,
  2160. NETDATA_EBPF_CHART_TYPE_STACKED,
  2161. order++,
  2162. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  2163. NETDATA_SERVICES_SOCKET_TCP_RETRANSMIT_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET,
  2164. update_every);
  2165. ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS,
  2166. "Calls to udp_sendmsg",
  2167. EBPF_COMMON_DIMENSION_CALL,
  2168. NETDATA_APPS_NET_GROUP,
  2169. NETDATA_EBPF_CHART_TYPE_STACKED,
  2170. order++,
  2171. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  2172. NETDATA_SERVICES_SOCKET_UDP_SEND_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET,
  2173. update_every);
  2174. ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS,
  2175. "Calls to udp_recvmsg",
  2176. EBPF_COMMON_DIMENSION_CALL,
  2177. NETDATA_APPS_NET_GROUP,
  2178. NETDATA_EBPF_CHART_TYPE_STACKED,
  2179. order++,
  2180. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX],
  2181. NETDATA_SERVICES_SOCKET_UDP_RECV_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET,
  2182. update_every);
  2183. }
  2184. /**
  2185. * Send Systemd charts
  2186. *
  2187. * Send collected data to Netdata.
  2188. *
  2189. * @return It returns the status for chart creation, if it is necessary to remove a specific dimension, zero is returned
  2190. * otherwise function returns 1 to avoid chart recreation
  2191. */
  2192. static int ebpf_send_systemd_socket_charts()
  2193. {
  2194. int ret = 1;
  2195. ebpf_cgroup_target_t *ect;
  2196. write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_CONNECTION_TCP_V4);
  2197. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2198. if (unlikely(ect->systemd) && unlikely(ect->updated)) {
  2199. write_chart_dimension(ect->name, (long long)ect->publish_socket.call_tcp_v4_connection);
  2200. } else
  2201. ret = 0;
  2202. }
  2203. write_end_chart();
  2204. write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_CONNECTION_TCP_V6);
  2205. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2206. if (unlikely(ect->systemd) && unlikely(ect->updated)) {
  2207. write_chart_dimension(ect->name, (long long)ect->publish_socket.call_tcp_v6_connection);
  2208. } else
  2209. ret = 0;
  2210. }
  2211. write_end_chart();
  2212. write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_SENT);
  2213. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2214. if (unlikely(ect->systemd) && unlikely(ect->updated)) {
  2215. write_chart_dimension(ect->name, (long long)ect->publish_socket.bytes_sent);
  2216. } else
  2217. ret = 0;
  2218. }
  2219. write_end_chart();
  2220. write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_RECV);
  2221. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2222. if (unlikely(ect->systemd) && unlikely(ect->updated)) {
  2223. write_chart_dimension(ect->name, (long long)ect->publish_socket.bytes_received);
  2224. }
  2225. }
  2226. write_end_chart();
  2227. write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS);
  2228. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2229. if (unlikely(ect->systemd) && unlikely(ect->updated)) {
  2230. write_chart_dimension(ect->name, (long long)ect->publish_socket.call_tcp_sent);
  2231. }
  2232. }
  2233. write_end_chart();
  2234. write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS);
  2235. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2236. if (unlikely(ect->systemd) && unlikely(ect->updated)) {
  2237. write_chart_dimension(ect->name, (long long)ect->publish_socket.call_tcp_received);
  2238. }
  2239. }
  2240. write_end_chart();
  2241. write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT);
  2242. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2243. if (unlikely(ect->systemd) && unlikely(ect->updated)) {
  2244. write_chart_dimension(ect->name, (long long)ect->publish_socket.retransmit);
  2245. }
  2246. }
  2247. write_end_chart();
  2248. write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS);
  2249. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2250. if (unlikely(ect->systemd) && unlikely(ect->updated)) {
  2251. write_chart_dimension(ect->name, (long long)ect->publish_socket.call_udp_sent);
  2252. }
  2253. }
  2254. write_end_chart();
  2255. write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS);
  2256. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2257. if (unlikely(ect->systemd) && unlikely(ect->updated)) {
  2258. write_chart_dimension(ect->name, (long long)ect->publish_socket.call_udp_received);
  2259. }
  2260. }
  2261. write_end_chart();
  2262. return ret;
  2263. }
  2264. /**
  2265. * Update Cgroup algorithm
  2266. *
  2267. * Change algorithm from absolute to incremental
  2268. */
  2269. void ebpf_socket_update_cgroup_algorithm()
  2270. {
  2271. int i;
  2272. for (i = 0; i < NETDATA_MAX_SOCKET_VECTOR; i++) {
  2273. netdata_publish_syscall_t *ptr = &socket_publish_aggregated[i];
  2274. freez(ptr->algorithm);
  2275. ptr->algorithm = strdupz(ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX]);
  2276. }
  2277. }
  2278. /**
  2279. * Send data to Netdata calling auxiliary functions.
  2280. *
  2281. * @param update_every value to overwrite the update frequency set by the server.
  2282. */
  2283. static void ebpf_socket_send_cgroup_data(int update_every)
  2284. {
  2285. if (!ebpf_cgroup_pids)
  2286. return;
  2287. pthread_mutex_lock(&mutex_cgroup_shm);
  2288. ebpf_cgroup_target_t *ect;
  2289. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2290. ebpf_socket_sum_cgroup_pids(&ect->publish_socket, ect->pids);
  2291. }
  2292. int has_systemd = shm_ebpf_cgroup.header->systemd_enabled;
  2293. if (has_systemd) {
  2294. static int systemd_charts = 0;
  2295. if (!systemd_charts) {
  2296. ebpf_create_systemd_socket_charts(update_every);
  2297. systemd_charts = 1;
  2298. }
  2299. systemd_charts = ebpf_send_systemd_socket_charts();
  2300. }
  2301. for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) {
  2302. if (ect->systemd)
  2303. continue;
  2304. if (!(ect->flags & NETDATA_EBPF_CGROUP_HAS_SOCKET_CHART)) {
  2305. ebpf_create_specific_socket_charts(ect->name, update_every);
  2306. ect->flags |= NETDATA_EBPF_CGROUP_HAS_SOCKET_CHART;
  2307. }
  2308. if (ect->flags & NETDATA_EBPF_CGROUP_HAS_SOCKET_CHART && ect->updated) {
  2309. ebpf_send_specific_socket_data(ect->name, &ect->publish_socket);
  2310. } else {
  2311. ebpf_obsolete_specific_socket_charts(ect->name, update_every);
  2312. ect->flags &= ~NETDATA_EBPF_CGROUP_HAS_SOCKET_CHART;
  2313. }
  2314. }
  2315. pthread_mutex_unlock(&mutex_cgroup_shm);
  2316. }
  2317. /*****************************************************************
  2318. *
  2319. * FUNCTIONS WITH THE MAIN LOOP
  2320. *
  2321. *****************************************************************/
  2322. struct netdata_static_thread socket_threads = {"EBPF SOCKET READ",
  2323. NULL, NULL, 1, NULL,
  2324. NULL, ebpf_socket_read_hash };
  2325. /**
  2326. * Main loop for this collector.
  2327. *
  2328. * @param step the number of microseconds used with heart beat
  2329. * @param em the structure with thread information
  2330. */
  2331. static void socket_collector(usec_t step, ebpf_module_t *em)
  2332. {
  2333. UNUSED(step);
  2334. heartbeat_t hb;
  2335. heartbeat_init(&hb);
  2336. socket_threads.thread = mallocz(sizeof(netdata_thread_t));
  2337. netdata_thread_create(socket_threads.thread, socket_threads.name,
  2338. NETDATA_THREAD_OPTION_JOINABLE, ebpf_socket_read_hash, em);
  2339. int cgroups = em->cgroup_charts;
  2340. if (cgroups)
  2341. ebpf_socket_update_cgroup_algorithm();
  2342. int socket_apps_enabled = ebpf_modules[EBPF_MODULE_SOCKET_IDX].apps_charts;
  2343. int socket_global_enabled = ebpf_modules[EBPF_MODULE_SOCKET_IDX].global_charts;
  2344. int network_connection = em->optional;
  2345. int update_every = em->update_every;
  2346. int counter = update_every - 1;
  2347. while (!close_ebpf_plugin) {
  2348. pthread_mutex_lock(&collect_data_mutex);
  2349. pthread_cond_wait(&collect_data_cond_var, &collect_data_mutex);
  2350. if (++counter == update_every) {
  2351. counter = 0;
  2352. if (socket_global_enabled)
  2353. read_hash_global_tables();
  2354. if (socket_apps_enabled)
  2355. ebpf_socket_update_apps_data();
  2356. if (cgroups)
  2357. ebpf_update_socket_cgroup();
  2358. calculate_nv_plot();
  2359. pthread_mutex_lock(&lock);
  2360. if (socket_global_enabled)
  2361. ebpf_socket_send_data(em);
  2362. if (socket_apps_enabled)
  2363. ebpf_socket_send_apps_data(em, apps_groups_root_target);
  2364. if (cgroups)
  2365. ebpf_socket_send_cgroup_data(update_every);
  2366. fflush(stdout);
  2367. if (network_connection) {
  2368. // We are calling fflush many times, because when we have a lot of dimensions
  2369. // we began to have not expected outputs and Netdata closed the plugin.
  2370. pthread_mutex_lock(&nv_mutex);
  2371. ebpf_socket_create_nv_charts(&inbound_vectors, update_every);
  2372. fflush(stdout);
  2373. ebpf_socket_send_nv_data(&inbound_vectors);
  2374. ebpf_socket_create_nv_charts(&outbound_vectors, update_every);
  2375. fflush(stdout);
  2376. ebpf_socket_send_nv_data(&outbound_vectors);
  2377. wait_to_plot = 0;
  2378. pthread_mutex_unlock(&nv_mutex);
  2379. }
  2380. pthread_mutex_unlock(&lock);
  2381. }
  2382. pthread_mutex_unlock(&collect_data_mutex);
  2383. }
  2384. }
  2385. /*****************************************************************
  2386. *
  2387. * FUNCTIONS TO CLOSE THE THREAD
  2388. *
  2389. *****************************************************************/
  2390. /**
  2391. * Clean internal socket plot
  2392. *
  2393. * Clean all structures allocated with strdupz.
  2394. *
  2395. * @param ptr the pointer with addresses to clean.
  2396. */
  2397. static inline void clean_internal_socket_plot(netdata_socket_plot_t *ptr)
  2398. {
  2399. freez(ptr->dimension_recv);
  2400. freez(ptr->dimension_sent);
  2401. freez(ptr->resolved_name);
  2402. freez(ptr->dimension_retransmit);
  2403. }
  2404. /**
  2405. * Clean socket plot
  2406. *
  2407. * Clean the allocated data for inbound and outbound vectors.
  2408. */
  2409. static void clean_allocated_socket_plot()
  2410. {
  2411. uint32_t i;
  2412. uint32_t end = inbound_vectors.last;
  2413. netdata_socket_plot_t *plot = inbound_vectors.plot;
  2414. for (i = 0; i < end; i++) {
  2415. clean_internal_socket_plot(&plot[i]);
  2416. }
  2417. clean_internal_socket_plot(&plot[inbound_vectors.last]);
  2418. end = outbound_vectors.last;
  2419. plot = outbound_vectors.plot;
  2420. for (i = 0; i < end; i++) {
  2421. clean_internal_socket_plot(&plot[i]);
  2422. }
  2423. clean_internal_socket_plot(&plot[outbound_vectors.last]);
  2424. }
  2425. /**
  2426. * Clean network ports allocated during initialization.
  2427. *
  2428. * @param ptr a pointer to the link list.
  2429. */
  2430. static void clean_network_ports(ebpf_network_viewer_port_list_t *ptr)
  2431. {
  2432. if (unlikely(!ptr))
  2433. return;
  2434. while (ptr) {
  2435. ebpf_network_viewer_port_list_t *next = ptr->next;
  2436. freez(ptr->value);
  2437. freez(ptr);
  2438. ptr = next;
  2439. }
  2440. }
  2441. /**
  2442. * Clean service names
  2443. *
  2444. * Clean the allocated link list that stores names.
  2445. *
  2446. * @param names the link list.
  2447. */
  2448. static void clean_service_names(ebpf_network_viewer_dim_name_t *names)
  2449. {
  2450. if (unlikely(!names))
  2451. return;
  2452. while (names) {
  2453. ebpf_network_viewer_dim_name_t *next = names->next;
  2454. freez(names->name);
  2455. freez(names);
  2456. names = next;
  2457. }
  2458. }
  2459. /**
  2460. * Clean hostnames
  2461. *
  2462. * @param hostnames the hostnames to clean
  2463. */
  2464. static void clean_hostnames(ebpf_network_viewer_hostname_list_t *hostnames)
  2465. {
  2466. if (unlikely(!hostnames))
  2467. return;
  2468. while (hostnames) {
  2469. ebpf_network_viewer_hostname_list_t *next = hostnames->next;
  2470. freez(hostnames->value);
  2471. simple_pattern_free(hostnames->value_pattern);
  2472. freez(hostnames);
  2473. hostnames = next;
  2474. }
  2475. }
  2476. void clean_socket_apps_structures() {
  2477. struct pid_stat *pids = root_of_pids;
  2478. while (pids) {
  2479. freez(socket_bandwidth_curr[pids->pid]);
  2480. pids = pids->next;
  2481. }
  2482. }
  2483. /**
  2484. * Cleanup publish syscall
  2485. *
  2486. * @param nps list of structures to clean
  2487. */
  2488. void ebpf_cleanup_publish_syscall(netdata_publish_syscall_t *nps)
  2489. {
  2490. while (nps) {
  2491. freez(nps->algorithm);
  2492. nps = nps->next;
  2493. }
  2494. }
  2495. /**
  2496. * Clean port Structure
  2497. *
  2498. * Clean the allocated list.
  2499. *
  2500. * @param clean the list that will be cleaned
  2501. */
  2502. void clean_port_structure(ebpf_network_viewer_port_list_t **clean)
  2503. {
  2504. ebpf_network_viewer_port_list_t *move = *clean;
  2505. while (move) {
  2506. ebpf_network_viewer_port_list_t *next = move->next;
  2507. freez(move->value);
  2508. freez(move);
  2509. move = next;
  2510. }
  2511. *clean = NULL;
  2512. }
  2513. /**
  2514. * Clean IP structure
  2515. *
  2516. * Clean the allocated list.
  2517. *
  2518. * @param clean the list that will be cleaned
  2519. */
  2520. static void clean_ip_structure(ebpf_network_viewer_ip_list_t **clean)
  2521. {
  2522. ebpf_network_viewer_ip_list_t *move = *clean;
  2523. while (move) {
  2524. ebpf_network_viewer_ip_list_t *next = move->next;
  2525. freez(move->value);
  2526. freez(move);
  2527. move = next;
  2528. }
  2529. *clean = NULL;
  2530. }
  2531. /**
  2532. * Clean up the main thread.
  2533. *
  2534. * @param ptr thread data.
  2535. */
  2536. static void ebpf_socket_cleanup(void *ptr)
  2537. {
  2538. ebpf_module_t *em = (ebpf_module_t *)ptr;
  2539. if (!em->enabled)
  2540. return;
  2541. heartbeat_t hb;
  2542. heartbeat_init(&hb);
  2543. uint32_t tick = 2*USEC_PER_MS;
  2544. while (!read_thread_closed) {
  2545. usec_t dt = heartbeat_next(&hb, tick);
  2546. UNUSED(dt);
  2547. }
  2548. ebpf_cleanup_publish_syscall(socket_publish_aggregated);
  2549. freez(socket_hash_values);
  2550. freez(bandwidth_vector);
  2551. freez(socket_values);
  2552. clean_allocated_socket_plot();
  2553. freez(inbound_vectors.plot);
  2554. freez(outbound_vectors.plot);
  2555. clean_port_structure(&listen_ports);
  2556. ebpf_modules[EBPF_MODULE_SOCKET_IDX].enabled = 0;
  2557. clean_network_ports(network_viewer_opt.included_port);
  2558. clean_network_ports(network_viewer_opt.excluded_port);
  2559. clean_service_names(network_viewer_opt.names);
  2560. clean_hostnames(network_viewer_opt.included_hostnames);
  2561. clean_hostnames(network_viewer_opt.excluded_hostnames);
  2562. pthread_mutex_destroy(&nv_mutex);
  2563. freez(socket_threads.thread);
  2564. if (probe_links) {
  2565. struct bpf_program *prog;
  2566. size_t i = 0 ;
  2567. bpf_object__for_each_program(prog, objects) {
  2568. bpf_link__destroy(probe_links[i]);
  2569. i++;
  2570. }
  2571. bpf_object__close(objects);
  2572. }
  2573. finalized_threads = 1;
  2574. }
  2575. /*****************************************************************
  2576. *
  2577. * FUNCTIONS TO START THREAD
  2578. *
  2579. *****************************************************************/
  2580. /**
  2581. * Allocate vectors used with this thread.
  2582. * We are not testing the return, because callocz does this and shutdown the software
  2583. * case it was not possible to allocate.
  2584. *
  2585. * @param apps is apps enabled?
  2586. */
  2587. static void ebpf_socket_allocate_global_vectors(int apps)
  2588. {
  2589. memset(socket_aggregated_data, 0 ,NETDATA_MAX_SOCKET_VECTOR * sizeof(netdata_syscall_stat_t));
  2590. memset(socket_publish_aggregated, 0 ,NETDATA_MAX_SOCKET_VECTOR * sizeof(netdata_publish_syscall_t));
  2591. socket_hash_values = callocz(ebpf_nprocs, sizeof(netdata_idx_t));
  2592. if (apps)
  2593. socket_bandwidth_curr = callocz((size_t)pid_max, sizeof(ebpf_socket_publish_apps_t *));
  2594. bandwidth_vector = callocz((size_t)ebpf_nprocs, sizeof(ebpf_bandwidth_t));
  2595. socket_values = callocz((size_t)ebpf_nprocs, sizeof(netdata_socket_t));
  2596. inbound_vectors.plot = callocz(network_viewer_opt.max_dim, sizeof(netdata_socket_plot_t));
  2597. outbound_vectors.plot = callocz(network_viewer_opt.max_dim, sizeof(netdata_socket_plot_t));
  2598. }
  2599. /**
  2600. * Initialize Inbound and Outbound
  2601. *
  2602. * Initialize the common outbound and inbound sockets.
  2603. */
  2604. static void initialize_inbound_outbound()
  2605. {
  2606. inbound_vectors.last = network_viewer_opt.max_dim - 1;
  2607. outbound_vectors.last = inbound_vectors.last;
  2608. fill_last_nv_dimension(&inbound_vectors.plot[inbound_vectors.last], 0);
  2609. fill_last_nv_dimension(&outbound_vectors.plot[outbound_vectors.last], 1);
  2610. }
  2611. /*****************************************************************
  2612. *
  2613. * EBPF SOCKET THREAD
  2614. *
  2615. *****************************************************************/
  2616. /**
  2617. * Fill Port list
  2618. *
  2619. * @param out a pointer to the link list.
  2620. * @param in the structure that will be linked.
  2621. */
  2622. static inline void fill_port_list(ebpf_network_viewer_port_list_t **out, ebpf_network_viewer_port_list_t *in)
  2623. {
  2624. if (likely(*out)) {
  2625. ebpf_network_viewer_port_list_t *move = *out, *store = *out;
  2626. uint16_t first = ntohs(in->first);
  2627. uint16_t last = ntohs(in->last);
  2628. while (move) {
  2629. uint16_t cmp_first = ntohs(move->first);
  2630. uint16_t cmp_last = ntohs(move->last);
  2631. if (cmp_first <= first && first <= cmp_last &&
  2632. cmp_first <= last && last <= cmp_last ) {
  2633. info("The range/value (%u, %u) is inside the range/value (%u, %u) already inserted, it will be ignored.",
  2634. first, last, cmp_first, cmp_last);
  2635. freez(in->value);
  2636. freez(in);
  2637. return;
  2638. } else if (first <= cmp_first && cmp_first <= last &&
  2639. first <= cmp_last && cmp_last <= last) {
  2640. info("The range (%u, %u) is bigger than previous range (%u, %u) already inserted, the previous will be ignored.",
  2641. first, last, cmp_first, cmp_last);
  2642. freez(move->value);
  2643. move->value = in->value;
  2644. move->first = in->first;
  2645. move->last = in->last;
  2646. freez(in);
  2647. return;
  2648. }
  2649. store = move;
  2650. move = move->next;
  2651. }
  2652. store->next = in;
  2653. } else {
  2654. *out = in;
  2655. }
  2656. #ifdef NETDATA_INTERNAL_CHECKS
  2657. info("Adding values %s( %u, %u) to %s port list used on network viewer",
  2658. in->value, ntohs(in->first), ntohs(in->last),
  2659. (*out == network_viewer_opt.included_port)?"included":"excluded");
  2660. #endif
  2661. }
  2662. /**
  2663. * Parse Service List
  2664. *
  2665. * @param out a pointer to store the link list
  2666. * @param service the service used to create the structure that will be linked.
  2667. */
  2668. static void parse_service_list(void **out, char *service)
  2669. {
  2670. ebpf_network_viewer_port_list_t **list = (ebpf_network_viewer_port_list_t **)out;
  2671. struct servent *serv = getservbyname((const char *)service, "tcp");
  2672. if (!serv)
  2673. serv = getservbyname((const char *)service, "udp");
  2674. if (!serv) {
  2675. info("Cannot resolv the service '%s' with protocols TCP and UDP, it will be ignored", service);
  2676. return;
  2677. }
  2678. ebpf_network_viewer_port_list_t *w = callocz(1, sizeof(ebpf_network_viewer_port_list_t));
  2679. w->value = strdupz(service);
  2680. w->hash = simple_hash(service);
  2681. w->first = w->last = (uint16_t)serv->s_port;
  2682. fill_port_list(list, w);
  2683. }
  2684. /**
  2685. * Netmask
  2686. *
  2687. * Copied from iprange (https://github.com/firehol/iprange/blob/master/iprange.h)
  2688. *
  2689. * @param prefix create the netmask based in the CIDR value.
  2690. *
  2691. * @return
  2692. */
  2693. static inline in_addr_t netmask(int prefix) {
  2694. if (prefix == 0)
  2695. return (~((in_addr_t) - 1));
  2696. else
  2697. return (in_addr_t)(~((1 << (32 - prefix)) - 1));
  2698. }
  2699. /**
  2700. * Broadcast
  2701. *
  2702. * Copied from iprange (https://github.com/firehol/iprange/blob/master/iprange.h)
  2703. *
  2704. * @param addr is the ip address
  2705. * @param prefix is the CIDR value.
  2706. *
  2707. * @return It returns the last address of the range
  2708. */
  2709. static inline in_addr_t broadcast(in_addr_t addr, int prefix)
  2710. {
  2711. return (addr | ~netmask(prefix));
  2712. }
  2713. /**
  2714. * Network
  2715. *
  2716. * Copied from iprange (https://github.com/firehol/iprange/blob/master/iprange.h)
  2717. *
  2718. * @param addr is the ip address
  2719. * @param prefix is the CIDR value.
  2720. *
  2721. * @return It returns the first address of the range.
  2722. */
  2723. static inline in_addr_t ipv4_network(in_addr_t addr, int prefix)
  2724. {
  2725. return (addr & netmask(prefix));
  2726. }
  2727. /**
  2728. * IP to network long
  2729. *
  2730. * @param dst the vector to store the result
  2731. * @param ip the source ip given by our users.
  2732. * @param domain the ip domain (IPV4 or IPV6)
  2733. * @param source the original string
  2734. *
  2735. * @return it returns 0 on success and -1 otherwise.
  2736. */
  2737. static inline int ip2nl(uint8_t *dst, char *ip, int domain, char *source)
  2738. {
  2739. if (inet_pton(domain, ip, dst) <= 0) {
  2740. error("The address specified (%s) is invalid ", source);
  2741. return -1;
  2742. }
  2743. return 0;
  2744. }
  2745. /**
  2746. * Get IPV6 Last Address
  2747. *
  2748. * @param out the address to store the last address.
  2749. * @param in the address used to do the math.
  2750. * @param prefix number of bits used to calculate the address
  2751. */
  2752. static void get_ipv6_last_addr(union netdata_ip_t *out, union netdata_ip_t *in, uint64_t prefix)
  2753. {
  2754. uint64_t mask,tmp;
  2755. uint64_t ret[2];
  2756. memcpy(ret, in->addr32, sizeof(union netdata_ip_t));
  2757. if (prefix == 128) {
  2758. memcpy(out->addr32, in->addr32, sizeof(union netdata_ip_t));
  2759. return;
  2760. } else if (!prefix) {
  2761. ret[0] = ret[1] = 0xFFFFFFFFFFFFFFFF;
  2762. memcpy(out->addr32, ret, sizeof(union netdata_ip_t));
  2763. return;
  2764. } else if (prefix <= 64) {
  2765. ret[1] = 0xFFFFFFFFFFFFFFFFULL;
  2766. tmp = be64toh(ret[0]);
  2767. if (prefix > 0) {
  2768. mask = 0xFFFFFFFFFFFFFFFFULL << (64 - prefix);
  2769. tmp |= ~mask;
  2770. }
  2771. ret[0] = htobe64(tmp);
  2772. } else {
  2773. mask = 0xFFFFFFFFFFFFFFFFULL << (128 - prefix);
  2774. tmp = be64toh(ret[1]);
  2775. tmp |= ~mask;
  2776. ret[1] = htobe64(tmp);
  2777. }
  2778. memcpy(out->addr32, ret, sizeof(union netdata_ip_t));
  2779. }
  2780. /**
  2781. * Calculate ipv6 first address
  2782. *
  2783. * @param out the address to store the first address.
  2784. * @param in the address used to do the math.
  2785. * @param prefix number of bits used to calculate the address
  2786. */
  2787. static void get_ipv6_first_addr(union netdata_ip_t *out, union netdata_ip_t *in, uint64_t prefix)
  2788. {
  2789. uint64_t mask,tmp;
  2790. uint64_t ret[2];
  2791. memcpy(ret, in->addr32, sizeof(union netdata_ip_t));
  2792. if (prefix == 128) {
  2793. memcpy(out->addr32, in->addr32, sizeof(union netdata_ip_t));
  2794. return;
  2795. } else if (!prefix) {
  2796. ret[0] = ret[1] = 0;
  2797. memcpy(out->addr32, ret, sizeof(union netdata_ip_t));
  2798. return;
  2799. } else if (prefix <= 64) {
  2800. ret[1] = 0ULL;
  2801. tmp = be64toh(ret[0]);
  2802. if (prefix > 0) {
  2803. mask = 0xFFFFFFFFFFFFFFFFULL << (64 - prefix);
  2804. tmp &= mask;
  2805. }
  2806. ret[0] = htobe64(tmp);
  2807. } else {
  2808. mask = 0xFFFFFFFFFFFFFFFFULL << (128 - prefix);
  2809. tmp = be64toh(ret[1]);
  2810. tmp &= mask;
  2811. ret[1] = htobe64(tmp);
  2812. }
  2813. memcpy(out->addr32, ret, sizeof(union netdata_ip_t));
  2814. }
  2815. /**
  2816. * Is ip inside the range
  2817. *
  2818. * Check if the ip is inside a IP range
  2819. *
  2820. * @param rfirst the first ip address of the range
  2821. * @param rlast the last ip address of the range
  2822. * @param cmpfirst the first ip to compare
  2823. * @param cmplast the last ip to compare
  2824. * @param family the IP family
  2825. *
  2826. * @return It returns 1 if the IP is inside the range and 0 otherwise
  2827. */
  2828. static int is_ip_inside_range(union netdata_ip_t *rfirst, union netdata_ip_t *rlast,
  2829. union netdata_ip_t *cmpfirst, union netdata_ip_t *cmplast, int family)
  2830. {
  2831. if (family == AF_INET) {
  2832. if (ntohl(rfirst->addr32[0]) <= ntohl(cmpfirst->addr32[0]) &&
  2833. ntohl(rlast->addr32[0]) >= ntohl(cmplast->addr32[0]))
  2834. return 1;
  2835. } else {
  2836. if (memcmp(rfirst->addr8, cmpfirst->addr8, sizeof(union netdata_ip_t)) <= 0 &&
  2837. memcmp(rlast->addr8, cmplast->addr8, sizeof(union netdata_ip_t)) >= 0) {
  2838. return 1;
  2839. }
  2840. }
  2841. return 0;
  2842. }
  2843. /**
  2844. * Fill IP list
  2845. *
  2846. * @param out a pointer to the link list.
  2847. * @param in the structure that will be linked.
  2848. */
  2849. void fill_ip_list(ebpf_network_viewer_ip_list_t **out, ebpf_network_viewer_ip_list_t *in, char *table)
  2850. {
  2851. #ifndef NETDATA_INTERNAL_CHECKS
  2852. UNUSED(table);
  2853. #endif
  2854. if (likely(*out)) {
  2855. ebpf_network_viewer_ip_list_t *move = *out, *store = *out;
  2856. while (move) {
  2857. if (in->ver == move->ver && is_ip_inside_range(&move->first, &move->last, &in->first, &in->last, in->ver)) {
  2858. info("The range/value (%s) is inside the range/value (%s) already inserted, it will be ignored.",
  2859. in->value, move->value);
  2860. freez(in->value);
  2861. freez(in);
  2862. return;
  2863. }
  2864. store = move;
  2865. move = move->next;
  2866. }
  2867. store->next = in;
  2868. } else {
  2869. *out = in;
  2870. }
  2871. #ifdef NETDATA_INTERNAL_CHECKS
  2872. char first[512], last[512];
  2873. if (in->ver == AF_INET) {
  2874. if (inet_ntop(AF_INET, in->first.addr8, first, INET_ADDRSTRLEN) &&
  2875. inet_ntop(AF_INET, in->last.addr8, last, INET_ADDRSTRLEN))
  2876. info("Adding values %s - %s to %s IP list \"%s\" used on network viewer",
  2877. first, last,
  2878. (*out == network_viewer_opt.included_ips)?"included":"excluded",
  2879. table);
  2880. } else {
  2881. if (inet_ntop(AF_INET6, in->first.addr8, first, INET6_ADDRSTRLEN) &&
  2882. inet_ntop(AF_INET6, in->last.addr8, last, INET6_ADDRSTRLEN))
  2883. info("Adding values %s - %s to %s IP list \"%s\" used on network viewer",
  2884. first, last,
  2885. (*out == network_viewer_opt.included_ips)?"included":"excluded",
  2886. table);
  2887. }
  2888. #endif
  2889. }
  2890. /**
  2891. * Parse IP List
  2892. *
  2893. * Parse IP list and link it.
  2894. *
  2895. * @param out a pointer to store the link list
  2896. * @param ip the value given as parameter
  2897. */
  2898. static void parse_ip_list(void **out, char *ip)
  2899. {
  2900. ebpf_network_viewer_ip_list_t **list = (ebpf_network_viewer_ip_list_t **)out;
  2901. char *ipdup = strdupz(ip);
  2902. union netdata_ip_t first = { };
  2903. union netdata_ip_t last = { };
  2904. char *is_ipv6;
  2905. if (*ip == '*' && *(ip+1) == '\0') {
  2906. memset(first.addr8, 0, sizeof(first.addr8));
  2907. memset(last.addr8, 0xFF, sizeof(last.addr8));
  2908. is_ipv6 = ip;
  2909. clean_ip_structure(list);
  2910. goto storethisip;
  2911. }
  2912. char *end = ip;
  2913. // Move while I cannot find a separator
  2914. while (*end && *end != '/' && *end != '-') end++;
  2915. // We will use only the classic IPV6 for while, but we could consider the base 85 in a near future
  2916. // https://tools.ietf.org/html/rfc1924
  2917. is_ipv6 = strchr(ip, ':');
  2918. int select;
  2919. if (*end && !is_ipv6) { // IPV4 range
  2920. select = (*end == '/') ? 0 : 1;
  2921. *end++ = '\0';
  2922. if (*end == '!') {
  2923. info("The exclusion cannot be in the second part of the range %s, it will be ignored.", ipdup);
  2924. goto cleanipdup;
  2925. }
  2926. if (!select) { // CIDR
  2927. select = ip2nl(first.addr8, ip, AF_INET, ipdup);
  2928. if (select)
  2929. goto cleanipdup;
  2930. select = (int) str2i(end);
  2931. if (select < NETDATA_MINIMUM_IPV4_CIDR || select > NETDATA_MAXIMUM_IPV4_CIDR) {
  2932. info("The specified CIDR %s is not valid, the IP %s will be ignored.", end, ip);
  2933. goto cleanipdup;
  2934. }
  2935. last.addr32[0] = htonl(broadcast(ntohl(first.addr32[0]), select));
  2936. // This was added to remove
  2937. // https://app.codacy.com/manual/netdata/netdata/pullRequest?prid=5810941&bid=19021977
  2938. UNUSED(last.addr32[0]);
  2939. uint32_t ipv4_test = htonl(ipv4_network(ntohl(first.addr32[0]), select));
  2940. if (first.addr32[0] != ipv4_test) {
  2941. first.addr32[0] = ipv4_test;
  2942. struct in_addr ipv4_convert;
  2943. ipv4_convert.s_addr = ipv4_test;
  2944. char ipv4_msg[INET_ADDRSTRLEN];
  2945. if(inet_ntop(AF_INET, &ipv4_convert, ipv4_msg, INET_ADDRSTRLEN))
  2946. info("The network value of CIDR %s was updated for %s .", ipdup, ipv4_msg);
  2947. }
  2948. } else { // Range
  2949. select = ip2nl(first.addr8, ip, AF_INET, ipdup);
  2950. if (select)
  2951. goto cleanipdup;
  2952. select = ip2nl(last.addr8, end, AF_INET, ipdup);
  2953. if (select)
  2954. goto cleanipdup;
  2955. }
  2956. if (htonl(first.addr32[0]) > htonl(last.addr32[0])) {
  2957. info("The specified range %s is invalid, the second address is smallest than the first, it will be ignored.",
  2958. ipdup);
  2959. goto cleanipdup;
  2960. }
  2961. } else if (is_ipv6) { // IPV6
  2962. if (!*end) { // Unique
  2963. select = ip2nl(first.addr8, ip, AF_INET6, ipdup);
  2964. if (select)
  2965. goto cleanipdup;
  2966. memcpy(last.addr8, first.addr8, sizeof(first.addr8));
  2967. } else if (*end == '-') {
  2968. *end++ = 0x00;
  2969. if (*end == '!') {
  2970. info("The exclusion cannot be in the second part of the range %s, it will be ignored.", ipdup);
  2971. goto cleanipdup;
  2972. }
  2973. select = ip2nl(first.addr8, ip, AF_INET6, ipdup);
  2974. if (select)
  2975. goto cleanipdup;
  2976. select = ip2nl(last.addr8, end, AF_INET6, ipdup);
  2977. if (select)
  2978. goto cleanipdup;
  2979. } else { // CIDR
  2980. *end++ = 0x00;
  2981. if (*end == '!') {
  2982. info("The exclusion cannot be in the second part of the range %s, it will be ignored.", ipdup);
  2983. goto cleanipdup;
  2984. }
  2985. select = str2i(end);
  2986. if (select < 0 || select > 128) {
  2987. info("The CIDR %s is not valid, the address %s will be ignored.", end, ip);
  2988. goto cleanipdup;
  2989. }
  2990. uint64_t prefix = (uint64_t)select;
  2991. select = ip2nl(first.addr8, ip, AF_INET6, ipdup);
  2992. if (select)
  2993. goto cleanipdup;
  2994. get_ipv6_last_addr(&last, &first, prefix);
  2995. union netdata_ip_t ipv6_test;
  2996. get_ipv6_first_addr(&ipv6_test, &first, prefix);
  2997. if (memcmp(first.addr8, ipv6_test.addr8, sizeof(union netdata_ip_t)) != 0) {
  2998. memcpy(first.addr8, ipv6_test.addr8, sizeof(union netdata_ip_t));
  2999. struct in6_addr ipv6_convert;
  3000. memcpy(ipv6_convert.s6_addr, ipv6_test.addr8, sizeof(union netdata_ip_t));
  3001. char ipv6_msg[INET6_ADDRSTRLEN];
  3002. if(inet_ntop(AF_INET6, &ipv6_convert, ipv6_msg, INET6_ADDRSTRLEN))
  3003. info("The network value of CIDR %s was updated for %s .", ipdup, ipv6_msg);
  3004. }
  3005. }
  3006. if ((be64toh(*(uint64_t *)&first.addr32[2]) > be64toh(*(uint64_t *)&last.addr32[2]) &&
  3007. !memcmp(first.addr32, last.addr32, 2*sizeof(uint32_t))) ||
  3008. (be64toh(*(uint64_t *)&first.addr32) > be64toh(*(uint64_t *)&last.addr32)) ) {
  3009. info("The specified range %s is invalid, the second address is smallest than the first, it will be ignored.",
  3010. ipdup);
  3011. goto cleanipdup;
  3012. }
  3013. } else { // Unique ip
  3014. select = ip2nl(first.addr8, ip, AF_INET, ipdup);
  3015. if (select)
  3016. goto cleanipdup;
  3017. memcpy(last.addr8, first.addr8, sizeof(first.addr8));
  3018. }
  3019. ebpf_network_viewer_ip_list_t *store;
  3020. storethisip:
  3021. store = callocz(1, sizeof(ebpf_network_viewer_ip_list_t));
  3022. store->value = ipdup;
  3023. store->hash = simple_hash(ipdup);
  3024. store->ver = (uint8_t)(!is_ipv6)?AF_INET:AF_INET6;
  3025. memcpy(store->first.addr8, first.addr8, sizeof(first.addr8));
  3026. memcpy(store->last.addr8, last.addr8, sizeof(last.addr8));
  3027. fill_ip_list(list, store, "socket");
  3028. return;
  3029. cleanipdup:
  3030. freez(ipdup);
  3031. }
  3032. /**
  3033. * Parse IP Range
  3034. *
  3035. * Parse the IP ranges given and create Network Viewer IP Structure
  3036. *
  3037. * @param ptr is a pointer with the text to parse.
  3038. */
  3039. static void parse_ips(char *ptr)
  3040. {
  3041. // No value
  3042. if (unlikely(!ptr))
  3043. return;
  3044. while (likely(ptr)) {
  3045. // Move forward until next valid character
  3046. while (isspace(*ptr)) ptr++;
  3047. // No valid value found
  3048. if (unlikely(!*ptr))
  3049. return;
  3050. // Find space that ends the list
  3051. char *end = strchr(ptr, ' ');
  3052. if (end) {
  3053. *end++ = '\0';
  3054. }
  3055. int neg = 0;
  3056. if (*ptr == '!') {
  3057. neg++;
  3058. ptr++;
  3059. }
  3060. if (isascii(*ptr)) { // Parse port
  3061. parse_ip_list((!neg)?(void **)&network_viewer_opt.included_ips:(void **)&network_viewer_opt.excluded_ips,
  3062. ptr);
  3063. }
  3064. ptr = end;
  3065. }
  3066. }
  3067. /**
  3068. * Parse port list
  3069. *
  3070. * Parse an allocated port list with the range given
  3071. *
  3072. * @param out a pointer to store the link list
  3073. * @param range the informed range for the user.
  3074. */
  3075. static void parse_port_list(void **out, char *range)
  3076. {
  3077. int first, last;
  3078. ebpf_network_viewer_port_list_t **list = (ebpf_network_viewer_port_list_t **)out;
  3079. char *copied = strdupz(range);
  3080. if (*range == '*' && *(range+1) == '\0') {
  3081. first = 1;
  3082. last = 65535;
  3083. clean_port_structure(list);
  3084. goto fillenvpl;
  3085. }
  3086. char *end = range;
  3087. //Move while I cannot find a separator
  3088. while (*end && *end != ':' && *end != '-') end++;
  3089. //It has a range
  3090. if (likely(*end)) {
  3091. *end++ = '\0';
  3092. if (*end == '!') {
  3093. info("The exclusion cannot be in the second part of the range, the range %s will be ignored.", copied);
  3094. freez(copied);
  3095. return;
  3096. }
  3097. last = str2i((const char *)end);
  3098. } else {
  3099. last = 0;
  3100. }
  3101. first = str2i((const char *)range);
  3102. if (first < NETDATA_MINIMUM_PORT_VALUE || first > NETDATA_MAXIMUM_PORT_VALUE) {
  3103. info("The first port %d of the range \"%s\" is invalid and it will be ignored!", first, copied);
  3104. freez(copied);
  3105. return;
  3106. }
  3107. if (!last)
  3108. last = first;
  3109. if (last < NETDATA_MINIMUM_PORT_VALUE || last > NETDATA_MAXIMUM_PORT_VALUE) {
  3110. info("The second port %d of the range \"%s\" is invalid and the whole range will be ignored!", last, copied);
  3111. freez(copied);
  3112. return;
  3113. }
  3114. if (first > last) {
  3115. info("The specified order %s is wrong, the smallest value is always the first, it will be ignored!", copied);
  3116. freez(copied);
  3117. return;
  3118. }
  3119. ebpf_network_viewer_port_list_t *w;
  3120. fillenvpl:
  3121. w = callocz(1, sizeof(ebpf_network_viewer_port_list_t));
  3122. w->value = copied;
  3123. w->hash = simple_hash(copied);
  3124. w->first = (uint16_t)htons((uint16_t)first);
  3125. w->last = (uint16_t)htons((uint16_t)last);
  3126. w->cmp_first = (uint16_t)first;
  3127. w->cmp_last = (uint16_t)last;
  3128. fill_port_list(list, w);
  3129. }
  3130. /**
  3131. * Read max dimension.
  3132. *
  3133. * Netdata plot two dimensions per connection, so it is necessary to adjust the values.
  3134. *
  3135. * @param cfg the configuration structure
  3136. */
  3137. static void read_max_dimension(struct config *cfg)
  3138. {
  3139. int maxdim ;
  3140. maxdim = (int) appconfig_get_number(cfg,
  3141. EBPF_NETWORK_VIEWER_SECTION,
  3142. EBPF_MAXIMUM_DIMENSIONS,
  3143. NETDATA_NV_CAP_VALUE);
  3144. if (maxdim < 0) {
  3145. error("'maximum dimensions = %d' must be a positive number, Netdata will change for default value %ld.",
  3146. maxdim, NETDATA_NV_CAP_VALUE);
  3147. maxdim = NETDATA_NV_CAP_VALUE;
  3148. }
  3149. maxdim /= 2;
  3150. if (!maxdim) {
  3151. info("The number of dimensions is too small (%u), we are setting it to minimum 2", network_viewer_opt.max_dim);
  3152. network_viewer_opt.max_dim = 1;
  3153. return;
  3154. }
  3155. network_viewer_opt.max_dim = (uint32_t)maxdim;
  3156. }
  3157. /**
  3158. * Parse Port Range
  3159. *
  3160. * Parse the port ranges given and create Network Viewer Port Structure
  3161. *
  3162. * @param ptr is a pointer with the text to parse.
  3163. */
  3164. static void parse_ports(char *ptr)
  3165. {
  3166. // No value
  3167. if (unlikely(!ptr))
  3168. return;
  3169. while (likely(ptr)) {
  3170. // Move forward until next valid character
  3171. while (isspace(*ptr)) ptr++;
  3172. // No valid value found
  3173. if (unlikely(!*ptr))
  3174. return;
  3175. // Find space that ends the list
  3176. char *end = strchr(ptr, ' ');
  3177. if (end) {
  3178. *end++ = '\0';
  3179. }
  3180. int neg = 0;
  3181. if (*ptr == '!') {
  3182. neg++;
  3183. ptr++;
  3184. }
  3185. if (isdigit(*ptr)) { // Parse port
  3186. parse_port_list((!neg)?(void **)&network_viewer_opt.included_port:(void **)&network_viewer_opt.excluded_port,
  3187. ptr);
  3188. } else if (isalpha(*ptr)) { // Parse service
  3189. parse_service_list((!neg)?(void **)&network_viewer_opt.included_port:(void **)&network_viewer_opt.excluded_port,
  3190. ptr);
  3191. } else if (*ptr == '*') { // All
  3192. parse_port_list((!neg)?(void **)&network_viewer_opt.included_port:(void **)&network_viewer_opt.excluded_port,
  3193. ptr);
  3194. }
  3195. ptr = end;
  3196. }
  3197. }
  3198. /**
  3199. * Link hostname
  3200. *
  3201. * @param out is the output link list
  3202. * @param in the hostname to add to list.
  3203. */
  3204. static void link_hostname(ebpf_network_viewer_hostname_list_t **out, ebpf_network_viewer_hostname_list_t *in)
  3205. {
  3206. if (likely(*out)) {
  3207. ebpf_network_viewer_hostname_list_t *move = *out;
  3208. for (; move->next ; move = move->next ) {
  3209. if (move->hash == in->hash && !strcmp(move->value, in->value)) {
  3210. info("The hostname %s was already inserted, it will be ignored.", in->value);
  3211. freez(in->value);
  3212. simple_pattern_free(in->value_pattern);
  3213. freez(in);
  3214. return;
  3215. }
  3216. }
  3217. move->next = in;
  3218. } else {
  3219. *out = in;
  3220. }
  3221. #ifdef NETDATA_INTERNAL_CHECKS
  3222. info("Adding value %s to %s hostname list used on network viewer",
  3223. in->value,
  3224. (*out == network_viewer_opt.included_hostnames)?"included":"excluded");
  3225. #endif
  3226. }
  3227. /**
  3228. * Link Hostnames
  3229. *
  3230. * Parse the list of hostnames to create the link list.
  3231. * This is not associated with the IP, because simple patterns like *example* cannot be resolved to IP.
  3232. *
  3233. * @param out is the output link list
  3234. * @param parse is a pointer with the text to parser.
  3235. */
  3236. static void link_hostnames(char *parse)
  3237. {
  3238. // No value
  3239. if (unlikely(!parse))
  3240. return;
  3241. while (likely(parse)) {
  3242. // Find the first valid value
  3243. while (isspace(*parse)) parse++;
  3244. // No valid value found
  3245. if (unlikely(!*parse))
  3246. return;
  3247. // Find space that ends the list
  3248. char *end = strchr(parse, ' ');
  3249. if (end) {
  3250. *end++ = '\0';
  3251. }
  3252. int neg = 0;
  3253. if (*parse == '!') {
  3254. neg++;
  3255. parse++;
  3256. }
  3257. ebpf_network_viewer_hostname_list_t *hostname = callocz(1 , sizeof(ebpf_network_viewer_hostname_list_t));
  3258. hostname->value = strdupz(parse);
  3259. hostname->hash = simple_hash(parse);
  3260. hostname->value_pattern = simple_pattern_create(parse, NULL, SIMPLE_PATTERN_EXACT);
  3261. link_hostname((!neg)?&network_viewer_opt.included_hostnames:&network_viewer_opt.excluded_hostnames,
  3262. hostname);
  3263. parse = end;
  3264. }
  3265. }
  3266. /**
  3267. * Parse network viewer section
  3268. *
  3269. * @param cfg the configuration structure
  3270. */
  3271. void parse_network_viewer_section(struct config *cfg)
  3272. {
  3273. read_max_dimension(cfg);
  3274. network_viewer_opt.hostname_resolution_enabled = appconfig_get_boolean(cfg,
  3275. EBPF_NETWORK_VIEWER_SECTION,
  3276. EBPF_CONFIG_RESOLVE_HOSTNAME,
  3277. CONFIG_BOOLEAN_NO);
  3278. network_viewer_opt.service_resolution_enabled = appconfig_get_boolean(cfg,
  3279. EBPF_NETWORK_VIEWER_SECTION,
  3280. EBPF_CONFIG_RESOLVE_SERVICE,
  3281. CONFIG_BOOLEAN_NO);
  3282. char *value = appconfig_get(cfg, EBPF_NETWORK_VIEWER_SECTION, EBPF_CONFIG_PORTS, NULL);
  3283. parse_ports(value);
  3284. if (network_viewer_opt.hostname_resolution_enabled) {
  3285. value = appconfig_get(cfg, EBPF_NETWORK_VIEWER_SECTION, EBPF_CONFIG_HOSTNAMES, NULL);
  3286. link_hostnames(value);
  3287. } else {
  3288. info("Name resolution is disabled, collector will not parser \"hostnames\" list.");
  3289. }
  3290. value = appconfig_get(cfg, EBPF_NETWORK_VIEWER_SECTION,
  3291. "ips", "!127.0.0.1/8 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16 fc00::/7 !::1/128");
  3292. parse_ips(value);
  3293. }
  3294. /**
  3295. * Link dimension name
  3296. *
  3297. * Link user specified names inside a link list.
  3298. *
  3299. * @param port the port number associated to the dimension name.
  3300. * @param hash the calculated hash for the dimension name.
  3301. * @param name the dimension name.
  3302. */
  3303. static void link_dimension_name(char *port, uint32_t hash, char *value)
  3304. {
  3305. int test = str2i(port);
  3306. if (test < NETDATA_MINIMUM_PORT_VALUE || test > NETDATA_MAXIMUM_PORT_VALUE){
  3307. error("The dimension given (%s = %s) has an invalid value and it will be ignored.", port, value);
  3308. return;
  3309. }
  3310. ebpf_network_viewer_dim_name_t *w;
  3311. w = callocz(1, sizeof(ebpf_network_viewer_dim_name_t));
  3312. w->name = strdupz(value);
  3313. w->hash = hash;
  3314. w->port = (uint16_t) htons(test);
  3315. ebpf_network_viewer_dim_name_t *names = network_viewer_opt.names;
  3316. if (unlikely(!names)) {
  3317. network_viewer_opt.names = w;
  3318. } else {
  3319. for (; names->next; names = names->next) {
  3320. if (names->port == w->port) {
  3321. info("Duplicated definition for a service, the name %s will be ignored. ", names->name);
  3322. freez(names->name);
  3323. names->name = w->name;
  3324. names->hash = w->hash;
  3325. freez(w);
  3326. return;
  3327. }
  3328. }
  3329. names->next = w;
  3330. }
  3331. #ifdef NETDATA_INTERNAL_CHECKS
  3332. info("Adding values %s( %u) to dimension name list used on network viewer", w->name, htons(w->port));
  3333. #endif
  3334. }
  3335. /**
  3336. * Parse service Name section.
  3337. *
  3338. * This function gets the values that will be used to overwrite dimensions.
  3339. *
  3340. * @param cfg the configuration structure
  3341. */
  3342. void parse_service_name_section(struct config *cfg)
  3343. {
  3344. struct section *co = appconfig_get_section(cfg, EBPF_SERVICE_NAME_SECTION);
  3345. if (co) {
  3346. struct config_option *cv;
  3347. for (cv = co->values; cv ; cv = cv->next) {
  3348. link_dimension_name(cv->name, cv->hash, cv->value);
  3349. }
  3350. }
  3351. // Always associated the default port to Netdata
  3352. ebpf_network_viewer_dim_name_t *names = network_viewer_opt.names;
  3353. if (names) {
  3354. uint16_t default_port = htons(19999);
  3355. while (names) {
  3356. if (names->port == default_port)
  3357. return;
  3358. names = names->next;
  3359. }
  3360. }
  3361. char *port_string = getenv("NETDATA_LISTEN_PORT");
  3362. if (port_string) {
  3363. // if variable has an invalid value, we assume netdata is using 19999
  3364. int default_port = str2i(port_string);
  3365. if (default_port > 0 && default_port < 65536)
  3366. link_dimension_name(port_string, simple_hash(port_string), "Netdata");
  3367. }
  3368. }
  3369. void parse_table_size_options(struct config *cfg)
  3370. {
  3371. socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH].user_input = (uint32_t) appconfig_get_number(cfg,
  3372. EBPF_GLOBAL_SECTION,
  3373. EBPF_CONFIG_BANDWIDTH_SIZE, NETDATA_MAXIMUM_CONNECTIONS_ALLOWED);
  3374. socket_maps[NETDATA_SOCKET_TABLE_IPV4].user_input = (uint32_t) appconfig_get_number(cfg,
  3375. EBPF_GLOBAL_SECTION,
  3376. EBPF_CONFIG_IPV4_SIZE, NETDATA_MAXIMUM_CONNECTIONS_ALLOWED);
  3377. socket_maps[NETDATA_SOCKET_TABLE_IPV6].user_input = (uint32_t) appconfig_get_number(cfg,
  3378. EBPF_GLOBAL_SECTION,
  3379. EBPF_CONFIG_IPV6_SIZE, NETDATA_MAXIMUM_CONNECTIONS_ALLOWED);
  3380. socket_maps[NETDATA_SOCKET_TABLE_UDP].user_input = (uint32_t) appconfig_get_number(cfg,
  3381. EBPF_GLOBAL_SECTION,
  3382. EBPF_CONFIG_UDP_SIZE, NETDATA_MAXIMUM_UDP_CONNECTIONS_ALLOWED);
  3383. }
  3384. /*
  3385. * Load BPF
  3386. *
  3387. * Load BPF files.
  3388. *
  3389. * @param em the structure with configuration
  3390. */
  3391. static int ebpf_socket_load_bpf(ebpf_module_t *em)
  3392. {
  3393. int ret = 0;
  3394. if (em->load == EBPF_LOAD_LEGACY) {
  3395. probe_links = ebpf_load_program(ebpf_plugin_dir, em, running_on_kernel, isrh, &objects);
  3396. if (!probe_links) {
  3397. ret = -1;
  3398. }
  3399. }
  3400. #ifdef LIBBPF_MAJOR_VERSION
  3401. else {
  3402. bpf_obj = socket_bpf__open();
  3403. if (!bpf_obj)
  3404. ret = -1;
  3405. else
  3406. ret = ebpf_socket_load_and_attach(bpf_obj, em);
  3407. }
  3408. #endif
  3409. if (ret) {
  3410. error("%s %s", EBPF_DEFAULT_ERROR_MSG, em->thread_name);
  3411. }
  3412. return ret;
  3413. }
  3414. /**
  3415. * Socket thread
  3416. *
  3417. * Thread used to generate socket charts.
  3418. *
  3419. * @param ptr a pointer to `struct ebpf_module`
  3420. *
  3421. * @return It always return NULL
  3422. */
  3423. void *ebpf_socket_thread(void *ptr)
  3424. {
  3425. netdata_thread_cleanup_push(ebpf_socket_cleanup, ptr);
  3426. memset(&inbound_vectors.tree, 0, sizeof(avl_tree_lock));
  3427. memset(&outbound_vectors.tree, 0, sizeof(avl_tree_lock));
  3428. avl_init_lock(&inbound_vectors.tree, compare_sockets);
  3429. avl_init_lock(&outbound_vectors.tree, compare_sockets);
  3430. ebpf_module_t *em = (ebpf_module_t *)ptr;
  3431. em->maps = socket_maps;
  3432. parse_network_viewer_section(&socket_config);
  3433. parse_service_name_section(&socket_config);
  3434. parse_table_size_options(&socket_config);
  3435. if (!em->enabled)
  3436. goto endsocket;
  3437. if (pthread_mutex_init(&nv_mutex, NULL)) {
  3438. em->enabled = CONFIG_BOOLEAN_NO;
  3439. error("Cannot initialize local mutex");
  3440. goto endsocket;
  3441. }
  3442. pthread_mutex_lock(&lock);
  3443. ebpf_socket_allocate_global_vectors(em->apps_charts);
  3444. initialize_inbound_outbound();
  3445. if (running_on_kernel < NETDATA_EBPF_KERNEL_5_0)
  3446. em->mode = MODE_ENTRY;
  3447. #ifdef LIBBPF_MAJOR_VERSION
  3448. ebpf_adjust_thread_load(em, default_btf);
  3449. #endif
  3450. if (ebpf_socket_load_bpf(em)) {
  3451. em->enabled = CONFIG_BOOLEAN_NO;
  3452. pthread_mutex_unlock(&lock);
  3453. goto endsocket;
  3454. }
  3455. int algorithms[NETDATA_MAX_SOCKET_VECTOR] = {
  3456. NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX,
  3457. NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX,
  3458. NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_INCREMENTAL_IDX,
  3459. NETDATA_EBPF_INCREMENTAL_IDX
  3460. };
  3461. ebpf_global_labels(
  3462. socket_aggregated_data, socket_publish_aggregated, socket_dimension_names, socket_id_names,
  3463. algorithms, NETDATA_MAX_SOCKET_VECTOR);
  3464. ebpf_create_global_charts(em);
  3465. ebpf_update_stats(&plugin_statistics, em);
  3466. finalized_threads = 0;
  3467. pthread_mutex_unlock(&lock);
  3468. socket_collector((usec_t)(em->update_every * USEC_PER_SEC), em);
  3469. endsocket:
  3470. if (!em->enabled)
  3471. ebpf_update_disabled_plugin_stats(em);
  3472. netdata_thread_cleanup_pop(1);
  3473. return NULL;
  3474. }