ml.cc 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #include <dlib/clustering.h>
  3. #include "ml-private.h"
  4. #include <random>
  5. #include "ad_charts.h"
  6. #include "database/sqlite/sqlite3.h"
  7. #define ML_METADATA_VERSION 2
  8. #define WORKER_TRAIN_QUEUE_POP 0
  9. #define WORKER_TRAIN_ACQUIRE_DIMENSION 1
  10. #define WORKER_TRAIN_QUERY 2
  11. #define WORKER_TRAIN_KMEANS 3
  12. #define WORKER_TRAIN_UPDATE_MODELS 4
  13. #define WORKER_TRAIN_RELEASE_DIMENSION 5
  14. #define WORKER_TRAIN_UPDATE_HOST 6
  15. #define WORKER_TRAIN_FLUSH_MODELS 7
  16. static sqlite3 *db = NULL;
  17. static netdata_mutex_t db_mutex = NETDATA_MUTEX_INITIALIZER;
  18. /*
  19. * Functions to convert enums to strings
  20. */
  21. __attribute__((unused)) static const char *
  22. ml_machine_learning_status_to_string(enum ml_machine_learning_status mls)
  23. {
  24. switch (mls) {
  25. case MACHINE_LEARNING_STATUS_ENABLED:
  26. return "enabled";
  27. case MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART:
  28. return "disabled-sp";
  29. default:
  30. return "unknown";
  31. }
  32. }
  33. __attribute__((unused)) static const char *
  34. ml_metric_type_to_string(enum ml_metric_type mt)
  35. {
  36. switch (mt) {
  37. case METRIC_TYPE_CONSTANT:
  38. return "constant";
  39. case METRIC_TYPE_VARIABLE:
  40. return "variable";
  41. default:
  42. return "unknown";
  43. }
  44. }
  45. __attribute__((unused)) static const char *
  46. ml_training_status_to_string(enum ml_training_status ts)
  47. {
  48. switch (ts) {
  49. case TRAINING_STATUS_PENDING_WITH_MODEL:
  50. return "pending-with-model";
  51. case TRAINING_STATUS_PENDING_WITHOUT_MODEL:
  52. return "pending-without-model";
  53. case TRAINING_STATUS_TRAINED:
  54. return "trained";
  55. case TRAINING_STATUS_UNTRAINED:
  56. return "untrained";
  57. case TRAINING_STATUS_SILENCED:
  58. return "silenced";
  59. default:
  60. return "unknown";
  61. }
  62. }
  63. __attribute__((unused)) static const char *
  64. ml_training_result_to_string(enum ml_training_result tr)
  65. {
  66. switch (tr) {
  67. case TRAINING_RESULT_OK:
  68. return "ok";
  69. case TRAINING_RESULT_INVALID_QUERY_TIME_RANGE:
  70. return "invalid-query";
  71. case TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES:
  72. return "missing-values";
  73. case TRAINING_RESULT_NULL_ACQUIRED_DIMENSION:
  74. return "null-acquired-dim";
  75. case TRAINING_RESULT_CHART_UNDER_REPLICATION:
  76. return "chart-under-replication";
  77. default:
  78. return "unknown";
  79. }
  80. }
  81. /*
  82. * Features
  83. */
  84. // subtract elements that are `diff_n` positions apart
  85. static void
  86. ml_features_diff(ml_features_t *features)
  87. {
  88. if (features->diff_n == 0)
  89. return;
  90. for (size_t idx = 0; idx != (features->src_n - features->diff_n); idx++) {
  91. size_t high = (features->src_n - 1) - idx;
  92. size_t low = high - features->diff_n;
  93. features->dst[low] = features->src[high] - features->src[low];
  94. }
  95. size_t n = features->src_n - features->diff_n;
  96. memcpy(features->src, features->dst, n * sizeof(calculated_number_t));
  97. for (size_t idx = features->src_n - features->diff_n; idx != features->src_n; idx++)
  98. features->src[idx] = 0.0;
  99. }
  100. // a function that computes the window average of an array inplace
  101. static void
  102. ml_features_smooth(ml_features_t *features)
  103. {
  104. calculated_number_t sum = 0.0;
  105. size_t idx = 0;
  106. for (; idx != features->smooth_n - 1; idx++)
  107. sum += features->src[idx];
  108. for (; idx != (features->src_n - features->diff_n); idx++) {
  109. sum += features->src[idx];
  110. calculated_number_t prev_cn = features->src[idx - (features->smooth_n - 1)];
  111. features->src[idx - (features->smooth_n - 1)] = sum / features->smooth_n;
  112. sum -= prev_cn;
  113. }
  114. for (idx = 0; idx != features->smooth_n; idx++)
  115. features->src[(features->src_n - 1) - idx] = 0.0;
  116. }
  117. // create lag'd vectors out of the preprocessed buffer
  118. static void
  119. ml_features_lag(ml_features_t *features)
  120. {
  121. size_t n = features->src_n - features->diff_n - features->smooth_n + 1 - features->lag_n;
  122. features->preprocessed_features.resize(n);
  123. unsigned target_num_samples = Cfg.max_train_samples * Cfg.random_sampling_ratio;
  124. double sampling_ratio = std::min(static_cast<double>(target_num_samples) / n, 1.0);
  125. uint32_t max_mt = std::numeric_limits<uint32_t>::max();
  126. uint32_t cutoff = static_cast<double>(max_mt) * sampling_ratio;
  127. size_t sample_idx = 0;
  128. for (size_t idx = 0; idx != n; idx++) {
  129. DSample &DS = features->preprocessed_features[sample_idx++];
  130. DS.set_size(features->lag_n);
  131. if (Cfg.random_nums[idx] > cutoff) {
  132. sample_idx--;
  133. continue;
  134. }
  135. for (size_t feature_idx = 0; feature_idx != features->lag_n + 1; feature_idx++)
  136. DS(feature_idx) = features->src[idx + feature_idx];
  137. }
  138. features->preprocessed_features.resize(sample_idx);
  139. }
  140. static void
  141. ml_features_preprocess(ml_features_t *features)
  142. {
  143. ml_features_diff(features);
  144. ml_features_smooth(features);
  145. ml_features_lag(features);
  146. }
  147. /*
  148. * KMeans
  149. */
  150. static void
  151. ml_kmeans_init(ml_kmeans_t *kmeans)
  152. {
  153. kmeans->cluster_centers.reserve(2);
  154. kmeans->min_dist = std::numeric_limits<calculated_number_t>::max();
  155. kmeans->max_dist = std::numeric_limits<calculated_number_t>::min();
  156. }
  157. static void
  158. ml_kmeans_train(ml_kmeans_t *kmeans, const ml_features_t *features, time_t after, time_t before)
  159. {
  160. kmeans->after = (uint32_t) after;
  161. kmeans->before = (uint32_t) before;
  162. kmeans->min_dist = std::numeric_limits<calculated_number_t>::max();
  163. kmeans->max_dist = std::numeric_limits<calculated_number_t>::min();
  164. kmeans->cluster_centers.clear();
  165. dlib::pick_initial_centers(2, kmeans->cluster_centers, features->preprocessed_features);
  166. dlib::find_clusters_using_kmeans(features->preprocessed_features, kmeans->cluster_centers, Cfg.max_kmeans_iters);
  167. for (const auto &preprocessed_feature : features->preprocessed_features) {
  168. calculated_number_t mean_dist = 0.0;
  169. for (const auto &cluster_center : kmeans->cluster_centers) {
  170. mean_dist += dlib::length(cluster_center - preprocessed_feature);
  171. }
  172. mean_dist /= kmeans->cluster_centers.size();
  173. if (mean_dist < kmeans->min_dist)
  174. kmeans->min_dist = mean_dist;
  175. if (mean_dist > kmeans->max_dist)
  176. kmeans->max_dist = mean_dist;
  177. }
  178. }
  179. static calculated_number_t
  180. ml_kmeans_anomaly_score(const ml_kmeans_t *kmeans, const DSample &DS)
  181. {
  182. calculated_number_t mean_dist = 0.0;
  183. for (const auto &CC: kmeans->cluster_centers)
  184. mean_dist += dlib::length(CC - DS);
  185. mean_dist /= kmeans->cluster_centers.size();
  186. if (kmeans->max_dist == kmeans->min_dist)
  187. return 0.0;
  188. calculated_number_t anomaly_score = 100.0 * std::abs((mean_dist - kmeans->min_dist) / (kmeans->max_dist - kmeans->min_dist));
  189. return (anomaly_score > 100.0) ? 100.0 : anomaly_score;
  190. }
  191. /*
  192. * Queue
  193. */
  194. static ml_queue_t *
  195. ml_queue_init()
  196. {
  197. ml_queue_t *q = new ml_queue_t();
  198. netdata_mutex_init(&q->mutex);
  199. pthread_cond_init(&q->cond_var, NULL);
  200. q->exit = false;
  201. return q;
  202. }
  203. static void
  204. ml_queue_destroy(ml_queue_t *q)
  205. {
  206. netdata_mutex_destroy(&q->mutex);
  207. pthread_cond_destroy(&q->cond_var);
  208. delete q;
  209. }
  210. static void
  211. ml_queue_push(ml_queue_t *q, const ml_training_request_t req)
  212. {
  213. netdata_mutex_lock(&q->mutex);
  214. q->internal.push(req);
  215. pthread_cond_signal(&q->cond_var);
  216. netdata_mutex_unlock(&q->mutex);
  217. }
  218. static ml_training_request_t
  219. ml_queue_pop(ml_queue_t *q)
  220. {
  221. netdata_mutex_lock(&q->mutex);
  222. ml_training_request_t req = {
  223. {'\0'}, // machine_guid
  224. NULL, // chart id
  225. NULL, // dimension id
  226. 0, // current time
  227. 0, // first entry
  228. 0 // last entry
  229. };
  230. while (q->internal.empty()) {
  231. pthread_cond_wait(&q->cond_var, &q->mutex);
  232. if (q->exit) {
  233. netdata_mutex_unlock(&q->mutex);
  234. // We return a dummy request because the queue has been signaled
  235. return req;
  236. }
  237. }
  238. req = q->internal.front();
  239. q->internal.pop();
  240. netdata_mutex_unlock(&q->mutex);
  241. return req;
  242. }
  243. static size_t
  244. ml_queue_size(ml_queue_t *q)
  245. {
  246. netdata_mutex_lock(&q->mutex);
  247. size_t size = q->internal.size();
  248. netdata_mutex_unlock(&q->mutex);
  249. return size;
  250. }
  251. static void
  252. ml_queue_signal(ml_queue_t *q)
  253. {
  254. netdata_mutex_lock(&q->mutex);
  255. q->exit = true;
  256. pthread_cond_signal(&q->cond_var);
  257. netdata_mutex_unlock(&q->mutex);
  258. }
  259. /*
  260. * Dimension
  261. */
  262. static std::pair<calculated_number_t *, ml_training_response_t>
  263. ml_dimension_calculated_numbers(ml_training_thread_t *training_thread, ml_dimension_t *dim, const ml_training_request_t &training_request)
  264. {
  265. ml_training_response_t training_response = {};
  266. training_response.request_time = training_request.request_time;
  267. training_response.first_entry_on_request = training_request.first_entry_on_request;
  268. training_response.last_entry_on_request = training_request.last_entry_on_request;
  269. training_response.first_entry_on_response = rrddim_first_entry_s_of_tier(dim->rd, 0);
  270. training_response.last_entry_on_response = rrddim_last_entry_s_of_tier(dim->rd, 0);
  271. size_t min_n = Cfg.min_train_samples;
  272. size_t max_n = Cfg.max_train_samples;
  273. // Figure out what our time window should be.
  274. training_response.query_before_t = training_response.last_entry_on_response;
  275. training_response.query_after_t = std::max(
  276. training_response.query_before_t - static_cast<time_t>((max_n - 1) * dim->rd->rrdset->update_every),
  277. training_response.first_entry_on_response
  278. );
  279. if (training_response.query_after_t >= training_response.query_before_t) {
  280. training_response.result = TRAINING_RESULT_INVALID_QUERY_TIME_RANGE;
  281. return { NULL, training_response };
  282. }
  283. if (rrdset_is_replicating(dim->rd->rrdset)) {
  284. training_response.result = TRAINING_RESULT_CHART_UNDER_REPLICATION;
  285. return { NULL, training_response };
  286. }
  287. /*
  288. * Execute the query
  289. */
  290. struct storage_engine_query_handle handle;
  291. storage_engine_query_init(dim->rd->tiers[0].seb, dim->rd->tiers[0].smh, &handle,
  292. training_response.query_after_t, training_response.query_before_t,
  293. STORAGE_PRIORITY_BEST_EFFORT);
  294. size_t idx = 0;
  295. memset(training_thread->training_cns, 0, sizeof(calculated_number_t) * max_n * (Cfg.lag_n + 1));
  296. calculated_number_t last_value = std::numeric_limits<calculated_number_t>::quiet_NaN();
  297. while (!storage_engine_query_is_finished(&handle)) {
  298. if (idx == max_n)
  299. break;
  300. STORAGE_POINT sp = storage_engine_query_next_metric(&handle);
  301. time_t timestamp = sp.end_time_s;
  302. calculated_number_t value = sp.sum / sp.count;
  303. if (netdata_double_isnumber(value)) {
  304. if (!training_response.db_after_t)
  305. training_response.db_after_t = timestamp;
  306. training_response.db_before_t = timestamp;
  307. training_thread->training_cns[idx] = value;
  308. last_value = training_thread->training_cns[idx];
  309. training_response.collected_values++;
  310. } else
  311. training_thread->training_cns[idx] = last_value;
  312. idx++;
  313. }
  314. storage_engine_query_finalize(&handle);
  315. global_statistics_ml_query_completed(/* points_read */ idx);
  316. training_response.total_values = idx;
  317. if (training_response.collected_values < min_n) {
  318. training_response.result = TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES;
  319. return { NULL, training_response };
  320. }
  321. // Find first non-NaN value.
  322. for (idx = 0; std::isnan(training_thread->training_cns[idx]); idx++, training_response.total_values--) { }
  323. // Overwrite NaN values.
  324. if (idx != 0)
  325. memmove(training_thread->training_cns, &training_thread->training_cns[idx], sizeof(calculated_number_t) * training_response.total_values);
  326. training_response.result = TRAINING_RESULT_OK;
  327. return { training_thread->training_cns, training_response };
  328. }
  329. const char *db_models_create_table =
  330. "CREATE TABLE IF NOT EXISTS models("
  331. " dim_id BLOB, after INT, before INT,"
  332. " min_dist REAL, max_dist REAL,"
  333. " c00 REAL, c01 REAL, c02 REAL, c03 REAL, c04 REAL, c05 REAL,"
  334. " c10 REAL, c11 REAL, c12 REAL, c13 REAL, c14 REAL, c15 REAL,"
  335. " PRIMARY KEY(dim_id, after)"
  336. ");";
  337. const char *db_models_add_model =
  338. "INSERT OR REPLACE INTO models("
  339. " dim_id, after, before,"
  340. " min_dist, max_dist,"
  341. " c00, c01, c02, c03, c04, c05,"
  342. " c10, c11, c12, c13, c14, c15)"
  343. "VALUES("
  344. " @dim_id, @after, @before,"
  345. " @min_dist, @max_dist,"
  346. " @c00, @c01, @c02, @c03, @c04, @c05,"
  347. " @c10, @c11, @c12, @c13, @c14, @c15);";
  348. const char *db_models_load =
  349. "SELECT * FROM models "
  350. "WHERE dim_id = @dim_id AND after >= @after ORDER BY before ASC;";
  351. const char *db_models_delete =
  352. "DELETE FROM models "
  353. "WHERE dim_id = @dim_id AND before < @before;";
  354. const char *db_models_prune =
  355. "DELETE FROM models "
  356. "WHERE after < @after LIMIT @n;";
  357. static int
  358. ml_dimension_add_model(const uuid_t *metric_uuid, const ml_kmeans_t *km)
  359. {
  360. static __thread sqlite3_stmt *res = NULL;
  361. int param = 0;
  362. int rc = 0;
  363. if (unlikely(!db)) {
  364. error_report("Database has not been initialized");
  365. return 1;
  366. }
  367. if (unlikely(!res)) {
  368. rc = prepare_statement(db, db_models_add_model, &res);
  369. if (unlikely(rc != SQLITE_OK)) {
  370. error_report("Failed to prepare statement to store model, rc = %d", rc);
  371. return 1;
  372. }
  373. }
  374. rc = sqlite3_bind_blob(res, ++param, metric_uuid, sizeof(*metric_uuid), SQLITE_STATIC);
  375. if (unlikely(rc != SQLITE_OK))
  376. goto bind_fail;
  377. rc = sqlite3_bind_int(res, ++param, (int) km->after);
  378. if (unlikely(rc != SQLITE_OK))
  379. goto bind_fail;
  380. rc = sqlite3_bind_int(res, ++param, (int) km->before);
  381. if (unlikely(rc != SQLITE_OK))
  382. goto bind_fail;
  383. rc = sqlite3_bind_double(res, ++param, km->min_dist);
  384. if (unlikely(rc != SQLITE_OK))
  385. goto bind_fail;
  386. rc = sqlite3_bind_double(res, ++param, km->max_dist);
  387. if (unlikely(rc != SQLITE_OK))
  388. goto bind_fail;
  389. if (km->cluster_centers.size() != 2)
  390. fatal("Expected 2 cluster centers, got %zu", km->cluster_centers.size());
  391. for (const DSample &ds : km->cluster_centers) {
  392. if (ds.size() != 6)
  393. fatal("Expected dsample with 6 dimensions, got %ld", ds.size());
  394. for (long idx = 0; idx != ds.size(); idx++) {
  395. calculated_number_t cn = ds(idx);
  396. int rc = sqlite3_bind_double(res, ++param, cn);
  397. if (unlikely(rc != SQLITE_OK))
  398. goto bind_fail;
  399. }
  400. }
  401. rc = execute_insert(res);
  402. if (unlikely(rc != SQLITE_DONE)) {
  403. error_report("Failed to store model, rc = %d", rc);
  404. return rc;
  405. }
  406. rc = sqlite3_reset(res);
  407. if (unlikely(rc != SQLITE_OK)) {
  408. error_report("Failed to reset statement when storing model, rc = %d", rc);
  409. return rc;
  410. }
  411. return 0;
  412. bind_fail:
  413. error_report("Failed to bind parameter %d to store model, rc = %d", param, rc);
  414. rc = sqlite3_reset(res);
  415. if (unlikely(rc != SQLITE_OK))
  416. error_report("Failed to reset statement to store model, rc = %d", rc);
  417. return rc;
  418. }
  419. static int
  420. ml_dimension_delete_models(const uuid_t *metric_uuid, time_t before)
  421. {
  422. static __thread sqlite3_stmt *res = NULL;
  423. int rc = 0;
  424. int param = 0;
  425. if (unlikely(!db)) {
  426. error_report("Database has not been initialized");
  427. return 1;
  428. }
  429. if (unlikely(!res)) {
  430. rc = prepare_statement(db, db_models_delete, &res);
  431. if (unlikely(rc != SQLITE_OK)) {
  432. error_report("Failed to prepare statement to delete models, rc = %d", rc);
  433. return rc;
  434. }
  435. }
  436. rc = sqlite3_bind_blob(res, ++param, metric_uuid, sizeof(*metric_uuid), SQLITE_STATIC);
  437. if (unlikely(rc != SQLITE_OK))
  438. goto bind_fail;
  439. rc = sqlite3_bind_int(res, ++param, (int) before);
  440. if (unlikely(rc != SQLITE_OK))
  441. goto bind_fail;
  442. rc = execute_insert(res);
  443. if (unlikely(rc != SQLITE_DONE)) {
  444. error_report("Failed to delete models, rc = %d", rc);
  445. return rc;
  446. }
  447. rc = sqlite3_reset(res);
  448. if (unlikely(rc != SQLITE_OK)) {
  449. error_report("Failed to reset statement when deleting models, rc = %d", rc);
  450. return rc;
  451. }
  452. return 0;
  453. bind_fail:
  454. error_report("Failed to bind parameter %d to delete models, rc = %d", param, rc);
  455. rc = sqlite3_reset(res);
  456. if (unlikely(rc != SQLITE_OK))
  457. error_report("Failed to reset statement to delete models, rc = %d", rc);
  458. return rc;
  459. }
  460. static int
  461. ml_prune_old_models(size_t num_models_to_prune)
  462. {
  463. static __thread sqlite3_stmt *res = NULL;
  464. int rc = 0;
  465. int param = 0;
  466. if (unlikely(!db)) {
  467. error_report("Database has not been initialized");
  468. return 1;
  469. }
  470. if (unlikely(!res)) {
  471. rc = prepare_statement(db, db_models_prune, &res);
  472. if (unlikely(rc != SQLITE_OK)) {
  473. error_report("Failed to prepare statement to prune models, rc = %d", rc);
  474. return rc;
  475. }
  476. }
  477. int after = (int) (now_realtime_sec() - Cfg.delete_models_older_than);
  478. rc = sqlite3_bind_int(res, ++param, after);
  479. if (unlikely(rc != SQLITE_OK))
  480. goto bind_fail;
  481. rc = sqlite3_bind_int(res, ++param, num_models_to_prune);
  482. if (unlikely(rc != SQLITE_OK))
  483. goto bind_fail;
  484. rc = execute_insert(res);
  485. if (unlikely(rc != SQLITE_DONE)) {
  486. error_report("Failed to prune old models, rc = %d", rc);
  487. return rc;
  488. }
  489. rc = sqlite3_reset(res);
  490. if (unlikely(rc != SQLITE_OK)) {
  491. error_report("Failed to reset statement when pruning old models, rc = %d", rc);
  492. return rc;
  493. }
  494. return 0;
  495. bind_fail:
  496. error_report("Failed to bind parameter %d to prune old models, rc = %d", param, rc);
  497. rc = sqlite3_reset(res);
  498. if (unlikely(rc != SQLITE_OK))
  499. error_report("Failed to reset statement to prune old models, rc = %d", rc);
  500. return rc;
  501. }
  502. int ml_dimension_load_models(RRDDIM *rd, sqlite3_stmt **active_stmt) {
  503. ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
  504. if (!dim)
  505. return 0;
  506. spinlock_lock(&dim->slock);
  507. bool is_empty = dim->km_contexts.empty();
  508. spinlock_unlock(&dim->slock);
  509. if (!is_empty)
  510. return 0;
  511. std::vector<ml_kmeans_t> V;
  512. sqlite3_stmt *res = active_stmt ? *active_stmt : NULL;
  513. int rc = 0;
  514. int param = 0;
  515. if (unlikely(!db)) {
  516. error_report("Database has not been initialized");
  517. return 1;
  518. }
  519. if (unlikely(!res)) {
  520. rc = sqlite3_prepare_v2(db, db_models_load, -1, &res, NULL);
  521. if (unlikely(rc != SQLITE_OK)) {
  522. error_report("Failed to prepare statement to load models, rc = %d", rc);
  523. return 1;
  524. }
  525. if (active_stmt)
  526. *active_stmt = res;
  527. }
  528. rc = sqlite3_bind_blob(res, ++param, &dim->rd->metric_uuid, sizeof(dim->rd->metric_uuid), SQLITE_STATIC);
  529. if (unlikely(rc != SQLITE_OK))
  530. goto bind_fail;
  531. rc = sqlite3_bind_int64(res, ++param, now_realtime_sec() - (Cfg.num_models_to_use * Cfg.max_train_samples));
  532. if (unlikely(rc != SQLITE_OK))
  533. goto bind_fail;
  534. spinlock_lock(&dim->slock);
  535. dim->km_contexts.reserve(Cfg.num_models_to_use);
  536. while ((rc = sqlite3_step_monitored(res)) == SQLITE_ROW) {
  537. ml_kmeans_t km;
  538. km.after = sqlite3_column_int(res, 2);
  539. km.before = sqlite3_column_int(res, 3);
  540. km.min_dist = sqlite3_column_int(res, 4);
  541. km.max_dist = sqlite3_column_int(res, 5);
  542. km.cluster_centers.resize(2);
  543. km.cluster_centers[0].set_size(Cfg.lag_n + 1);
  544. km.cluster_centers[0](0) = sqlite3_column_double(res, 6);
  545. km.cluster_centers[0](1) = sqlite3_column_double(res, 7);
  546. km.cluster_centers[0](2) = sqlite3_column_double(res, 8);
  547. km.cluster_centers[0](3) = sqlite3_column_double(res, 9);
  548. km.cluster_centers[0](4) = sqlite3_column_double(res, 10);
  549. km.cluster_centers[0](5) = sqlite3_column_double(res, 11);
  550. km.cluster_centers[1].set_size(Cfg.lag_n + 1);
  551. km.cluster_centers[1](0) = sqlite3_column_double(res, 12);
  552. km.cluster_centers[1](1) = sqlite3_column_double(res, 13);
  553. km.cluster_centers[1](2) = sqlite3_column_double(res, 14);
  554. km.cluster_centers[1](3) = sqlite3_column_double(res, 15);
  555. km.cluster_centers[1](4) = sqlite3_column_double(res, 16);
  556. km.cluster_centers[1](5) = sqlite3_column_double(res, 17);
  557. dim->km_contexts.push_back(km);
  558. }
  559. if (!dim->km_contexts.empty()) {
  560. dim->ts = TRAINING_STATUS_TRAINED;
  561. }
  562. spinlock_unlock(&dim->slock);
  563. if (unlikely(rc != SQLITE_DONE))
  564. error_report("Failed to load models, rc = %d", rc);
  565. if (active_stmt)
  566. rc = sqlite3_reset(res);
  567. else
  568. rc = sqlite3_finalize(res);
  569. if (unlikely(rc != SQLITE_OK))
  570. error_report("Failed to %s statement when loading models, rc = %d", active_stmt ? "reset" : "finalize", rc);
  571. return 0;
  572. bind_fail:
  573. error_report("Failed to bind parameter %d to load models, rc = %d", param, rc);
  574. rc = sqlite3_reset(res);
  575. if (unlikely(rc != SQLITE_OK))
  576. error_report("Failed to reset statement to load models, rc = %d", rc);
  577. return 1;
  578. }
  579. static enum ml_training_result
  580. ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *dim, const ml_training_request_t &training_request)
  581. {
  582. worker_is_busy(WORKER_TRAIN_QUERY);
  583. auto P = ml_dimension_calculated_numbers(training_thread, dim, training_request);
  584. ml_training_response_t training_response = P.second;
  585. if (training_response.result != TRAINING_RESULT_OK) {
  586. spinlock_lock(&dim->slock);
  587. dim->mt = METRIC_TYPE_CONSTANT;
  588. switch (dim->ts) {
  589. case TRAINING_STATUS_PENDING_WITH_MODEL:
  590. dim->ts = TRAINING_STATUS_TRAINED;
  591. break;
  592. case TRAINING_STATUS_PENDING_WITHOUT_MODEL:
  593. dim->ts = TRAINING_STATUS_UNTRAINED;
  594. break;
  595. default:
  596. break;
  597. }
  598. dim->suppression_anomaly_counter = 0;
  599. dim->suppression_window_counter = 0;
  600. dim->tr = training_response;
  601. dim->last_training_time = training_response.last_entry_on_response;
  602. enum ml_training_result result = training_response.result;
  603. spinlock_unlock(&dim->slock);
  604. return result;
  605. }
  606. // compute kmeans
  607. worker_is_busy(WORKER_TRAIN_KMEANS);
  608. {
  609. memcpy(training_thread->scratch_training_cns, training_thread->training_cns,
  610. training_response.total_values * sizeof(calculated_number_t));
  611. ml_features_t features = {
  612. Cfg.diff_n, Cfg.smooth_n, Cfg.lag_n,
  613. training_thread->scratch_training_cns, training_response.total_values,
  614. training_thread->training_cns, training_response.total_values,
  615. training_thread->training_samples
  616. };
  617. ml_features_preprocess(&features);
  618. ml_kmeans_init(&dim->kmeans);
  619. ml_kmeans_train(&dim->kmeans, &features, training_response.query_after_t, training_response.query_before_t);
  620. }
  621. // update models
  622. worker_is_busy(WORKER_TRAIN_UPDATE_MODELS);
  623. {
  624. spinlock_lock(&dim->slock);
  625. if (dim->km_contexts.size() < Cfg.num_models_to_use) {
  626. dim->km_contexts.push_back(std::move(dim->kmeans));
  627. } else {
  628. bool can_drop_middle_km = false;
  629. if (Cfg.num_models_to_use > 2) {
  630. const ml_kmeans_t *old_km = &dim->km_contexts[dim->km_contexts.size() - 1];
  631. const ml_kmeans_t *middle_km = &dim->km_contexts[dim->km_contexts.size() - 2];
  632. const ml_kmeans_t *new_km = &dim->kmeans;
  633. can_drop_middle_km = (middle_km->after < old_km->before) &&
  634. (middle_km->before > new_km->after);
  635. }
  636. if (can_drop_middle_km) {
  637. dim->km_contexts.back() = dim->kmeans;
  638. } else {
  639. std::rotate(std::begin(dim->km_contexts), std::begin(dim->km_contexts) + 1, std::end(dim->km_contexts));
  640. dim->km_contexts[dim->km_contexts.size() - 1] = std::move(dim->kmeans);
  641. }
  642. }
  643. dim->mt = METRIC_TYPE_CONSTANT;
  644. dim->ts = TRAINING_STATUS_TRAINED;
  645. dim->suppression_anomaly_counter = 0;
  646. dim->suppression_window_counter = 0;
  647. dim->tr = training_response;
  648. dim->last_training_time = rrddim_last_entry_s(dim->rd);
  649. // Add the newly generated model to the list of pending models to flush
  650. ml_model_info_t model_info;
  651. uuid_copy(model_info.metric_uuid, dim->rd->metric_uuid);
  652. model_info.kmeans = dim->km_contexts.back();
  653. training_thread->pending_model_info.push_back(model_info);
  654. spinlock_unlock(&dim->slock);
  655. }
  656. return training_response.result;
  657. }
  658. static void
  659. ml_dimension_schedule_for_training(ml_dimension_t *dim, time_t curr_time)
  660. {
  661. switch (dim->mt) {
  662. case METRIC_TYPE_CONSTANT:
  663. return;
  664. default:
  665. break;
  666. }
  667. bool schedule_for_training = false;
  668. switch (dim->ts) {
  669. case TRAINING_STATUS_PENDING_WITH_MODEL:
  670. case TRAINING_STATUS_PENDING_WITHOUT_MODEL:
  671. schedule_for_training = false;
  672. break;
  673. case TRAINING_STATUS_UNTRAINED:
  674. schedule_for_training = true;
  675. dim->ts = TRAINING_STATUS_PENDING_WITHOUT_MODEL;
  676. break;
  677. case TRAINING_STATUS_SILENCED:
  678. case TRAINING_STATUS_TRAINED:
  679. if ((dim->last_training_time + (Cfg.train_every * dim->rd->rrdset->update_every)) < curr_time) {
  680. schedule_for_training = true;
  681. dim->ts = TRAINING_STATUS_PENDING_WITH_MODEL;
  682. }
  683. break;
  684. }
  685. if (schedule_for_training) {
  686. ml_training_request_t req;
  687. memcpy(req.machine_guid, dim->rd->rrdset->rrdhost->machine_guid, GUID_LEN + 1);
  688. req.chart_id = string_dup(dim->rd->rrdset->id);
  689. req.dimension_id = string_dup(dim->rd->id);
  690. req.request_time = curr_time;
  691. req.first_entry_on_request = rrddim_first_entry_s(dim->rd);
  692. req.last_entry_on_request = rrddim_last_entry_s(dim->rd);
  693. ml_host_t *host = (ml_host_t *) dim->rd->rrdset->rrdhost->ml_host;
  694. ml_queue_push(host->training_queue, req);
  695. }
  696. }
  697. static bool
  698. ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t value, bool exists)
  699. {
  700. // Nothing to do if ML is disabled for this dimension
  701. if (dim->mls != MACHINE_LEARNING_STATUS_ENABLED)
  702. return false;
  703. // Don't treat values that don't exist as anomalous
  704. if (!exists) {
  705. dim->cns.clear();
  706. return false;
  707. }
  708. // Save the value and return if we don't have enough values for a sample
  709. unsigned n = Cfg.diff_n + Cfg.smooth_n + Cfg.lag_n;
  710. if (dim->cns.size() < n) {
  711. dim->cns.push_back(value);
  712. return false;
  713. }
  714. // Push the value and check if it's different from the last one
  715. bool same_value = true;
  716. std::rotate(std::begin(dim->cns), std::begin(dim->cns) + 1, std::end(dim->cns));
  717. if (dim->cns[n - 1] != value)
  718. same_value = false;
  719. dim->cns[n - 1] = value;
  720. // Create the sample
  721. assert((n * (Cfg.lag_n + 1) <= 128) &&
  722. "Static buffers too small to perform prediction. "
  723. "This should not be possible with the default clamping of feature extraction options");
  724. calculated_number_t src_cns[128];
  725. calculated_number_t dst_cns[128];
  726. memset(src_cns, 0, n * (Cfg.lag_n + 1) * sizeof(calculated_number_t));
  727. memcpy(src_cns, dim->cns.data(), n * sizeof(calculated_number_t));
  728. memcpy(dst_cns, dim->cns.data(), n * sizeof(calculated_number_t));
  729. ml_features_t features = {
  730. Cfg.diff_n, Cfg.smooth_n, Cfg.lag_n,
  731. dst_cns, n, src_cns, n,
  732. dim->feature
  733. };
  734. ml_features_preprocess(&features);
  735. /*
  736. * Lock to predict and possibly schedule the dimension for training
  737. */
  738. if (spinlock_trylock(&dim->slock) == 0)
  739. return false;
  740. // Mark the metric time as variable if we received different values
  741. if (!same_value)
  742. dim->mt = METRIC_TYPE_VARIABLE;
  743. // Decide if the dimension needs to be scheduled for training
  744. ml_dimension_schedule_for_training(dim, curr_time);
  745. // Nothing to do if we don't have a model
  746. switch (dim->ts) {
  747. case TRAINING_STATUS_UNTRAINED:
  748. case TRAINING_STATUS_PENDING_WITHOUT_MODEL: {
  749. case TRAINING_STATUS_SILENCED:
  750. spinlock_unlock(&dim->slock);
  751. return false;
  752. }
  753. default:
  754. break;
  755. }
  756. dim->suppression_window_counter++;
  757. /*
  758. * Use the KMeans models to check if the value is anomalous
  759. */
  760. size_t sum = 0;
  761. size_t models_consulted = 0;
  762. for (const auto &km_ctx : dim->km_contexts) {
  763. models_consulted++;
  764. calculated_number_t anomaly_score = ml_kmeans_anomaly_score(&km_ctx, features.preprocessed_features[0]);
  765. if (anomaly_score == std::numeric_limits<calculated_number_t>::quiet_NaN())
  766. continue;
  767. if (anomaly_score < (100 * Cfg.dimension_anomaly_score_threshold)) {
  768. global_statistics_ml_models_consulted(models_consulted);
  769. spinlock_unlock(&dim->slock);
  770. return false;
  771. }
  772. sum += 1;
  773. }
  774. dim->suppression_anomaly_counter += sum ? 1 : 0;
  775. if ((dim->suppression_anomaly_counter >= Cfg.suppression_threshold) &&
  776. (dim->suppression_window_counter >= Cfg.suppression_window)) {
  777. dim->ts = TRAINING_STATUS_SILENCED;
  778. }
  779. spinlock_unlock(&dim->slock);
  780. global_statistics_ml_models_consulted(models_consulted);
  781. return sum;
  782. }
  783. /*
  784. * Chart
  785. */
  786. static bool
  787. ml_chart_is_available_for_ml(ml_chart_t *chart)
  788. {
  789. return rrdset_is_available_for_exporting_and_alarms(chart->rs);
  790. }
  791. void
  792. ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous)
  793. {
  794. switch (dim->mls) {
  795. case MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART:
  796. chart->mls.num_machine_learning_status_disabled_sp++;
  797. return;
  798. case MACHINE_LEARNING_STATUS_ENABLED: {
  799. chart->mls.num_machine_learning_status_enabled++;
  800. switch (dim->mt) {
  801. case METRIC_TYPE_CONSTANT:
  802. chart->mls.num_metric_type_constant++;
  803. chart->mls.num_training_status_trained++;
  804. chart->mls.num_normal_dimensions++;
  805. return;
  806. case METRIC_TYPE_VARIABLE:
  807. chart->mls.num_metric_type_variable++;
  808. break;
  809. }
  810. switch (dim->ts) {
  811. case TRAINING_STATUS_UNTRAINED:
  812. chart->mls.num_training_status_untrained++;
  813. return;
  814. case TRAINING_STATUS_PENDING_WITHOUT_MODEL:
  815. chart->mls.num_training_status_pending_without_model++;
  816. return;
  817. case TRAINING_STATUS_TRAINED:
  818. chart->mls.num_training_status_trained++;
  819. chart->mls.num_anomalous_dimensions += is_anomalous;
  820. chart->mls.num_normal_dimensions += !is_anomalous;
  821. return;
  822. case TRAINING_STATUS_PENDING_WITH_MODEL:
  823. chart->mls.num_training_status_pending_with_model++;
  824. chart->mls.num_anomalous_dimensions += is_anomalous;
  825. chart->mls.num_normal_dimensions += !is_anomalous;
  826. return;
  827. case TRAINING_STATUS_SILENCED:
  828. chart->mls.num_training_status_silenced++;
  829. chart->mls.num_training_status_trained++;
  830. chart->mls.num_anomalous_dimensions += is_anomalous;
  831. chart->mls.num_normal_dimensions += !is_anomalous;
  832. return;
  833. }
  834. return;
  835. }
  836. }
  837. }
  838. /*
  839. * Host detection & training functions
  840. */
  841. #define WORKER_JOB_DETECTION_COLLECT_STATS 0
  842. #define WORKER_JOB_DETECTION_DIM_CHART 1
  843. #define WORKER_JOB_DETECTION_HOST_CHART 2
  844. #define WORKER_JOB_DETECTION_STATS 3
  845. static void
  846. ml_host_detect_once(ml_host_t *host)
  847. {
  848. worker_is_busy(WORKER_JOB_DETECTION_COLLECT_STATS);
  849. host->mls = {};
  850. ml_machine_learning_stats_t mls_copy = {};
  851. if (host->ml_running) {
  852. netdata_mutex_lock(&host->mutex);
  853. /*
  854. * prediction/detection stats
  855. */
  856. void *rsp = NULL;
  857. rrdset_foreach_read(rsp, host->rh) {
  858. RRDSET *rs = static_cast<RRDSET *>(rsp);
  859. ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
  860. if (!chart)
  861. continue;
  862. if (!ml_chart_is_available_for_ml(chart))
  863. continue;
  864. ml_machine_learning_stats_t chart_mls = chart->mls;
  865. host->mls.num_machine_learning_status_enabled += chart_mls.num_machine_learning_status_enabled;
  866. host->mls.num_machine_learning_status_disabled_sp += chart_mls.num_machine_learning_status_disabled_sp;
  867. host->mls.num_metric_type_constant += chart_mls.num_metric_type_constant;
  868. host->mls.num_metric_type_variable += chart_mls.num_metric_type_variable;
  869. host->mls.num_training_status_untrained += chart_mls.num_training_status_untrained;
  870. host->mls.num_training_status_pending_without_model += chart_mls.num_training_status_pending_without_model;
  871. host->mls.num_training_status_trained += chart_mls.num_training_status_trained;
  872. host->mls.num_training_status_pending_with_model += chart_mls.num_training_status_pending_with_model;
  873. host->mls.num_training_status_silenced += chart_mls.num_training_status_silenced;
  874. host->mls.num_anomalous_dimensions += chart_mls.num_anomalous_dimensions;
  875. host->mls.num_normal_dimensions += chart_mls.num_normal_dimensions;
  876. STRING *key = rs->parts.type;
  877. auto &um = host->type_anomaly_rate;
  878. auto it = um.find(key);
  879. if (it == um.end()) {
  880. um[key] = ml_type_anomaly_rate_t {
  881. .rd = NULL,
  882. .normal_dimensions = 0,
  883. .anomalous_dimensions = 0
  884. };
  885. it = um.find(key);
  886. }
  887. it->second.anomalous_dimensions += chart_mls.num_anomalous_dimensions;
  888. it->second.normal_dimensions += chart_mls.num_normal_dimensions;
  889. }
  890. rrdset_foreach_done(rsp);
  891. host->host_anomaly_rate = 0.0;
  892. size_t NumActiveDimensions = host->mls.num_anomalous_dimensions + host->mls.num_normal_dimensions;
  893. if (NumActiveDimensions)
  894. host->host_anomaly_rate = static_cast<double>(host->mls.num_anomalous_dimensions) / NumActiveDimensions;
  895. mls_copy = host->mls;
  896. netdata_mutex_unlock(&host->mutex);
  897. } else {
  898. host->host_anomaly_rate = 0.0;
  899. auto &um = host->type_anomaly_rate;
  900. for (auto &entry: um) {
  901. entry.second = ml_type_anomaly_rate_t {
  902. .rd = NULL,
  903. .normal_dimensions = 0,
  904. .anomalous_dimensions = 0
  905. };
  906. }
  907. }
  908. worker_is_busy(WORKER_JOB_DETECTION_DIM_CHART);
  909. ml_update_dimensions_chart(host, mls_copy);
  910. worker_is_busy(WORKER_JOB_DETECTION_HOST_CHART);
  911. ml_update_host_and_detection_rate_charts(host, host->host_anomaly_rate * 10000.0);
  912. }
  913. typedef struct {
  914. RRDHOST_ACQUIRED *acq_rh;
  915. RRDSET_ACQUIRED *acq_rs;
  916. RRDDIM_ACQUIRED *acq_rd;
  917. ml_dimension_t *dim;
  918. } ml_acquired_dimension_t;
  919. static ml_acquired_dimension_t
  920. ml_acquired_dimension_get(char *machine_guid, STRING *chart_id, STRING *dimension_id)
  921. {
  922. RRDHOST_ACQUIRED *acq_rh = NULL;
  923. RRDSET_ACQUIRED *acq_rs = NULL;
  924. RRDDIM_ACQUIRED *acq_rd = NULL;
  925. ml_dimension_t *dim = NULL;
  926. rrd_rdlock();
  927. acq_rh = rrdhost_find_and_acquire(machine_guid);
  928. if (acq_rh) {
  929. RRDHOST *rh = rrdhost_acquired_to_rrdhost(acq_rh);
  930. if (rh && !rrdhost_flag_check(rh, RRDHOST_FLAG_ORPHAN | RRDHOST_FLAG_ARCHIVED)) {
  931. acq_rs = rrdset_find_and_acquire(rh, string2str(chart_id));
  932. if (acq_rs) {
  933. RRDSET *rs = rrdset_acquired_to_rrdset(acq_rs);
  934. if (rs && !rrdset_flag_check(rs, RRDSET_FLAG_OBSOLETE)) {
  935. acq_rd = rrddim_find_and_acquire(rs, string2str(dimension_id));
  936. if (acq_rd) {
  937. RRDDIM *rd = rrddim_acquired_to_rrddim(acq_rd);
  938. if (rd)
  939. dim = (ml_dimension_t *) rd->ml_dimension;
  940. }
  941. }
  942. }
  943. }
  944. }
  945. rrd_unlock();
  946. ml_acquired_dimension_t acq_dim = {
  947. acq_rh, acq_rs, acq_rd, dim
  948. };
  949. return acq_dim;
  950. }
  951. static void
  952. ml_acquired_dimension_release(ml_acquired_dimension_t acq_dim)
  953. {
  954. if (acq_dim.acq_rd)
  955. rrddim_acquired_release(acq_dim.acq_rd);
  956. if (acq_dim.acq_rs)
  957. rrdset_acquired_release(acq_dim.acq_rs);
  958. if (acq_dim.acq_rh)
  959. rrdhost_acquired_release(acq_dim.acq_rh);
  960. }
  961. static enum ml_training_result
  962. ml_acquired_dimension_train(ml_training_thread_t *training_thread, ml_acquired_dimension_t acq_dim, const ml_training_request_t &tr)
  963. {
  964. if (!acq_dim.dim)
  965. return TRAINING_RESULT_NULL_ACQUIRED_DIMENSION;
  966. return ml_dimension_train_model(training_thread, acq_dim.dim, tr);
  967. }
  968. static void *
  969. ml_detect_main(void *arg)
  970. {
  971. UNUSED(arg);
  972. worker_register("MLDETECT");
  973. worker_register_job_name(WORKER_JOB_DETECTION_COLLECT_STATS, "collect stats");
  974. worker_register_job_name(WORKER_JOB_DETECTION_DIM_CHART, "dim chart");
  975. worker_register_job_name(WORKER_JOB_DETECTION_HOST_CHART, "host chart");
  976. worker_register_job_name(WORKER_JOB_DETECTION_STATS, "training stats");
  977. heartbeat_t hb;
  978. heartbeat_init(&hb);
  979. while (!Cfg.detection_stop) {
  980. worker_is_idle();
  981. heartbeat_next(&hb, USEC_PER_SEC);
  982. RRDHOST *rh;
  983. rrd_rdlock();
  984. rrdhost_foreach_read(rh) {
  985. if (!rh->ml_host)
  986. continue;
  987. ml_host_detect_once((ml_host_t *) rh->ml_host);
  988. }
  989. rrd_unlock();
  990. if (Cfg.enable_statistics_charts) {
  991. // collect and update training thread stats
  992. for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
  993. ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
  994. netdata_mutex_lock(&training_thread->nd_mutex);
  995. ml_training_stats_t training_stats = training_thread->training_stats;
  996. training_thread->training_stats = {};
  997. netdata_mutex_unlock(&training_thread->nd_mutex);
  998. // calc the avg values
  999. if (training_stats.num_popped_items) {
  1000. training_stats.queue_size /= training_stats.num_popped_items;
  1001. training_stats.allotted_ut /= training_stats.num_popped_items;
  1002. training_stats.consumed_ut /= training_stats.num_popped_items;
  1003. training_stats.remaining_ut /= training_stats.num_popped_items;
  1004. } else {
  1005. training_stats.queue_size = ml_queue_size(training_thread->training_queue);
  1006. training_stats.consumed_ut = 0;
  1007. training_stats.remaining_ut = training_stats.allotted_ut;
  1008. training_stats.training_result_ok = 0;
  1009. training_stats.training_result_invalid_query_time_range = 0;
  1010. training_stats.training_result_not_enough_collected_values = 0;
  1011. training_stats.training_result_null_acquired_dimension = 0;
  1012. training_stats.training_result_chart_under_replication = 0;
  1013. }
  1014. ml_update_training_statistics_chart(training_thread, training_stats);
  1015. }
  1016. }
  1017. }
  1018. return NULL;
  1019. }
  1020. /*
  1021. * Public API
  1022. */
  1023. bool ml_capable()
  1024. {
  1025. return true;
  1026. }
  1027. bool ml_enabled(RRDHOST *rh)
  1028. {
  1029. if (!rh)
  1030. return false;
  1031. if (!Cfg.enable_anomaly_detection)
  1032. return false;
  1033. if (simple_pattern_matches(Cfg.sp_host_to_skip, rrdhost_hostname(rh)))
  1034. return false;
  1035. return true;
  1036. }
  1037. bool ml_streaming_enabled()
  1038. {
  1039. return Cfg.stream_anomaly_detection_charts;
  1040. }
  1041. void ml_host_new(RRDHOST *rh)
  1042. {
  1043. if (!ml_enabled(rh))
  1044. return;
  1045. ml_host_t *host = new ml_host_t();
  1046. host->rh = rh;
  1047. host->mls = ml_machine_learning_stats_t();
  1048. host->host_anomaly_rate = 0.0;
  1049. host->anomaly_rate_rs = NULL;
  1050. static std::atomic<size_t> times_called(0);
  1051. host->training_queue = Cfg.training_threads[times_called++ % Cfg.num_training_threads].training_queue;
  1052. netdata_mutex_init(&host->mutex);
  1053. host->ml_running = true;
  1054. rh->ml_host = (rrd_ml_host_t *) host;
  1055. }
  1056. void ml_host_delete(RRDHOST *rh)
  1057. {
  1058. ml_host_t *host = (ml_host_t *) rh->ml_host;
  1059. if (!host)
  1060. return;
  1061. netdata_mutex_destroy(&host->mutex);
  1062. delete host;
  1063. rh->ml_host = NULL;
  1064. }
  1065. void ml_host_start(RRDHOST *rh) {
  1066. ml_host_t *host = (ml_host_t *) rh->ml_host;
  1067. if (!host)
  1068. return;
  1069. host->ml_running = true;
  1070. }
  1071. void ml_host_stop(RRDHOST *rh) {
  1072. ml_host_t *host = (ml_host_t *) rh->ml_host;
  1073. if (!host || !host->ml_running)
  1074. return;
  1075. netdata_mutex_lock(&host->mutex);
  1076. // reset host stats
  1077. host->mls = ml_machine_learning_stats_t();
  1078. // reset charts/dims
  1079. void *rsp = NULL;
  1080. rrdset_foreach_read(rsp, host->rh) {
  1081. RRDSET *rs = static_cast<RRDSET *>(rsp);
  1082. ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
  1083. if (!chart)
  1084. continue;
  1085. // reset chart
  1086. chart->mls = ml_machine_learning_stats_t();
  1087. void *rdp = NULL;
  1088. rrddim_foreach_read(rdp, rs) {
  1089. RRDDIM *rd = static_cast<RRDDIM *>(rdp);
  1090. ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
  1091. if (!dim)
  1092. continue;
  1093. spinlock_lock(&dim->slock);
  1094. // reset dim
  1095. // TODO: should we drop in-mem models, or mark them as stale? Is it
  1096. // okay to resume training straight away?
  1097. dim->mt = METRIC_TYPE_CONSTANT;
  1098. dim->ts = TRAINING_STATUS_UNTRAINED;
  1099. dim->last_training_time = 0;
  1100. dim->suppression_anomaly_counter = 0;
  1101. dim->suppression_window_counter = 0;
  1102. dim->cns.clear();
  1103. ml_kmeans_init(&dim->kmeans);
  1104. spinlock_unlock(&dim->slock);
  1105. }
  1106. rrddim_foreach_done(rdp);
  1107. }
  1108. rrdset_foreach_done(rsp);
  1109. netdata_mutex_unlock(&host->mutex);
  1110. host->ml_running = false;
  1111. }
  1112. void ml_host_get_info(RRDHOST *rh, BUFFER *wb)
  1113. {
  1114. ml_host_t *host = (ml_host_t *) rh->ml_host;
  1115. if (!host) {
  1116. buffer_json_member_add_boolean(wb, "enabled", false);
  1117. return;
  1118. }
  1119. buffer_json_member_add_uint64(wb, "version", 1);
  1120. buffer_json_member_add_boolean(wb, "enabled", Cfg.enable_anomaly_detection);
  1121. buffer_json_member_add_uint64(wb, "min-train-samples", Cfg.min_train_samples);
  1122. buffer_json_member_add_uint64(wb, "max-train-samples", Cfg.max_train_samples);
  1123. buffer_json_member_add_uint64(wb, "train-every", Cfg.train_every);
  1124. buffer_json_member_add_uint64(wb, "diff-n", Cfg.diff_n);
  1125. buffer_json_member_add_uint64(wb, "smooth-n", Cfg.smooth_n);
  1126. buffer_json_member_add_uint64(wb, "lag-n", Cfg.lag_n);
  1127. buffer_json_member_add_double(wb, "random-sampling-ratio", Cfg.random_sampling_ratio);
  1128. buffer_json_member_add_uint64(wb, "max-kmeans-iters", Cfg.random_sampling_ratio);
  1129. buffer_json_member_add_double(wb, "dimension-anomaly-score-threshold", Cfg.dimension_anomaly_score_threshold);
  1130. buffer_json_member_add_string(wb, "anomaly-detection-grouping-method",
  1131. time_grouping_method2string(Cfg.anomaly_detection_grouping_method));
  1132. buffer_json_member_add_int64(wb, "anomaly-detection-query-duration", Cfg.anomaly_detection_query_duration);
  1133. buffer_json_member_add_string(wb, "hosts-to-skip", Cfg.hosts_to_skip.c_str());
  1134. buffer_json_member_add_string(wb, "charts-to-skip", Cfg.charts_to_skip.c_str());
  1135. }
  1136. void ml_host_get_detection_info(RRDHOST *rh, BUFFER *wb)
  1137. {
  1138. ml_host_t *host = (ml_host_t *) rh->ml_host;
  1139. if (!host)
  1140. return;
  1141. netdata_mutex_lock(&host->mutex);
  1142. buffer_json_member_add_uint64(wb, "version", 2);
  1143. buffer_json_member_add_uint64(wb, "ml-running", host->ml_running);
  1144. buffer_json_member_add_uint64(wb, "anomalous-dimensions", host->mls.num_anomalous_dimensions);
  1145. buffer_json_member_add_uint64(wb, "normal-dimensions", host->mls.num_normal_dimensions);
  1146. buffer_json_member_add_uint64(wb, "total-dimensions", host->mls.num_anomalous_dimensions +
  1147. host->mls.num_normal_dimensions);
  1148. buffer_json_member_add_uint64(wb, "trained-dimensions", host->mls.num_training_status_trained +
  1149. host->mls.num_training_status_pending_with_model);
  1150. netdata_mutex_unlock(&host->mutex);
  1151. }
  1152. bool ml_host_get_host_status(RRDHOST *rh, struct ml_metrics_statistics *mlm) {
  1153. ml_host_t *host = (ml_host_t *) rh->ml_host;
  1154. if (!host) {
  1155. memset(mlm, 0, sizeof(*mlm));
  1156. return false;
  1157. }
  1158. netdata_mutex_lock(&host->mutex);
  1159. mlm->anomalous = host->mls.num_anomalous_dimensions;
  1160. mlm->normal = host->mls.num_normal_dimensions;
  1161. mlm->trained = host->mls.num_training_status_trained + host->mls.num_training_status_pending_with_model;
  1162. mlm->pending = host->mls.num_training_status_untrained + host->mls.num_training_status_pending_without_model;
  1163. mlm->silenced = host->mls.num_training_status_silenced;
  1164. netdata_mutex_unlock(&host->mutex);
  1165. return true;
  1166. }
  1167. bool ml_host_running(RRDHOST *rh) {
  1168. ml_host_t *host = (ml_host_t *) rh->ml_host;
  1169. if(!host)
  1170. return false;
  1171. return true;
  1172. }
  1173. void ml_host_get_models(RRDHOST *rh, BUFFER *wb)
  1174. {
  1175. UNUSED(rh);
  1176. UNUSED(wb);
  1177. // TODO: To be implemented
  1178. netdata_log_error("Fetching KMeans models is not supported yet");
  1179. }
  1180. void ml_chart_new(RRDSET *rs)
  1181. {
  1182. ml_host_t *host = (ml_host_t *) rs->rrdhost->ml_host;
  1183. if (!host)
  1184. return;
  1185. ml_chart_t *chart = new ml_chart_t();
  1186. chart->rs = rs;
  1187. chart->mls = ml_machine_learning_stats_t();
  1188. rs->ml_chart = (rrd_ml_chart_t *) chart;
  1189. }
  1190. void ml_chart_delete(RRDSET *rs)
  1191. {
  1192. ml_host_t *host = (ml_host_t *) rs->rrdhost->ml_host;
  1193. if (!host)
  1194. return;
  1195. ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
  1196. delete chart;
  1197. rs->ml_chart = NULL;
  1198. }
  1199. bool ml_chart_update_begin(RRDSET *rs)
  1200. {
  1201. ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
  1202. if (!chart)
  1203. return false;
  1204. chart->mls = {};
  1205. return true;
  1206. }
  1207. void ml_chart_update_end(RRDSET *rs)
  1208. {
  1209. ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
  1210. if (!chart)
  1211. return;
  1212. }
  1213. void ml_dimension_new(RRDDIM *rd)
  1214. {
  1215. ml_chart_t *chart = (ml_chart_t *) rd->rrdset->ml_chart;
  1216. if (!chart)
  1217. return;
  1218. ml_dimension_t *dim = new ml_dimension_t();
  1219. dim->rd = rd;
  1220. dim->mt = METRIC_TYPE_CONSTANT;
  1221. dim->ts = TRAINING_STATUS_UNTRAINED;
  1222. dim->last_training_time = 0;
  1223. dim->suppression_anomaly_counter = 0;
  1224. dim->suppression_window_counter = 0;
  1225. ml_kmeans_init(&dim->kmeans);
  1226. if (simple_pattern_matches(Cfg.sp_charts_to_skip, rrdset_name(rd->rrdset)))
  1227. dim->mls = MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART;
  1228. else
  1229. dim->mls = MACHINE_LEARNING_STATUS_ENABLED;
  1230. spinlock_init(&dim->slock);
  1231. dim->km_contexts.reserve(Cfg.num_models_to_use);
  1232. rd->ml_dimension = (rrd_ml_dimension_t *) dim;
  1233. metaqueue_ml_load_models(rd);
  1234. }
  1235. void ml_dimension_delete(RRDDIM *rd)
  1236. {
  1237. ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
  1238. if (!dim)
  1239. return;
  1240. delete dim;
  1241. rd->ml_dimension = NULL;
  1242. }
  1243. bool ml_dimension_is_anomalous(RRDDIM *rd, time_t curr_time, double value, bool exists)
  1244. {
  1245. ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
  1246. if (!dim)
  1247. return false;
  1248. ml_host_t *host = (ml_host_t *) rd->rrdset->rrdhost->ml_host;
  1249. if (!host->ml_running)
  1250. return false;
  1251. ml_chart_t *chart = (ml_chart_t *) rd->rrdset->ml_chart;
  1252. bool is_anomalous = ml_dimension_predict(dim, curr_time, value, exists);
  1253. ml_chart_update_dimension(chart, dim, is_anomalous);
  1254. return is_anomalous;
  1255. }
  1256. static void ml_flush_pending_models(ml_training_thread_t *training_thread) {
  1257. int op_no = 1;
  1258. // begin transaction
  1259. int rc = db_execute(db, "BEGIN TRANSACTION;");
  1260. // add/delete models
  1261. if (!rc) {
  1262. op_no++;
  1263. for (const auto &pending_model: training_thread->pending_model_info) {
  1264. if (!rc)
  1265. rc = ml_dimension_add_model(&pending_model.metric_uuid, &pending_model.kmeans);
  1266. if (!rc)
  1267. rc = ml_dimension_delete_models(&pending_model.metric_uuid, pending_model.kmeans.before - (Cfg.num_models_to_use * Cfg.train_every));
  1268. }
  1269. }
  1270. // prune old models
  1271. if (!rc) {
  1272. if ((training_thread->num_db_transactions % 64) == 0) {
  1273. rc = ml_prune_old_models(training_thread->num_models_to_prune);
  1274. if (!rc)
  1275. training_thread->num_models_to_prune = 0;
  1276. }
  1277. }
  1278. // commit transaction
  1279. if (!rc) {
  1280. op_no++;
  1281. rc = db_execute(db, "COMMIT TRANSACTION;");
  1282. }
  1283. // rollback transaction on failure
  1284. if (rc) {
  1285. netdata_log_error("Trying to rollback ML transaction because it failed with rc=%d, op_no=%d", rc, op_no);
  1286. op_no++;
  1287. rc = db_execute(db, "ROLLBACK;");
  1288. if (rc)
  1289. netdata_log_error("ML transaction rollback failed with rc=%d", rc);
  1290. }
  1291. if (!rc) {
  1292. training_thread->num_db_transactions++;
  1293. training_thread->num_models_to_prune += training_thread->pending_model_info.size();
  1294. }
  1295. vacuum_database(db, "ML", 0, 0);
  1296. training_thread->pending_model_info.clear();
  1297. }
  1298. static void *ml_train_main(void *arg) {
  1299. ml_training_thread_t *training_thread = (ml_training_thread_t *) arg;
  1300. char worker_name[1024];
  1301. snprintfz(worker_name, 1024, "training_thread_%zu", training_thread->id);
  1302. worker_register("MLTRAIN");
  1303. worker_register_job_name(WORKER_TRAIN_QUEUE_POP, "pop queue");
  1304. worker_register_job_name(WORKER_TRAIN_ACQUIRE_DIMENSION, "acquire");
  1305. worker_register_job_name(WORKER_TRAIN_QUERY, "query");
  1306. worker_register_job_name(WORKER_TRAIN_KMEANS, "kmeans");
  1307. worker_register_job_name(WORKER_TRAIN_UPDATE_MODELS, "update models");
  1308. worker_register_job_name(WORKER_TRAIN_RELEASE_DIMENSION, "release");
  1309. worker_register_job_name(WORKER_TRAIN_UPDATE_HOST, "update host");
  1310. worker_register_job_name(WORKER_TRAIN_FLUSH_MODELS, "flush models");
  1311. while (!Cfg.training_stop) {
  1312. worker_is_busy(WORKER_TRAIN_QUEUE_POP);
  1313. ml_training_request_t training_req = ml_queue_pop(training_thread->training_queue);
  1314. // we know this thread has been cancelled, when the queue starts
  1315. // returning "null" requests without blocking on queue's pop().
  1316. if (training_req.chart_id == NULL)
  1317. break;
  1318. size_t queue_size = ml_queue_size(training_thread->training_queue) + 1;
  1319. usec_t allotted_ut = (Cfg.train_every * USEC_PER_SEC) / queue_size;
  1320. if (allotted_ut > USEC_PER_SEC)
  1321. allotted_ut = USEC_PER_SEC;
  1322. usec_t start_ut = now_monotonic_usec();
  1323. enum ml_training_result training_res;
  1324. {
  1325. worker_is_busy(WORKER_TRAIN_ACQUIRE_DIMENSION);
  1326. ml_acquired_dimension_t acq_dim = ml_acquired_dimension_get(
  1327. training_req.machine_guid,
  1328. training_req.chart_id,
  1329. training_req.dimension_id);
  1330. training_res = ml_acquired_dimension_train(training_thread, acq_dim, training_req);
  1331. string_freez(training_req.chart_id);
  1332. string_freez(training_req.dimension_id);
  1333. worker_is_busy(WORKER_TRAIN_RELEASE_DIMENSION);
  1334. ml_acquired_dimension_release(acq_dim);
  1335. }
  1336. usec_t consumed_ut = now_monotonic_usec() - start_ut;
  1337. usec_t remaining_ut = 0;
  1338. if (consumed_ut < allotted_ut)
  1339. remaining_ut = allotted_ut - consumed_ut;
  1340. if (Cfg.enable_statistics_charts) {
  1341. worker_is_busy(WORKER_TRAIN_UPDATE_HOST);
  1342. netdata_mutex_lock(&training_thread->nd_mutex);
  1343. training_thread->training_stats.queue_size += queue_size;
  1344. training_thread->training_stats.num_popped_items += 1;
  1345. training_thread->training_stats.allotted_ut += allotted_ut;
  1346. training_thread->training_stats.consumed_ut += consumed_ut;
  1347. training_thread->training_stats.remaining_ut += remaining_ut;
  1348. switch (training_res) {
  1349. case TRAINING_RESULT_OK:
  1350. training_thread->training_stats.training_result_ok += 1;
  1351. break;
  1352. case TRAINING_RESULT_INVALID_QUERY_TIME_RANGE:
  1353. training_thread->training_stats.training_result_invalid_query_time_range += 1;
  1354. break;
  1355. case TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES:
  1356. training_thread->training_stats.training_result_not_enough_collected_values += 1;
  1357. break;
  1358. case TRAINING_RESULT_NULL_ACQUIRED_DIMENSION:
  1359. training_thread->training_stats.training_result_null_acquired_dimension += 1;
  1360. break;
  1361. case TRAINING_RESULT_CHART_UNDER_REPLICATION:
  1362. training_thread->training_stats.training_result_chart_under_replication += 1;
  1363. break;
  1364. }
  1365. netdata_mutex_unlock(&training_thread->nd_mutex);
  1366. }
  1367. if (training_thread->pending_model_info.size() >= Cfg.flush_models_batch_size) {
  1368. worker_is_busy(WORKER_TRAIN_FLUSH_MODELS);
  1369. netdata_mutex_lock(&db_mutex);
  1370. ml_flush_pending_models(training_thread);
  1371. netdata_mutex_unlock(&db_mutex);
  1372. continue;
  1373. }
  1374. worker_is_idle();
  1375. std::this_thread::sleep_for(std::chrono::microseconds{remaining_ut});
  1376. }
  1377. return NULL;
  1378. }
  1379. void ml_init()
  1380. {
  1381. // Read config values
  1382. ml_config_load(&Cfg);
  1383. if (!Cfg.enable_anomaly_detection)
  1384. return;
  1385. // Generate random numbers to efficiently sample the features we need
  1386. // for KMeans clustering.
  1387. std::random_device RD;
  1388. std::mt19937 Gen(RD());
  1389. Cfg.random_nums.reserve(Cfg.max_train_samples);
  1390. for (size_t Idx = 0; Idx != Cfg.max_train_samples; Idx++)
  1391. Cfg.random_nums.push_back(Gen());
  1392. // init training thread-specific data
  1393. Cfg.training_threads.resize(Cfg.num_training_threads);
  1394. for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
  1395. ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
  1396. size_t max_elements_needed_for_training = (size_t) Cfg.max_train_samples * (size_t) (Cfg.lag_n + 1);
  1397. training_thread->training_cns = new calculated_number_t[max_elements_needed_for_training]();
  1398. training_thread->scratch_training_cns = new calculated_number_t[max_elements_needed_for_training]();
  1399. training_thread->id = idx;
  1400. training_thread->training_queue = ml_queue_init();
  1401. training_thread->pending_model_info.reserve(Cfg.flush_models_batch_size);
  1402. netdata_mutex_init(&training_thread->nd_mutex);
  1403. }
  1404. // open sqlite db
  1405. char path[FILENAME_MAX];
  1406. snprintfz(path, FILENAME_MAX - 1, "%s/%s", netdata_configured_cache_dir, "ml.db");
  1407. int rc = sqlite3_open(path, &db);
  1408. if (rc != SQLITE_OK) {
  1409. error_report("Failed to initialize database at %s, due to \"%s\"", path, sqlite3_errstr(rc));
  1410. sqlite3_close(db);
  1411. db = NULL;
  1412. }
  1413. // create table
  1414. if (db) {
  1415. int target_version = perform_ml_database_migration(db, ML_METADATA_VERSION);
  1416. if (configure_sqlite_database(db, target_version, "ml_config")) {
  1417. error_report("Failed to setup ML database");
  1418. sqlite3_close(db);
  1419. db = NULL;
  1420. }
  1421. else {
  1422. char *err = NULL;
  1423. int rc = sqlite3_exec(db, db_models_create_table, NULL, NULL, &err);
  1424. if (rc != SQLITE_OK) {
  1425. error_report("Failed to create models table (%s, %s)", sqlite3_errstr(rc), err ? err : "");
  1426. sqlite3_close(db);
  1427. sqlite3_free(err);
  1428. db = NULL;
  1429. }
  1430. }
  1431. }
  1432. }
  1433. void ml_fini() {
  1434. if (!Cfg.enable_anomaly_detection)
  1435. return;
  1436. int rc = sqlite3_close_v2(db);
  1437. if (unlikely(rc != SQLITE_OK))
  1438. error_report("Error %d while closing the SQLite database, %s", rc, sqlite3_errstr(rc));
  1439. }
  1440. void ml_start_threads() {
  1441. if (!Cfg.enable_anomaly_detection)
  1442. return;
  1443. // start detection & training threads
  1444. Cfg.detection_stop = false;
  1445. Cfg.training_stop = false;
  1446. char tag[NETDATA_THREAD_TAG_MAX + 1];
  1447. snprintfz(tag, NETDATA_THREAD_TAG_MAX, "%s", "PREDICT");
  1448. netdata_thread_create(&Cfg.detection_thread, tag, NETDATA_THREAD_OPTION_JOINABLE, ml_detect_main, NULL);
  1449. for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
  1450. ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
  1451. snprintfz(tag, NETDATA_THREAD_TAG_MAX, "TRAIN[%zu]", training_thread->id);
  1452. netdata_thread_create(&training_thread->nd_thread, tag, NETDATA_THREAD_OPTION_JOINABLE, ml_train_main, training_thread);
  1453. }
  1454. }
  1455. void ml_stop_threads()
  1456. {
  1457. if (!Cfg.enable_anomaly_detection)
  1458. return;
  1459. Cfg.detection_stop = true;
  1460. Cfg.training_stop = true;
  1461. if (!Cfg.detection_thread)
  1462. return;
  1463. netdata_thread_cancel(Cfg.detection_thread);
  1464. netdata_thread_join(Cfg.detection_thread, NULL);
  1465. // signal the training queue of each thread
  1466. for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
  1467. ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
  1468. ml_queue_signal(training_thread->training_queue);
  1469. }
  1470. // cancel training threads
  1471. for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
  1472. ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
  1473. netdata_thread_cancel(training_thread->nd_thread);
  1474. }
  1475. // join training threads
  1476. for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
  1477. ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
  1478. netdata_thread_join(training_thread->nd_thread, NULL);
  1479. }
  1480. // clear training thread data
  1481. for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
  1482. ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
  1483. delete[] training_thread->training_cns;
  1484. delete[] training_thread->scratch_training_cns;
  1485. ml_queue_destroy(training_thread->training_queue);
  1486. netdata_mutex_destroy(&training_thread->nd_mutex);
  1487. }
  1488. }