zscores.chart.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. # -*- coding: utf-8 -*-
  2. # Description: zscores netdata python.d module
  3. # Author: andrewm4894
  4. # SPDX-License-Identifier: GPL-3.0-or-later
  5. from datetime import datetime
  6. import re
  7. import requests
  8. import numpy as np
  9. import pandas as pd
  10. from bases.FrameworkServices.SimpleService import SimpleService
  11. from netdata_pandas.data import get_data, get_allmetrics
  12. priority = 60000
  13. update_every = 5
  14. disabled_by_default = True
  15. ORDER = [
  16. 'z',
  17. '3stddev'
  18. ]
  19. CHARTS = {
  20. 'z': {
  21. 'options': ['z', 'Z Score', 'z', 'Z Score', 'zscores.z', 'line'],
  22. 'lines': []
  23. },
  24. '3stddev': {
  25. 'options': ['3stddev', 'Z Score >3', 'count', '3 Stddev', 'zscores.3stddev', 'stacked'],
  26. 'lines': []
  27. },
  28. }
  29. class Service(SimpleService):
  30. def __init__(self, configuration=None, name=None):
  31. SimpleService.__init__(self, configuration=configuration, name=name)
  32. self.host = self.configuration.get('host', '127.0.0.1:19999')
  33. self.charts_regex = re.compile(self.configuration.get('charts_regex', 'system.*'))
  34. self.charts_to_exclude = self.configuration.get('charts_to_exclude', '').split(',')
  35. self.charts_in_scope = [
  36. c for c in
  37. list(filter(self.charts_regex.match,
  38. requests.get(f'http://{self.host}/api/v1/charts').json()['charts'].keys()))
  39. if c not in self.charts_to_exclude
  40. ]
  41. self.train_secs = self.configuration.get('train_secs', 14400)
  42. self.offset_secs = self.configuration.get('offset_secs', 300)
  43. self.train_every_n = self.configuration.get('train_every_n', 900)
  44. self.z_smooth_n = self.configuration.get('z_smooth_n', 15)
  45. self.z_clip = self.configuration.get('z_clip', 10)
  46. self.z_abs = bool(self.configuration.get('z_abs', True))
  47. self.burn_in = self.configuration.get('burn_in', 2)
  48. self.mode = self.configuration.get('mode', 'per_chart')
  49. self.per_chart_agg = self.configuration.get('per_chart_agg', 'mean')
  50. self.order = ORDER
  51. self.definitions = CHARTS
  52. self.collected_dims = {'z': set(), '3stddev': set()}
  53. self.df_mean = pd.DataFrame()
  54. self.df_std = pd.DataFrame()
  55. self.df_z_history = pd.DataFrame()
  56. def check(self):
  57. _ = get_allmetrics(self.host, self.charts_in_scope, wide=True, col_sep='.')
  58. return True
  59. def validate_charts(self, chart, data, algorithm='absolute', multiplier=1, divisor=1):
  60. """If dimension not in chart then add it.
  61. """
  62. for dim in data:
  63. if dim not in self.collected_dims[chart]:
  64. self.collected_dims[chart].add(dim)
  65. self.charts[chart].add_dimension([dim, dim, algorithm, multiplier, divisor])
  66. for dim in list(self.collected_dims[chart]):
  67. if dim not in data:
  68. self.collected_dims[chart].remove(dim)
  69. self.charts[chart].del_dimension(dim, hide=False)
  70. def train_model(self):
  71. """Calculate the mean and stddev for all relevant metrics and store them for use in calulcating zscore at each timestep.
  72. """
  73. before = int(datetime.now().timestamp()) - self.offset_secs
  74. after = before - self.train_secs
  75. self.df_mean = get_data(
  76. self.host, self.charts_in_scope, after, before, points=10, group='average', col_sep='.'
  77. ).mean().to_frame().rename(columns={0: "mean"})
  78. self.df_std = get_data(
  79. self.host, self.charts_in_scope, after, before, points=10, group='stddev', col_sep='.'
  80. ).mean().to_frame().rename(columns={0: "std"})
  81. def create_data(self, df_allmetrics):
  82. """Use x, mean, stddev to generate z scores and 3stddev flags via some pandas manipulation.
  83. Returning two dictionaries of dimensions and measures, one for each chart.
  84. :param df_allmetrics <pd.DataFrame>: pandas dataframe with latest data from api/v1/allmetrics.
  85. :return: (<dict>,<dict>) tuple of dictionaries, one for zscores and the other for a flag if abs(z)>3.
  86. """
  87. # calculate clipped z score for each available metric
  88. df_z = pd.concat([self.df_mean, self.df_std, df_allmetrics], axis=1, join='inner')
  89. df_z['z'] = ((df_z['value'] - df_z['mean']) / df_z['std']).clip(-self.z_clip, self.z_clip).fillna(0) * 100
  90. if self.z_abs:
  91. df_z['z'] = df_z['z'].abs()
  92. # append last z_smooth_n rows of zscores to history table in wide format
  93. self.df_z_history = self.df_z_history.append(
  94. df_z[['z']].reset_index().pivot_table(values='z', columns='index'), sort=True
  95. ).tail(self.z_smooth_n)
  96. # get average zscore for last z_smooth_n for each metric
  97. df_z_smooth = self.df_z_history.melt(value_name='z').groupby('index')['z'].mean().to_frame()
  98. df_z_smooth['3stddev'] = np.where(abs(df_z_smooth['z']) > 300, 1, 0)
  99. data_z = df_z_smooth['z'].add_suffix('_z').to_dict()
  100. # aggregate to chart level if specified
  101. if self.mode == 'per_chart':
  102. df_z_smooth['chart'] = ['.'.join(x[0:2]) + '_z' for x in df_z_smooth.index.str.split('.').to_list()]
  103. if self.per_chart_agg == 'absmax':
  104. data_z = \
  105. list(df_z_smooth.groupby('chart').agg({'z': lambda x: max(x, key=abs)})['z'].to_dict().values())[0]
  106. else:
  107. data_z = list(df_z_smooth.groupby('chart').agg({'z': [self.per_chart_agg]})['z'].to_dict().values())[0]
  108. data_3stddev = {}
  109. for k in data_z:
  110. data_3stddev[k.replace('_z', '')] = 1 if abs(data_z[k]) > 300 else 0
  111. return data_z, data_3stddev
  112. def get_data(self):
  113. if self.runs_counter <= self.burn_in or self.runs_counter % self.train_every_n == 0:
  114. self.train_model()
  115. data_z, data_3stddev = self.create_data(
  116. get_allmetrics(self.host, self.charts_in_scope, wide=True, col_sep='.').transpose())
  117. data = {**data_z, **data_3stddev}
  118. self.validate_charts('z', data_z, divisor=100)
  119. self.validate_charts('3stddev', data_3stddev)
  120. return data