123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- // SPDX-License-Identifier: GPL-3.0-or-later
- #include "../libnetdata.h"
- static int clock_boottime_valid = 1;
- static int clock_monotonic_coarse_valid = 1;
- #ifndef HAVE_CLOCK_GETTIME
- inline int clock_gettime(clockid_t clk_id, struct timespec *ts) {
- struct timeval tv;
- if(unlikely(gettimeofday(&tv, NULL) == -1)) {
- error("gettimeofday() failed.");
- return -1;
- }
- ts->tv_sec = tv.tv_sec;
- ts->tv_nsec = (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC;
- return 0;
- }
- #endif
- void test_clock_boottime(void) {
- struct timespec ts;
- if(clock_gettime(CLOCK_BOOTTIME, &ts) == -1 && errno == EINVAL)
- clock_boottime_valid = 0;
- }
- void test_clock_monotonic_coarse(void) {
- struct timespec ts;
- if(clock_gettime(CLOCK_MONOTONIC_COARSE, &ts) == -1 && errno == EINVAL)
- clock_monotonic_coarse_valid = 0;
- }
- static inline time_t now_sec(clockid_t clk_id) {
- struct timespec ts;
- if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
- error("clock_gettime(%d, ×pec) failed.", clk_id);
- return 0;
- }
- return ts.tv_sec;
- }
- static inline usec_t now_usec(clockid_t clk_id) {
- struct timespec ts;
- if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
- error("clock_gettime(%d, ×pec) failed.", clk_id);
- return 0;
- }
- return (usec_t)ts.tv_sec * USEC_PER_SEC + (ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC;
- }
- static inline int now_timeval(clockid_t clk_id, struct timeval *tv) {
- struct timespec ts;
- if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
- error("clock_gettime(%d, ×pec) failed.", clk_id);
- tv->tv_sec = 0;
- tv->tv_usec = 0;
- return -1;
- }
- tv->tv_sec = ts.tv_sec;
- tv->tv_usec = (suseconds_t)((ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC);
- return 0;
- }
- inline time_t now_realtime_sec(void) {
- return now_sec(CLOCK_REALTIME);
- }
- inline usec_t now_realtime_usec(void) {
- return now_usec(CLOCK_REALTIME);
- }
- inline int now_realtime_timeval(struct timeval *tv) {
- return now_timeval(CLOCK_REALTIME, tv);
- }
- inline time_t now_monotonic_sec(void) {
- return now_sec(likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC);
- }
- inline usec_t now_monotonic_usec(void) {
- return now_usec(likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC);
- }
- inline int now_monotonic_timeval(struct timeval *tv) {
- return now_timeval(likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC, tv);
- }
- inline time_t now_monotonic_high_precision_sec(void) {
- return now_sec(CLOCK_MONOTONIC);
- }
- inline usec_t now_monotonic_high_precision_usec(void) {
- return now_usec(CLOCK_MONOTONIC);
- }
- inline int now_monotonic_high_precision_timeval(struct timeval *tv) {
- return now_timeval(CLOCK_MONOTONIC, tv);
- }
- inline time_t now_boottime_sec(void) {
- return now_sec(likely(clock_boottime_valid) ? CLOCK_BOOTTIME :
- likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC);
- }
- inline usec_t now_boottime_usec(void) {
- return now_usec(likely(clock_boottime_valid) ? CLOCK_BOOTTIME :
- likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC);
- }
- inline int now_boottime_timeval(struct timeval *tv) {
- return now_timeval(likely(clock_boottime_valid) ? CLOCK_BOOTTIME :
- likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC,
- tv);
- }
- inline usec_t timeval_usec(struct timeval *tv) {
- return (usec_t)tv->tv_sec * USEC_PER_SEC + (tv->tv_usec % USEC_PER_SEC);
- }
- inline msec_t timeval_msec(struct timeval *tv) {
- return (msec_t)tv->tv_sec * MSEC_PER_SEC + ((tv->tv_usec % USEC_PER_SEC) / MSEC_PER_SEC);
- }
- inline susec_t dt_usec_signed(struct timeval *now, struct timeval *old) {
- usec_t ts1 = timeval_usec(now);
- usec_t ts2 = timeval_usec(old);
- if(likely(ts1 >= ts2)) return (susec_t)(ts1 - ts2);
- return -((susec_t)(ts2 - ts1));
- }
- inline usec_t dt_usec(struct timeval *now, struct timeval *old) {
- usec_t ts1 = timeval_usec(now);
- usec_t ts2 = timeval_usec(old);
- return (ts1 > ts2) ? (ts1 - ts2) : (ts2 - ts1);
- }
- inline void heartbeat_init(heartbeat_t *hb)
- {
- hb->monotonic = hb->realtime = 0ULL;
- }
- // waits for the next heartbeat
- // it waits using the monotonic clock
- // it returns the dt using the realtime clock
- usec_t heartbeat_next(heartbeat_t *hb, usec_t tick) {
- heartbeat_t now;
- now.monotonic = now_monotonic_usec();
- now.realtime = now_realtime_usec();
- usec_t next_monotonic = now.monotonic - (now.monotonic % tick) + tick;
- while(now.monotonic < next_monotonic) {
- sleep_usec(next_monotonic - now.monotonic);
- now.monotonic = now_monotonic_usec();
- now.realtime = now_realtime_usec();
- }
- if(likely(hb->realtime != 0ULL)) {
- usec_t dt_monotonic = now.monotonic - hb->monotonic;
- usec_t dt_realtime = now.realtime - hb->realtime;
- hb->monotonic = now.monotonic;
- hb->realtime = now.realtime;
- if(unlikely(dt_monotonic >= tick + tick / 2)) {
- errno = 0;
- error("heartbeat missed %llu monotonic microseconds", dt_monotonic - tick);
- }
- return dt_realtime;
- }
- else {
- hb->monotonic = now.monotonic;
- hb->realtime = now.realtime;
- return 0ULL;
- }
- }
- // returned the elapsed time, since the last heartbeat
- // using the monotonic clock
- inline usec_t heartbeat_monotonic_dt_to_now_usec(heartbeat_t *hb) {
- if(!hb || !hb->monotonic) return 0ULL;
- return now_monotonic_usec() - hb->monotonic;
- }
- int sleep_usec(usec_t usec) {
- #ifndef NETDATA_WITH_USLEEP
- // we expect microseconds (1.000.000 per second)
- // but timespec is nanoseconds (1.000.000.000 per second)
- struct timespec rem, req = {
- .tv_sec = (time_t) (usec / 1000000),
- .tv_nsec = (suseconds_t) ((usec % 1000000) * 1000)
- };
- while (nanosleep(&req, &rem) == -1) {
- if (likely(errno == EINTR)) {
- debug(D_SYSTEM, "nanosleep() interrupted (while sleeping for %llu microseconds).", usec);
- req.tv_sec = rem.tv_sec;
- req.tv_nsec = rem.tv_nsec;
- } else {
- error("Cannot nanosleep() for %llu microseconds.", usec);
- break;
- }
- }
- return 0;
- #else
- int ret = usleep(usec);
- if(unlikely(ret == -1 && errno == EINVAL)) {
- // on certain systems, usec has to be up to 999999
- if(usec > 999999) {
- int counter = usec / 999999;
- while(counter--)
- usleep(999999);
- usleep(usec % 999999);
- }
- else {
- error("Cannot usleep() for %llu microseconds.", usec);
- return ret;
- }
- }
- if(ret != 0)
- error("usleep() failed for %llu microseconds.", usec);
- return ret;
- #endif
- }
- static inline collected_number uptime_from_boottime(void) {
- #ifdef CLOCK_BOOTTIME_IS_AVAILABLE
- return now_boottime_usec() / 1000;
- #else
- error("uptime cannot be read from CLOCK_BOOTTIME on this system.");
- return 0;
- #endif
- }
- static procfile *read_proc_uptime_ff = NULL;
- static inline collected_number read_proc_uptime(char *filename) {
- if(unlikely(!read_proc_uptime_ff)) {
- read_proc_uptime_ff = procfile_open(filename, " \t", PROCFILE_FLAG_DEFAULT);
- if(unlikely(!read_proc_uptime_ff)) return 0;
- }
- read_proc_uptime_ff = procfile_readall(read_proc_uptime_ff);
- if(unlikely(!read_proc_uptime_ff)) return 0;
- if(unlikely(procfile_lines(read_proc_uptime_ff) < 1)) {
- error("/proc/uptime has no lines.");
- return 0;
- }
- if(unlikely(procfile_linewords(read_proc_uptime_ff, 0) < 1)) {
- error("/proc/uptime has less than 1 word in it.");
- return 0;
- }
- return (collected_number)(strtold(procfile_lineword(read_proc_uptime_ff, 0, 0), NULL) * 1000.0);
- }
- inline collected_number uptime_msec(char *filename){
- static int use_boottime = -1;
- if(unlikely(use_boottime == -1)) {
- collected_number uptime_boottime = uptime_from_boottime();
- collected_number uptime_proc = read_proc_uptime(filename);
- long long delta = (long long)uptime_boottime - (long long)uptime_proc;
- if(delta < 0) delta = -delta;
- if(delta <= 1000 && uptime_boottime != 0) {
- procfile_close(read_proc_uptime_ff);
- info("Using now_boottime_usec() for uptime (dt is %lld ms)", delta);
- use_boottime = 1;
- }
- else if(uptime_proc != 0) {
- info("Using /proc/uptime for uptime (dt is %lld ms)", delta);
- use_boottime = 0;
- }
- else {
- error("Cannot find any way to read uptime on this system.");
- return 1;
- }
- }
- collected_number uptime;
- if(use_boottime)
- uptime = uptime_from_boottime();
- else
- uptime = read_proc_uptime(filename);
- return uptime;
- }
|