123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- # -*- coding: utf-8 -*-
- # Description: zscores netdata python.d module
- # Author: andrewm4894
- # SPDX-License-Identifier: GPL-3.0-or-later
- from datetime import datetime
- import re
- import requests
- import numpy as np
- import pandas as pd
- from bases.FrameworkServices.SimpleService import SimpleService
- from netdata_pandas.data import get_data, get_allmetrics
- priority = 60000
- update_every = 5
- disabled_by_default = True
- ORDER = [
- 'z',
- '3stddev'
- ]
- CHARTS = {
- 'z': {
- 'options': ['z', 'Z Score', 'z', 'Z Score', 'zscores.z', 'line'],
- 'lines': []
- },
- '3stddev': {
- 'options': ['3stddev', 'Z Score >3', 'count', '3 Stddev', 'zscores.3stddev', 'stacked'],
- 'lines': []
- },
- }
- class Service(SimpleService):
- def __init__(self, configuration=None, name=None):
- SimpleService.__init__(self, configuration=configuration, name=name)
- self.host = self.configuration.get('host', '127.0.0.1:19999')
- self.charts_regex = re.compile(self.configuration.get('charts_regex', 'system.*'))
- self.charts_to_exclude = self.configuration.get('charts_to_exclude', '').split(',')
- self.charts_in_scope = [
- c for c in
- list(filter(self.charts_regex.match,
- requests.get(f'http://{self.host}/api/v1/charts').json()['charts'].keys()))
- if c not in self.charts_to_exclude
- ]
- self.train_secs = self.configuration.get('train_secs', 14400)
- self.offset_secs = self.configuration.get('offset_secs', 300)
- self.train_every_n = self.configuration.get('train_every_n', 900)
- self.z_smooth_n = self.configuration.get('z_smooth_n', 15)
- self.z_clip = self.configuration.get('z_clip', 10)
- self.z_abs = bool(self.configuration.get('z_abs', True))
- self.burn_in = self.configuration.get('burn_in', 2)
- self.mode = self.configuration.get('mode', 'per_chart')
- self.per_chart_agg = self.configuration.get('per_chart_agg', 'mean')
- self.order = ORDER
- self.definitions = CHARTS
- self.collected_dims = {'z': set(), '3stddev': set()}
- self.df_mean = pd.DataFrame()
- self.df_std = pd.DataFrame()
- self.df_z_history = pd.DataFrame()
- def check(self):
- _ = get_allmetrics(self.host, self.charts_in_scope, wide=True, col_sep='.')
- return True
- def validate_charts(self, chart, data, algorithm='absolute', multiplier=1, divisor=1):
- """If dimension not in chart then add it.
- """
- for dim in data:
- if dim not in self.collected_dims[chart]:
- self.collected_dims[chart].add(dim)
- self.charts[chart].add_dimension([dim, dim, algorithm, multiplier, divisor])
- for dim in list(self.collected_dims[chart]):
- if dim not in data:
- self.collected_dims[chart].remove(dim)
- self.charts[chart].del_dimension(dim, hide=False)
- def train_model(self):
- """Calculate the mean and stddev for all relevant metrics and store them for use in calulcating zscore at each timestep.
- """
- before = int(datetime.now().timestamp()) - self.offset_secs
- after = before - self.train_secs
- self.df_mean = get_data(
- self.host, self.charts_in_scope, after, before, points=10, group='average', col_sep='.'
- ).mean().to_frame().rename(columns={0: "mean"})
- self.df_std = get_data(
- self.host, self.charts_in_scope, after, before, points=10, group='stddev', col_sep='.'
- ).mean().to_frame().rename(columns={0: "std"})
- def create_data(self, df_allmetrics):
- """Use x, mean, stddev to generate z scores and 3stddev flags via some pandas manipulation.
- Returning two dictionaries of dimensions and measures, one for each chart.
- :param df_allmetrics <pd.DataFrame>: pandas dataframe with latest data from api/v1/allmetrics.
- :return: (<dict>,<dict>) tuple of dictionaries, one for zscores and the other for a flag if abs(z)>3.
- """
- # calculate clipped z score for each available metric
- df_z = pd.concat([self.df_mean, self.df_std, df_allmetrics], axis=1, join='inner')
- df_z['z'] = ((df_z['value'] - df_z['mean']) / df_z['std']).clip(-self.z_clip, self.z_clip).fillna(0) * 100
- if self.z_abs:
- df_z['z'] = df_z['z'].abs()
- # append last z_smooth_n rows of zscores to history table in wide format
- self.df_z_history = self.df_z_history.append(
- df_z[['z']].reset_index().pivot_table(values='z', columns='index'), sort=True
- ).tail(self.z_smooth_n)
- # get average zscore for last z_smooth_n for each metric
- df_z_smooth = self.df_z_history.melt(value_name='z').groupby('index')['z'].mean().to_frame()
- df_z_smooth['3stddev'] = np.where(abs(df_z_smooth['z']) > 300, 1, 0)
- data_z = df_z_smooth['z'].add_suffix('_z').to_dict()
- # aggregate to chart level if specified
- if self.mode == 'per_chart':
- df_z_smooth['chart'] = ['.'.join(x[0:2]) + '_z' for x in df_z_smooth.index.str.split('.').to_list()]
- if self.per_chart_agg == 'absmax':
- data_z = \
- list(df_z_smooth.groupby('chart').agg({'z': lambda x: max(x, key=abs)})['z'].to_dict().values())[0]
- else:
- data_z = list(df_z_smooth.groupby('chart').agg({'z': [self.per_chart_agg]})['z'].to_dict().values())[0]
- data_3stddev = {}
- for k in data_z:
- data_3stddev[k.replace('_z', '')] = 1 if abs(data_z[k]) > 300 else 0
- return data_z, data_3stddev
- def get_data(self):
- if self.runs_counter <= self.burn_in or self.runs_counter % self.train_every_n == 0:
- self.train_model()
- data_z, data_3stddev = self.create_data(
- get_allmetrics(self.host, self.charts_in_scope, wide=True, col_sep='.').transpose())
- data = {**data_z, **data_3stddev}
- self.validate_charts('z', data_z, divisor=100)
- self.validate_charts('3stddev', data_3stddev)
- return data
|