median.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #include "median.h"
  3. // ----------------------------------------------------------------------------
  4. // median
  5. struct grouping_median {
  6. size_t series_size;
  7. size_t next_pos;
  8. NETDATA_DOUBLE percent;
  9. NETDATA_DOUBLE *series;
  10. };
  11. void grouping_create_median_internal(RRDR *r, const char *options, NETDATA_DOUBLE def) {
  12. long entries = r->group;
  13. if(entries < 10) entries = 10;
  14. struct grouping_median *g = (struct grouping_median *)onewayalloc_callocz(r->internal.owa, 1, sizeof(struct grouping_median));
  15. g->series = onewayalloc_mallocz(r->internal.owa, entries * sizeof(NETDATA_DOUBLE));
  16. g->series_size = (size_t)entries;
  17. g->percent = def;
  18. if(options && *options) {
  19. g->percent = str2ndd(options, NULL);
  20. if(!netdata_double_isnumber(g->percent)) g->percent = 0.0;
  21. if(g->percent < 0.0) g->percent = 0.0;
  22. if(g->percent > 50.0) g->percent = 50.0;
  23. }
  24. g->percent = g->percent / 100.0;
  25. r->internal.grouping_data = g;
  26. }
  27. void grouping_create_median(RRDR *r, const char *options) {
  28. grouping_create_median_internal(r, options, 0.0);
  29. }
  30. void grouping_create_trimmed_median1(RRDR *r, const char *options) {
  31. grouping_create_median_internal(r, options, 1.0);
  32. }
  33. void grouping_create_trimmed_median2(RRDR *r, const char *options) {
  34. grouping_create_median_internal(r, options, 2.0);
  35. }
  36. void grouping_create_trimmed_median3(RRDR *r, const char *options) {
  37. grouping_create_median_internal(r, options, 3.0);
  38. }
  39. void grouping_create_trimmed_median5(RRDR *r, const char *options) {
  40. grouping_create_median_internal(r, options, 5.0);
  41. }
  42. void grouping_create_trimmed_median10(RRDR *r, const char *options) {
  43. grouping_create_median_internal(r, options, 10.0);
  44. }
  45. void grouping_create_trimmed_median15(RRDR *r, const char *options) {
  46. grouping_create_median_internal(r, options, 15.0);
  47. }
  48. void grouping_create_trimmed_median20(RRDR *r, const char *options) {
  49. grouping_create_median_internal(r, options, 20.0);
  50. }
  51. void grouping_create_trimmed_median25(RRDR *r, const char *options) {
  52. grouping_create_median_internal(r, options, 25.0);
  53. }
  54. // resets when switches dimensions
  55. // so, clear everything to restart
  56. void grouping_reset_median(RRDR *r) {
  57. struct grouping_median *g = (struct grouping_median *)r->internal.grouping_data;
  58. g->next_pos = 0;
  59. }
  60. void grouping_free_median(RRDR *r) {
  61. struct grouping_median *g = (struct grouping_median *)r->internal.grouping_data;
  62. if(g) onewayalloc_freez(r->internal.owa, g->series);
  63. onewayalloc_freez(r->internal.owa, r->internal.grouping_data);
  64. r->internal.grouping_data = NULL;
  65. }
  66. void grouping_add_median(RRDR *r, NETDATA_DOUBLE value) {
  67. struct grouping_median *g = (struct grouping_median *)r->internal.grouping_data;
  68. if(unlikely(g->next_pos >= g->series_size)) {
  69. g->series = onewayalloc_doublesize( r->internal.owa, g->series, g->series_size * sizeof(NETDATA_DOUBLE));
  70. g->series_size *= 2;
  71. }
  72. g->series[g->next_pos++] = value;
  73. }
  74. NETDATA_DOUBLE grouping_flush_median(RRDR *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr) {
  75. struct grouping_median *g = (struct grouping_median *)r->internal.grouping_data;
  76. size_t available_slots = g->next_pos;
  77. NETDATA_DOUBLE value;
  78. if(unlikely(!available_slots)) {
  79. value = 0.0;
  80. *rrdr_value_options_ptr |= RRDR_VALUE_EMPTY;
  81. }
  82. else if(available_slots == 1) {
  83. value = g->series[0];
  84. }
  85. else {
  86. sort_series(g->series, available_slots);
  87. size_t start_slot = 0;
  88. size_t end_slot = available_slots - 1;
  89. if(g->percent > 0.0) {
  90. NETDATA_DOUBLE min = g->series[0];
  91. NETDATA_DOUBLE max = g->series[available_slots - 1];
  92. NETDATA_DOUBLE delta = (max - min) * g->percent;
  93. NETDATA_DOUBLE wanted_min = min + delta;
  94. NETDATA_DOUBLE wanted_max = max - delta;
  95. for (start_slot = 0; start_slot < available_slots; start_slot++)
  96. if (g->series[start_slot] >= wanted_min) break;
  97. for (end_slot = available_slots - 1; end_slot > start_slot; end_slot--)
  98. if (g->series[end_slot] <= wanted_max) break;
  99. }
  100. if(start_slot == end_slot)
  101. value = g->series[start_slot];
  102. else
  103. value = median_on_sorted_series(&g->series[start_slot], end_slot - start_slot + 1);
  104. }
  105. if(unlikely(!netdata_double_isnumber(value))) {
  106. value = 0.0;
  107. *rrdr_value_options_ptr |= RRDR_VALUE_EMPTY;
  108. }
  109. //log_series_to_stderr(g->series, g->next_pos, value, "median");
  110. g->next_pos = 0;
  111. return value;
  112. }