ebpf_hardirq.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #include "ebpf.h"
  3. #include "ebpf_hardirq.h"
  4. struct config hardirq_config = { .first_section = NULL,
  5. .last_section = NULL,
  6. .mutex = NETDATA_MUTEX_INITIALIZER,
  7. .index = { .avl_tree = { .root = NULL, .compar = appconfig_section_compare },
  8. .rwlock = AVL_LOCK_INITIALIZER } };
  9. #define HARDIRQ_MAP_LATENCY 0
  10. #define HARDIRQ_MAP_LATENCY_STATIC 1
  11. static ebpf_local_maps_t hardirq_maps[] = {
  12. {
  13. .name = "tbl_hardirq",
  14. .internal_input = NETDATA_HARDIRQ_MAX_IRQS,
  15. .user_input = 0,
  16. .type = NETDATA_EBPF_MAP_STATIC,
  17. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED
  18. },
  19. {
  20. .name = "tbl_hardirq_static",
  21. .internal_input = HARDIRQ_EBPF_STATIC_END,
  22. .user_input = 0,
  23. .type = NETDATA_EBPF_MAP_STATIC,
  24. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED
  25. },
  26. /* end */
  27. {
  28. .name = NULL,
  29. .internal_input = 0,
  30. .user_input = 0,
  31. .type = NETDATA_EBPF_MAP_CONTROLLER,
  32. .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED
  33. }
  34. };
  35. #define HARDIRQ_TP_CLASS_IRQ "irq"
  36. #define HARDIRQ_TP_CLASS_IRQ_VECTORS "irq_vectors"
  37. static ebpf_tracepoint_t hardirq_tracepoints[] = {
  38. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ, .event = "irq_handler_entry"},
  39. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ, .event = "irq_handler_exit"},
  40. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "thermal_apic_entry"},
  41. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "thermal_apic_exit"},
  42. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "threshold_apic_entry"},
  43. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "threshold_apic_exit"},
  44. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "error_apic_entry"},
  45. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "error_apic_exit"},
  46. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "deferred_error_apic_entry"},
  47. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "deferred_error_apic_exit"},
  48. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "spurious_apic_entry"},
  49. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "spurious_apic_exit"},
  50. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "call_function_entry"},
  51. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "call_function_exit"},
  52. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "call_function_single_entry"},
  53. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "call_function_single_exit"},
  54. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "reschedule_entry"},
  55. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "reschedule_exit"},
  56. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "local_timer_entry"},
  57. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "local_timer_exit"},
  58. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "irq_work_entry"},
  59. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "irq_work_exit"},
  60. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "x86_platform_ipi_entry"},
  61. {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "x86_platform_ipi_exit"},
  62. /* end */
  63. {.enabled = false, .class = NULL, .event = NULL}
  64. };
  65. static hardirq_static_val_t hardirq_static_vals[] = {
  66. {
  67. .idx = HARDIRQ_EBPF_STATIC_APIC_THERMAL,
  68. .name = "apic_thermal",
  69. .latency = 0
  70. },
  71. {
  72. .idx = HARDIRQ_EBPF_STATIC_APIC_THRESHOLD,
  73. .name = "apic_threshold",
  74. .latency = 0
  75. },
  76. {
  77. .idx = HARDIRQ_EBPF_STATIC_APIC_ERROR,
  78. .name = "apic_error",
  79. .latency = 0
  80. },
  81. {
  82. .idx = HARDIRQ_EBPF_STATIC_APIC_DEFERRED_ERROR,
  83. .name = "apic_deferred_error",
  84. .latency = 0
  85. },
  86. {
  87. .idx = HARDIRQ_EBPF_STATIC_APIC_SPURIOUS,
  88. .name = "apic_spurious",
  89. .latency = 0
  90. },
  91. {
  92. .idx = HARDIRQ_EBPF_STATIC_FUNC_CALL,
  93. .name = "func_call",
  94. .latency = 0
  95. },
  96. {
  97. .idx = HARDIRQ_EBPF_STATIC_FUNC_CALL_SINGLE,
  98. .name = "func_call_single",
  99. .latency = 0
  100. },
  101. {
  102. .idx = HARDIRQ_EBPF_STATIC_RESCHEDULE,
  103. .name = "reschedule",
  104. .latency = 0
  105. },
  106. {
  107. .idx = HARDIRQ_EBPF_STATIC_LOCAL_TIMER,
  108. .name = "local_timer",
  109. .latency = 0
  110. },
  111. {
  112. .idx = HARDIRQ_EBPF_STATIC_IRQ_WORK,
  113. .name = "irq_work",
  114. .latency = 0
  115. },
  116. {
  117. .idx = HARDIRQ_EBPF_STATIC_X86_PLATFORM_IPI,
  118. .name = "x86_platform_ipi",
  119. .latency = 0
  120. },
  121. };
  122. // store for "published" data from the reader thread, which the collector
  123. // thread will write to netdata agent.
  124. static avl_tree_lock hardirq_pub;
  125. // tmp store for dynamic hard IRQ values we get from a per-CPU eBPF map.
  126. static hardirq_ebpf_val_t *hardirq_ebpf_vals = NULL;
  127. // tmp store for static hard IRQ values we get from a per-CPU eBPF map.
  128. static hardirq_ebpf_static_val_t *hardirq_ebpf_static_vals = NULL;
  129. static struct netdata_static_thread hardirq_threads = {"HARDIRQ KERNEL",
  130. NULL, NULL, 1, NULL,
  131. NULL, NULL };
  132. static enum ebpf_threads_status ebpf_hardirq_exited = NETDATA_THREAD_EBPF_RUNNING;
  133. /**
  134. * Hardirq Exit
  135. *
  136. * Cancel child and exit.
  137. *
  138. * @param ptr thread data.
  139. */
  140. static void hardirq_exit(void *ptr)
  141. {
  142. ebpf_module_t *em = (ebpf_module_t *)ptr;
  143. if (!em->enabled) {
  144. em->enabled = NETDATA_MAIN_THREAD_EXITED;
  145. return;
  146. }
  147. ebpf_hardirq_exited = NETDATA_THREAD_EBPF_STOPPING;
  148. }
  149. /**
  150. * Hardirq clean up
  151. *
  152. * Clean up allocated memory.
  153. *
  154. * @param ptr thread data.
  155. */
  156. static void hardirq_cleanup(void *ptr)
  157. {
  158. ebpf_module_t *em = (ebpf_module_t *)ptr;
  159. if (ebpf_hardirq_exited != NETDATA_THREAD_EBPF_STOPPED)
  160. return;
  161. freez(hardirq_threads.thread);
  162. for (int i = 0; hardirq_tracepoints[i].class != NULL; i++) {
  163. ebpf_disable_tracepoint(&hardirq_tracepoints[i]);
  164. }
  165. freez(hardirq_ebpf_vals);
  166. freez(hardirq_ebpf_static_vals);
  167. hardirq_threads.enabled = NETDATA_MAIN_THREAD_EXITED;
  168. em->enabled = NETDATA_MAIN_THREAD_EXITED;
  169. }
  170. /*****************************************************************
  171. * MAIN LOOP
  172. *****************************************************************/
  173. /**
  174. * Compare hard IRQ values.
  175. *
  176. * @param a `hardirq_val_t *`.
  177. * @param b `hardirq_val_t *`.
  178. *
  179. * @return 0 if a==b, 1 if a>b, -1 if a<b.
  180. */
  181. static int hardirq_val_cmp(void *a, void *b)
  182. {
  183. hardirq_val_t *ptr1 = a;
  184. hardirq_val_t *ptr2 = b;
  185. if (ptr1->irq > ptr2->irq) {
  186. return 1;
  187. }
  188. else if (ptr1->irq < ptr2->irq) {
  189. return -1;
  190. }
  191. else {
  192. return 0;
  193. }
  194. }
  195. static void hardirq_read_latency_map(int mapfd)
  196. {
  197. hardirq_ebpf_key_t key = {};
  198. hardirq_ebpf_key_t next_key = {};
  199. hardirq_val_t search_v = {};
  200. hardirq_val_t *v = NULL;
  201. while (bpf_map_get_next_key(mapfd, &key, &next_key) == 0) {
  202. // get val for this key.
  203. int test = bpf_map_lookup_elem(mapfd, &key, hardirq_ebpf_vals);
  204. if (unlikely(test < 0)) {
  205. key = next_key;
  206. continue;
  207. }
  208. // is this IRQ saved yet?
  209. //
  210. // if not, make a new one, mark it as unsaved for now, and continue; we
  211. // will insert it at the end after all of its values are correctly set,
  212. // so that we can safely publish it to the collector within a single,
  213. // short locked operation.
  214. //
  215. // otherwise simply continue; we will only update the latency, which
  216. // can be republished safely without a lock.
  217. //
  218. // NOTE: lock isn't strictly necessary for this initial search, as only
  219. // this thread does writing, but the AVL is using a read-write lock so
  220. // there is no congestion.
  221. bool v_is_new = false;
  222. search_v.irq = key.irq;
  223. v = (hardirq_val_t *)avl_search_lock(&hardirq_pub, (avl_t *)&search_v);
  224. if (unlikely(v == NULL)) {
  225. // latency/name can only be added reliably at a later time.
  226. // when they're added, only then will we AVL insert.
  227. v = callocz(1, sizeof(hardirq_val_t));
  228. v->irq = key.irq;
  229. v->dim_exists = false;
  230. v_is_new = true;
  231. }
  232. // note two things:
  233. // 1. we must add up latency value for this IRQ across all CPUs.
  234. // 2. the name is unfortunately *not* available on all CPU maps - only
  235. // a single map contains the name, so we must find it. we only need
  236. // to copy it though if the IRQ is new for us.
  237. bool name_saved = false;
  238. uint64_t total_latency = 0;
  239. int i;
  240. int end = (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs;
  241. for (i = 0; i < end; i++) {
  242. total_latency += hardirq_ebpf_vals[i].latency/1000;
  243. // copy name for new IRQs.
  244. if (v_is_new && !name_saved && hardirq_ebpf_vals[i].name[0] != '\0') {
  245. strncpyz(
  246. v->name,
  247. hardirq_ebpf_vals[i].name,
  248. NETDATA_HARDIRQ_NAME_LEN
  249. );
  250. name_saved = true;
  251. }
  252. }
  253. // can now safely publish latency for existing IRQs.
  254. v->latency = total_latency;
  255. // can now safely publish new IRQ.
  256. if (v_is_new) {
  257. avl_t *check = avl_insert_lock(&hardirq_pub, (avl_t *)v);
  258. if (check != (avl_t *)v) {
  259. error("Internal error, cannot insert the AVL tree.");
  260. }
  261. }
  262. key = next_key;
  263. }
  264. }
  265. static void hardirq_read_latency_static_map(int mapfd)
  266. {
  267. uint32_t i;
  268. for (i = 0; i < HARDIRQ_EBPF_STATIC_END; i++) {
  269. uint32_t map_i = hardirq_static_vals[i].idx;
  270. int test = bpf_map_lookup_elem(mapfd, &map_i, hardirq_ebpf_static_vals);
  271. if (unlikely(test < 0)) {
  272. continue;
  273. }
  274. uint64_t total_latency = 0;
  275. int cpu_i;
  276. int end = (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs;
  277. for (cpu_i = 0; cpu_i < end; cpu_i++) {
  278. total_latency += hardirq_ebpf_static_vals[cpu_i].latency/1000;
  279. }
  280. hardirq_static_vals[i].latency = total_latency;
  281. }
  282. }
  283. /**
  284. * Read eBPF maps for hard IRQ.
  285. */
  286. static void *hardirq_reader(void *ptr)
  287. {
  288. netdata_thread_cleanup_push(hardirq_cleanup, ptr);
  289. heartbeat_t hb;
  290. heartbeat_init(&hb);
  291. ebpf_module_t *em = (ebpf_module_t *)ptr;
  292. usec_t step = NETDATA_HARDIRQ_SLEEP_MS * em->update_every;
  293. while (ebpf_hardirq_exited == NETDATA_THREAD_EBPF_RUNNING) {
  294. usec_t dt = heartbeat_next(&hb, step);
  295. UNUSED(dt);
  296. if (ebpf_hardirq_exited == NETDATA_THREAD_EBPF_STOPPING)
  297. break;
  298. hardirq_read_latency_map(hardirq_maps[HARDIRQ_MAP_LATENCY].map_fd);
  299. hardirq_read_latency_static_map(hardirq_maps[HARDIRQ_MAP_LATENCY_STATIC].map_fd);
  300. }
  301. ebpf_hardirq_exited = NETDATA_THREAD_EBPF_STOPPED;
  302. netdata_thread_cleanup_pop(1);
  303. return NULL;
  304. }
  305. static void hardirq_create_charts(int update_every)
  306. {
  307. ebpf_create_chart(
  308. NETDATA_EBPF_SYSTEM_GROUP,
  309. "hardirq_latency",
  310. "Hardware IRQ latency",
  311. EBPF_COMMON_DIMENSION_MILLISECONDS,
  312. "interrupts",
  313. NULL,
  314. NETDATA_EBPF_CHART_TYPE_STACKED,
  315. NETDATA_CHART_PRIO_HARDIRQ_LATENCY,
  316. NULL, NULL, 0, update_every,
  317. NETDATA_EBPF_MODULE_NAME_HARDIRQ
  318. );
  319. fflush(stdout);
  320. }
  321. static void hardirq_create_static_dims()
  322. {
  323. uint32_t i;
  324. for (i = 0; i < HARDIRQ_EBPF_STATIC_END; i++) {
  325. ebpf_write_global_dimension(
  326. hardirq_static_vals[i].name, hardirq_static_vals[i].name,
  327. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX]
  328. );
  329. }
  330. }
  331. // callback for avl tree traversal on `hardirq_pub`.
  332. static int hardirq_write_dims(void *entry, void *data)
  333. {
  334. UNUSED(data);
  335. hardirq_val_t *v = entry;
  336. // IRQs get dynamically added in, so add the dimension if we haven't yet.
  337. if (!v->dim_exists) {
  338. ebpf_write_global_dimension(
  339. v->name, v->name,
  340. ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX]
  341. );
  342. v->dim_exists = true;
  343. }
  344. write_chart_dimension(v->name, v->latency);
  345. return 1;
  346. }
  347. static inline void hardirq_write_static_dims()
  348. {
  349. uint32_t i;
  350. for (i = 0; i < HARDIRQ_EBPF_STATIC_END; i++) {
  351. write_chart_dimension(
  352. hardirq_static_vals[i].name,
  353. hardirq_static_vals[i].latency
  354. );
  355. }
  356. }
  357. /**
  358. * Main loop for this collector.
  359. */
  360. static void hardirq_collector(ebpf_module_t *em)
  361. {
  362. hardirq_ebpf_vals = callocz(
  363. (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs,
  364. sizeof(hardirq_ebpf_val_t)
  365. );
  366. hardirq_ebpf_static_vals = callocz(
  367. (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs,
  368. sizeof(hardirq_ebpf_static_val_t)
  369. );
  370. avl_init_lock(&hardirq_pub, hardirq_val_cmp);
  371. // create reader thread.
  372. hardirq_threads.thread = mallocz(sizeof(netdata_thread_t));
  373. hardirq_threads.start_routine = hardirq_reader;
  374. netdata_thread_create(
  375. hardirq_threads.thread,
  376. hardirq_threads.name,
  377. NETDATA_THREAD_OPTION_DEFAULT,
  378. hardirq_reader,
  379. em
  380. );
  381. // create chart and static dims.
  382. pthread_mutex_lock(&lock);
  383. hardirq_create_charts(em->update_every);
  384. hardirq_create_static_dims();
  385. ebpf_update_stats(&plugin_statistics, em);
  386. pthread_mutex_unlock(&lock);
  387. // loop and read from published data until ebpf plugin is closed.
  388. heartbeat_t hb;
  389. heartbeat_init(&hb);
  390. usec_t step = em->update_every * USEC_PER_SEC;
  391. //This will be cancelled by its parent
  392. while (!ebpf_exit_plugin) {
  393. (void)heartbeat_next(&hb, step);
  394. if (ebpf_exit_plugin)
  395. break;
  396. pthread_mutex_lock(&lock);
  397. // write dims now for all hitherto discovered IRQs.
  398. write_begin_chart(NETDATA_EBPF_SYSTEM_GROUP, "hardirq_latency");
  399. avl_traverse_lock(&hardirq_pub, hardirq_write_dims, NULL);
  400. hardirq_write_static_dims();
  401. write_end_chart();
  402. pthread_mutex_unlock(&lock);
  403. }
  404. }
  405. /*****************************************************************
  406. * EBPF HARDIRQ THREAD
  407. *****************************************************************/
  408. /**
  409. * Hard IRQ latency thread.
  410. *
  411. * @param ptr a `ebpf_module_t *`.
  412. * @return always NULL.
  413. */
  414. void *ebpf_hardirq_thread(void *ptr)
  415. {
  416. netdata_thread_cleanup_push(hardirq_exit, ptr);
  417. ebpf_module_t *em = (ebpf_module_t *)ptr;
  418. em->maps = hardirq_maps;
  419. if (!em->enabled) {
  420. goto endhardirq;
  421. }
  422. if (ebpf_enable_tracepoints(hardirq_tracepoints) == 0) {
  423. em->enabled = CONFIG_BOOLEAN_NO;
  424. goto endhardirq;
  425. }
  426. em->probe_links = ebpf_load_program(ebpf_plugin_dir, em, running_on_kernel, isrh, &em->objects);
  427. if (!em->probe_links) {
  428. em->enabled = CONFIG_BOOLEAN_NO;
  429. goto endhardirq;
  430. }
  431. hardirq_collector(em);
  432. endhardirq:
  433. if (!em->enabled)
  434. ebpf_update_disabled_plugin_stats(em);
  435. netdata_thread_cleanup_pop(1);
  436. return NULL;
  437. }