123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478 |
- // SPDX-License-Identifier: GPL-3.0-or-later
- #include "../libnetdata.h"
- // defaults are for compatibility
- // call clocks_init() once, to optimize these default settings
- static clockid_t clock_boottime_to_use = CLOCK_MONOTONIC;
- static clockid_t clock_monotonic_to_use = CLOCK_MONOTONIC;
- // the default clock resolution is 1ms
- #define DEFAULT_CLOCK_RESOLUTION_UT ((usec_t)0 * USEC_PER_SEC + (usec_t)1 * USEC_PER_MS)
- // the max clock resolution is 10ms
- #define MAX_CLOCK_RESOLUTION_UT ((usec_t)0 * USEC_PER_SEC + (usec_t)10 * USEC_PER_MS)
- usec_t clock_monotonic_resolution = DEFAULT_CLOCK_RESOLUTION_UT;
- usec_t clock_realtime_resolution = DEFAULT_CLOCK_RESOLUTION_UT;
- #ifndef HAVE_CLOCK_GETTIME
- inline int clock_gettime(clockid_t clk_id __maybe_unused, struct timespec *ts) {
- struct timeval tv;
- if(unlikely(gettimeofday(&tv, NULL) == -1)) {
- netdata_log_error("gettimeofday() failed.");
- return -1;
- }
- ts->tv_sec = tv.tv_sec;
- ts->tv_nsec = (long)((tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC);
- return 0;
- }
- #endif
- // Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time that is not subject to NTP adjustments
- // or the incremental adjustments performed by adjtime(3). This clock does not count time that the system is suspended
- static void test_clock_monotonic_raw(void) {
- #ifdef CLOCK_MONOTONIC_RAW
- struct timespec ts;
- if(clock_gettime(CLOCK_MONOTONIC_RAW, &ts) == -1 && errno == EINVAL)
- clock_monotonic_to_use = CLOCK_MONOTONIC;
- else
- clock_monotonic_to_use = CLOCK_MONOTONIC_RAW;
- #else
- clock_monotonic_to_use = CLOCK_MONOTONIC;
- #endif
- }
- // When running a binary with CLOCK_BOOTTIME defined on a system with a linux kernel older than Linux 2.6.39 the
- // clock_gettime(2) system call fails with EINVAL. In that case it must fall-back to CLOCK_MONOTONIC.
- static void test_clock_boottime(void) {
- struct timespec ts;
- if(clock_gettime(CLOCK_BOOTTIME, &ts) == -1 && errno == EINVAL)
- clock_boottime_to_use = clock_monotonic_to_use;
- else
- clock_boottime_to_use = CLOCK_BOOTTIME;
- }
- static usec_t get_clock_resolution(clockid_t clock) {
- struct timespec ts = { 0 };
- if(clock_getres(clock, &ts) == 0) {
- usec_t ret = (usec_t)ts.tv_sec * USEC_PER_SEC + (usec_t)ts.tv_nsec / NSEC_PER_USEC;
- if(!ret && ts.tv_nsec > 0 && ts.tv_nsec < NSEC_PER_USEC)
- return (usec_t)1;
- else if(ret > MAX_CLOCK_RESOLUTION_UT) {
- nd_log(NDLS_DAEMON, NDLP_ERR, "clock_getres(%d) returned %"PRIu64" usec is out of range, using defaults for clock resolution.", (int)clock, ret);
- return DEFAULT_CLOCK_RESOLUTION_UT;
- }
- return ret;
- }
- else {
- nd_log(NDLS_DAEMON, NDLP_ERR, "clock_getres(%d) failed, using defaults for clock resolution.", (int)clock);
- return DEFAULT_CLOCK_RESOLUTION_UT;
- }
- }
- // perform any initializations required for clocks
- void clocks_init(void) {
- // monotonic raw has to be tested before boottime
- test_clock_monotonic_raw();
- // boottime has to be tested after monotonic coarse
- test_clock_boottime();
- clock_monotonic_resolution = get_clock_resolution(clock_monotonic_to_use);
- clock_realtime_resolution = get_clock_resolution(CLOCK_REALTIME);
- }
- inline time_t now_sec(clockid_t clk_id) {
- struct timespec ts;
- if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
- netdata_log_error("clock_gettime(%d, ×pec) failed.", clk_id);
- return 0;
- }
- return ts.tv_sec;
- }
- inline usec_t now_usec(clockid_t clk_id) {
- struct timespec ts;
- if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
- netdata_log_error("clock_gettime(%d, ×pec) failed.", clk_id);
- return 0;
- }
- return (usec_t)ts.tv_sec * USEC_PER_SEC + (usec_t)(ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC;
- }
- inline int now_timeval(clockid_t clk_id, struct timeval *tv) {
- struct timespec ts;
- if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
- netdata_log_error("clock_gettime(%d, ×pec) failed.", clk_id);
- tv->tv_sec = 0;
- tv->tv_usec = 0;
- return -1;
- }
- tv->tv_sec = ts.tv_sec;
- tv->tv_usec = (suseconds_t)((ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC);
- return 0;
- }
- inline time_t now_realtime_sec(void) {
- return now_sec(CLOCK_REALTIME);
- }
- inline msec_t now_realtime_msec(void) {
- return now_usec(CLOCK_REALTIME) / USEC_PER_MS;
- }
- inline usec_t now_realtime_usec(void) {
- return now_usec(CLOCK_REALTIME);
- }
- inline int now_realtime_timeval(struct timeval *tv) {
- return now_timeval(CLOCK_REALTIME, tv);
- }
- inline time_t now_monotonic_sec(void) {
- return now_sec(clock_monotonic_to_use);
- }
- inline usec_t now_monotonic_usec(void) {
- return now_usec(clock_monotonic_to_use);
- }
- inline int now_monotonic_timeval(struct timeval *tv) {
- return now_timeval(clock_monotonic_to_use, tv);
- }
- inline time_t now_monotonic_high_precision_sec(void) {
- return now_sec(CLOCK_MONOTONIC);
- }
- inline usec_t now_monotonic_high_precision_usec(void) {
- return now_usec(CLOCK_MONOTONIC);
- }
- inline int now_monotonic_high_precision_timeval(struct timeval *tv) {
- return now_timeval(CLOCK_MONOTONIC, tv);
- }
- inline time_t now_boottime_sec(void) {
- return now_sec(clock_boottime_to_use);
- }
- inline usec_t now_boottime_usec(void) {
- return now_usec(clock_boottime_to_use);
- }
- inline int now_boottime_timeval(struct timeval *tv) {
- return now_timeval(clock_boottime_to_use, tv);
- }
- inline usec_t timeval_usec(struct timeval *tv) {
- return (usec_t)tv->tv_sec * USEC_PER_SEC + (tv->tv_usec % USEC_PER_SEC);
- }
- inline msec_t timeval_msec(struct timeval *tv) {
- return (msec_t)tv->tv_sec * MSEC_PER_SEC + ((tv->tv_usec % USEC_PER_SEC) / MSEC_PER_SEC);
- }
- inline susec_t dt_usec_signed(struct timeval *now, struct timeval *old) {
- usec_t ts1 = timeval_usec(now);
- usec_t ts2 = timeval_usec(old);
- if(likely(ts1 >= ts2)) return (susec_t)(ts1 - ts2);
- return -((susec_t)(ts2 - ts1));
- }
- inline usec_t dt_usec(struct timeval *now, struct timeval *old) {
- usec_t ts1 = timeval_usec(now);
- usec_t ts2 = timeval_usec(old);
- return (ts1 > ts2) ? (ts1 - ts2) : (ts2 - ts1);
- }
- #ifdef __linux__
- void sleep_to_absolute_time(usec_t usec) {
- static int einval_printed = 0, enotsup_printed = 0, eunknown_printed = 0;
- clockid_t clock = CLOCK_REALTIME;
- struct timespec req = {
- .tv_sec = (time_t)(usec / USEC_PER_SEC),
- .tv_nsec = (suseconds_t)((usec % USEC_PER_SEC) * NSEC_PER_USEC)
- };
- errno = 0;
- int ret = 0;
- while( (ret = clock_nanosleep(clock, TIMER_ABSTIME, &req, NULL)) != 0 ) {
- if(ret == EINTR) {
- errno = 0;
- continue;
- }
- else {
- if (ret == EINVAL) {
- if (!einval_printed) {
- einval_printed++;
- netdata_log_error("Invalid time given to clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
- clock,
- (long long)req.tv_sec,
- req.tv_nsec);
- }
- } else if (ret == ENOTSUP) {
- if (!enotsup_printed) {
- enotsup_printed++;
- netdata_log_error("Invalid clock id given to clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
- clock,
- (long long)req.tv_sec,
- req.tv_nsec);
- }
- } else {
- if (!eunknown_printed) {
- eunknown_printed++;
- netdata_log_error("Unknown return value %d from clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
- ret,
- clock,
- (long long)req.tv_sec,
- req.tv_nsec);
- }
- }
- sleep_usec(usec);
- }
- }
- };
- #endif
- #define HEARTBEAT_ALIGNMENT_STATISTICS_SIZE 10
- netdata_mutex_t heartbeat_alignment_mutex = NETDATA_MUTEX_INITIALIZER;
- static size_t heartbeat_alignment_id = 0;
- struct heartbeat_thread_statistics {
- size_t sequence;
- usec_t dt;
- };
- static struct heartbeat_thread_statistics heartbeat_alignment_values[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 };
- void heartbeat_statistics(usec_t *min_ptr, usec_t *max_ptr, usec_t *average_ptr, size_t *count_ptr) {
- struct heartbeat_thread_statistics current[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE];
- static struct heartbeat_thread_statistics old[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 };
- memcpy(current, heartbeat_alignment_values, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE);
- usec_t min = 0, max = 0, total = 0, average = 0;
- size_t i, count = 0;
- for(i = 0; i < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE ;i++) {
- if(current[i].sequence == old[i].sequence) continue;
- usec_t value = current[i].dt - old[i].dt;
- if(!count) {
- min = max = total = value;
- count = 1;
- }
- else {
- total += value;
- if(value < min) min = value;
- if(value > max) max = value;
- count++;
- }
- }
- if(count)
- average = total / count;
- if(min_ptr) *min_ptr = min;
- if(max_ptr) *max_ptr = max;
- if(average_ptr) *average_ptr = average;
- if(count_ptr) *count_ptr = count;
- memcpy(old, current, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE);
- }
- inline void heartbeat_init(heartbeat_t *hb) {
- hb->realtime = 0ULL;
- hb->randomness = (usec_t)250 * USEC_PER_MS + ((usec_t)(now_realtime_usec() * clock_realtime_resolution) % (250 * USEC_PER_MS));
- hb->randomness -= (hb->randomness % clock_realtime_resolution);
- netdata_mutex_lock(&heartbeat_alignment_mutex);
- hb->statistics_id = heartbeat_alignment_id;
- heartbeat_alignment_id++;
- netdata_mutex_unlock(&heartbeat_alignment_mutex);
- if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) {
- heartbeat_alignment_values[hb->statistics_id].dt = 0;
- heartbeat_alignment_values[hb->statistics_id].sequence = 0;
- }
- }
- // waits for the next heartbeat
- // it waits using the monotonic clock
- // it returns the dt using the realtime clock
- usec_t heartbeat_next(heartbeat_t *hb, usec_t tick) {
- if(unlikely(hb->randomness > tick / 2)) {
- // TODO: The heartbeat tick should be specified at the heartbeat_init() function
- usec_t tmp = (now_realtime_usec() * clock_realtime_resolution) % (tick / 2);
- nd_log_limit_static_global_var(erl, 10, 0);
- nd_log_limit(&erl, NDLS_DAEMON, NDLP_NOTICE,
- "heartbeat randomness of %"PRIu64" is too big for a tick of %"PRIu64" - setting it to %"PRIu64"",
- hb->randomness, tick, tmp);
- hb->randomness = tmp;
- }
- usec_t dt;
- usec_t now = now_realtime_usec();
- usec_t next = now - (now % tick) + tick + hb->randomness;
- // align the next time we want to the clock resolution
- if(next % clock_realtime_resolution)
- next = next - (next % clock_realtime_resolution) + clock_realtime_resolution;
- // sleep_usec() has a loop to guarantee we will sleep for at least the requested time.
- // According the specs, when we sleep for a relative time, clock adjustments should not affect the duration
- // we sleep.
- sleep_usec_with_now(next - now, now);
- now = now_realtime_usec();
- dt = now - hb->realtime;
- if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) {
- heartbeat_alignment_values[hb->statistics_id].dt += now - next;
- heartbeat_alignment_values[hb->statistics_id].sequence++;
- }
- if(unlikely(now < next)) {
- errno = 0;
- nd_log_limit_static_global_var(erl, 10, 0);
- nd_log_limit(&erl, NDLS_DAEMON, NDLP_NOTICE,
- "heartbeat clock: woke up %"PRIu64" microseconds earlier than expected "
- "(can be due to the CLOCK_REALTIME set to the past).",
- next - now);
- }
- else if(unlikely(now - next > tick / 2)) {
- errno = 0;
- nd_log_limit_static_global_var(erl, 10, 0);
- nd_log_limit(&erl, NDLS_DAEMON, NDLP_NOTICE,
- "heartbeat clock: woke up %"PRIu64" microseconds later than expected "
- "(can be due to system load or the CLOCK_REALTIME set to the future).",
- now - next);
- }
- if(unlikely(!hb->realtime)) {
- // the first time return zero
- dt = 0;
- }
- hb->realtime = now;
- return dt;
- }
- void sleep_usec_with_now(usec_t usec, usec_t started_ut) {
- // we expect microseconds (1.000.000 per second)
- // but timespec is nanoseconds (1.000.000.000 per second)
- struct timespec rem = { 0, 0 }, req = {
- .tv_sec = (time_t) (usec / USEC_PER_SEC),
- .tv_nsec = (suseconds_t) ((usec % USEC_PER_SEC) * NSEC_PER_USEC)
- };
- // make sure errno is not EINTR
- errno = 0;
- if(!started_ut)
- started_ut = now_realtime_usec();
- usec_t end_ut = started_ut + usec;
- while (nanosleep(&req, &rem) != 0) {
- if (likely(errno == EINTR && (rem.tv_sec || rem.tv_nsec))) {
- req = rem;
- rem = (struct timespec){ 0, 0 };
- // break an infinite loop
- errno = 0;
- usec_t now_ut = now_realtime_usec();
- if(now_ut >= end_ut)
- break;
- usec_t remaining_ut = (usec_t)req.tv_sec * USEC_PER_SEC + (usec_t)req.tv_nsec * NSEC_PER_USEC > usec;
- usec_t check_ut = now_ut - started_ut;
- if(remaining_ut > check_ut) {
- req = (struct timespec){
- .tv_sec = (time_t) ( check_ut / USEC_PER_SEC),
- .tv_nsec = (suseconds_t) ((check_ut % USEC_PER_SEC) * NSEC_PER_USEC)
- };
- }
- }
- else {
- netdata_log_error("Cannot nanosleep() for %"PRIu64" microseconds.", usec);
- break;
- }
- }
- }
- static inline collected_number uptime_from_boottime(void) {
- #ifdef CLOCK_BOOTTIME_IS_AVAILABLE
- return (collected_number)(now_boottime_usec() / USEC_PER_MS);
- #else
- netdata_log_error("uptime cannot be read from CLOCK_BOOTTIME on this system.");
- return 0;
- #endif
- }
- static procfile *read_proc_uptime_ff = NULL;
- static inline collected_number read_proc_uptime(char *filename) {
- if(unlikely(!read_proc_uptime_ff)) {
- read_proc_uptime_ff = procfile_open(filename, " \t", PROCFILE_FLAG_DEFAULT);
- if(unlikely(!read_proc_uptime_ff)) return 0;
- }
- read_proc_uptime_ff = procfile_readall(read_proc_uptime_ff);
- if(unlikely(!read_proc_uptime_ff)) return 0;
- if(unlikely(procfile_lines(read_proc_uptime_ff) < 1)) {
- netdata_log_error("/proc/uptime has no lines.");
- return 0;
- }
- if(unlikely(procfile_linewords(read_proc_uptime_ff, 0) < 1)) {
- netdata_log_error("/proc/uptime has less than 1 word in it.");
- return 0;
- }
- return (collected_number)(strtondd(procfile_lineword(read_proc_uptime_ff, 0, 0), NULL) * 1000.0);
- }
- inline collected_number uptime_msec(char *filename){
- static int use_boottime = -1;
- if(unlikely(use_boottime == -1)) {
- collected_number uptime_boottime = uptime_from_boottime();
- collected_number uptime_proc = read_proc_uptime(filename);
- long long delta = (long long)uptime_boottime - (long long)uptime_proc;
- if(delta < 0) delta = -delta;
- if(delta <= 1000 && uptime_boottime != 0) {
- procfile_close(read_proc_uptime_ff);
- netdata_log_info("Using now_boottime_usec() for uptime (dt is %lld ms)", delta);
- use_boottime = 1;
- }
- else if(uptime_proc != 0) {
- netdata_log_info("Using /proc/uptime for uptime (dt is %lld ms)", delta);
- use_boottime = 0;
- }
- else {
- netdata_log_error("Cannot find any way to read uptime on this system.");
- return 1;
- }
- }
- collected_number uptime;
- if(use_boottime)
- uptime = uptime_from_boottime();
- else
- uptime = read_proc_uptime(filename);
- return uptime;
- }
|