1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120 |
- // SPDX-License-Identifier: GPL-3.0-or-later
- #include "daemon/common.h"
- #include "database/KolmogorovSmirnovDist.h"
- #define MAX_POINTS 10000
- int enable_metric_correlations = CONFIG_BOOLEAN_YES;
- int metric_correlations_version = 1;
- WEIGHTS_METHOD default_metric_correlations_method = WEIGHTS_METHOD_MC_KS2;
- typedef struct weights_stats {
- NETDATA_DOUBLE max_base_high_ratio;
- size_t db_points;
- size_t result_points;
- size_t db_queries;
- size_t db_points_per_tier[RRD_STORAGE_TIERS];
- size_t binary_searches;
- } WEIGHTS_STATS;
- // ----------------------------------------------------------------------------
- // parse and render metric correlations methods
- static struct {
- const char *name;
- WEIGHTS_METHOD value;
- } weights_methods[] = {
- { "ks2" , WEIGHTS_METHOD_MC_KS2}
- , { "volume" , WEIGHTS_METHOD_MC_VOLUME}
- , { "anomaly-rate" , WEIGHTS_METHOD_ANOMALY_RATE}
- , { NULL , 0 }
- };
- WEIGHTS_METHOD weights_string_to_method(const char *method) {
- for(int i = 0; weights_methods[i].name ;i++)
- if(strcmp(method, weights_methods[i].name) == 0)
- return weights_methods[i].value;
- return default_metric_correlations_method;
- }
- const char *weights_method_to_string(WEIGHTS_METHOD method) {
- for(int i = 0; weights_methods[i].name ;i++)
- if(weights_methods[i].value == method)
- return weights_methods[i].name;
- return "unknown";
- }
- // ----------------------------------------------------------------------------
- // The results per dimension are aggregated into a dictionary
- typedef enum {
- RESULT_IS_BASE_HIGH_RATIO = (1 << 0),
- RESULT_IS_PERCENTAGE_OF_TIME = (1 << 1),
- } RESULT_FLAGS;
- struct register_result {
- RESULT_FLAGS flags;
- RRDCONTEXT_ACQUIRED *rca;
- RRDINSTANCE_ACQUIRED *ria;
- RRDMETRIC_ACQUIRED *rma;
- NETDATA_DOUBLE value;
- };
- static DICTIONARY *register_result_init() {
- DICTIONARY *results = dictionary_create(DICT_OPTION_SINGLE_THREADED);
- return results;
- }
- static void register_result_destroy(DICTIONARY *results) {
- dictionary_destroy(results);
- }
- static void register_result(DICTIONARY *results,
- RRDCONTEXT_ACQUIRED *rca,
- RRDINSTANCE_ACQUIRED *ria,
- RRDMETRIC_ACQUIRED *rma,
- NETDATA_DOUBLE value,
- RESULT_FLAGS flags,
- WEIGHTS_STATS *stats,
- bool register_zero) {
- if(!netdata_double_isnumber(value)) return;
- // make it positive
- NETDATA_DOUBLE v = fabsndd(value);
- // no need to store zero scored values
- if(unlikely(fpclassify(v) == FP_ZERO && !register_zero))
- return;
- // keep track of the max of the baseline / highlight ratio
- if(flags & RESULT_IS_BASE_HIGH_RATIO && v > stats->max_base_high_ratio)
- stats->max_base_high_ratio = v;
- struct register_result t = {
- .flags = flags,
- .rca = rca,
- .ria = ria,
- .rma = rma,
- .value = v
- };
- // we can use the pointer address or RMA as a unique key for each metric
- char buf[20 + 1];
- ssize_t len = snprintfz(buf, 20, "%p", rma);
- dictionary_set_advanced(results, buf, len + 1, &t, sizeof(struct register_result), NULL);
- }
- // ----------------------------------------------------------------------------
- // Generation of JSON output for the results
- static void results_header_to_json(DICTIONARY *results __maybe_unused, BUFFER *wb,
- time_t after, time_t before,
- time_t baseline_after, time_t baseline_before,
- size_t points, WEIGHTS_METHOD method,
- RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
- size_t examined_dimensions __maybe_unused, usec_t duration,
- WEIGHTS_STATS *stats) {
- buffer_sprintf(wb, "{\n"
- "\t\"after\": %lld,\n"
- "\t\"before\": %lld,\n"
- "\t\"duration\": %lld,\n"
- "\t\"points\": %zu,\n",
- (long long)after,
- (long long)before,
- (long long)(before - after),
- points
- );
- if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME)
- buffer_sprintf(wb, ""
- "\t\"baseline_after\": %lld,\n"
- "\t\"baseline_before\": %lld,\n"
- "\t\"baseline_duration\": %lld,\n"
- "\t\"baseline_points\": %zu,\n",
- (long long)baseline_after,
- (long long)baseline_before,
- (long long)(baseline_before - baseline_after),
- points << shifts
- );
- buffer_sprintf(wb, ""
- "\t\"statistics\": {\n"
- "\t\t\"query_time_ms\": %f,\n"
- "\t\t\"db_queries\": %zu,\n"
- "\t\t\"query_result_points\": %zu,\n"
- "\t\t\"binary_searches\": %zu,\n"
- "\t\t\"db_points_read\": %zu,\n"
- "\t\t\"db_points_per_tier\": [ ",
- (double)duration / (double)USEC_PER_MS,
- stats->db_queries,
- stats->result_points,
- stats->binary_searches,
- stats->db_points
- );
- for(size_t tier = 0; tier < storage_tiers ;tier++)
- buffer_sprintf(wb, "%s%zu", tier?", ":"", stats->db_points_per_tier[tier]);
- buffer_sprintf(wb, " ]\n"
- "\t},\n"
- "\t\"group\": \"%s\",\n"
- "\t\"method\": \"%s\",\n"
- "\t\"options\": \"",
- web_client_api_request_v1_data_group_to_string(group),
- weights_method_to_string(method)
- );
- web_client_api_request_v1_data_options_to_buffer(wb, options);
- }
- static size_t registered_results_to_json_charts(DICTIONARY *results, BUFFER *wb,
- time_t after, time_t before,
- time_t baseline_after, time_t baseline_before,
- size_t points, WEIGHTS_METHOD method,
- RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
- size_t examined_dimensions, usec_t duration,
- WEIGHTS_STATS *stats) {
- results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
- points, method, group, options, shifts, examined_dimensions, duration, stats);
- buffer_strcat(wb, "\",\n\t\"correlated_charts\": {\n");
- size_t charts = 0, chart_dims = 0, total_dimensions = 0;
- struct register_result *t;
- RRDINSTANCE_ACQUIRED *last_ria = NULL; // never access this - we use it only for comparison
- dfe_start_read(results, t) {
- if(t->ria != last_ria) {
- last_ria = t->ria;
- if(charts) buffer_strcat(wb, "\n\t\t\t}\n\t\t},\n");
- buffer_strcat(wb, "\t\t\"");
- buffer_strcat(wb, rrdinstance_acquired_id(t->ria));
- buffer_strcat(wb, "\": {\n");
- buffer_strcat(wb, "\t\t\t\"context\": \"");
- buffer_strcat(wb, rrdcontext_acquired_id(t->rca));
- buffer_strcat(wb, "\",\n\t\t\t\"dimensions\": {\n");
- charts++;
- chart_dims = 0;
- }
- if (chart_dims) buffer_sprintf(wb, ",\n");
- buffer_sprintf(wb, "\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, rrdmetric_acquired_name(t->rma), t->value);
- chart_dims++;
- total_dimensions++;
- }
- dfe_done(t);
- // close dimensions and chart
- if (total_dimensions)
- buffer_strcat(wb, "\n\t\t\t}\n\t\t}\n");
- // close correlated_charts
- buffer_sprintf(wb, "\t},\n"
- "\t\"correlated_dimensions\": %zu,\n"
- "\t\"total_dimensions_count\": %zu\n"
- "}\n",
- total_dimensions,
- examined_dimensions
- );
- return total_dimensions;
- }
- static size_t registered_results_to_json_contexts(DICTIONARY *results, BUFFER *wb,
- time_t after, time_t before,
- time_t baseline_after, time_t baseline_before,
- size_t points, WEIGHTS_METHOD method,
- RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
- size_t examined_dimensions, usec_t duration,
- WEIGHTS_STATS *stats) {
- results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
- points, method, group, options, shifts, examined_dimensions, duration, stats);
- buffer_strcat(wb, "\",\n\t\"contexts\": {\n");
- size_t contexts = 0, charts = 0, total_dimensions = 0, context_dims = 0, chart_dims = 0;
- NETDATA_DOUBLE contexts_total_weight = 0.0, charts_total_weight = 0.0;
- struct register_result *t;
- RRDCONTEXT_ACQUIRED *last_rca = NULL;
- RRDINSTANCE_ACQUIRED *last_ria = NULL;
- dfe_start_read(results, t) {
- if(t->rca != last_rca) {
- last_rca = t->rca;
- if(contexts)
- buffer_sprintf(wb, "\n"
- "\t\t\t\t\t},\n"
- "\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
- "\t\t\t\t}\n\t\t\t},\n"
- "\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n\t\t},\n"
- , charts_total_weight / (double)chart_dims
- , contexts_total_weight / (double)context_dims);
- buffer_strcat(wb, "\t\t\"");
- buffer_strcat(wb, rrdcontext_acquired_id(t->rca));
- buffer_strcat(wb, "\": {\n\t\t\t\"charts\":{\n");
- contexts++;
- charts = 0;
- context_dims = 0;
- contexts_total_weight = 0.0;
- last_ria = NULL;
- }
- if(t->ria != last_ria) {
- last_ria = t->ria;
- if(charts)
- buffer_sprintf(wb, "\n"
- "\t\t\t\t\t},\n"
- "\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
- "\t\t\t\t},\n"
- , charts_total_weight / (double)chart_dims);
- buffer_strcat(wb, "\t\t\t\t\"");
- buffer_strcat(wb, rrdinstance_acquired_id(t->ria));
- buffer_strcat(wb, "\": {\n");
- buffer_strcat(wb, "\t\t\t\t\t\"dimensions\": {\n");
- charts++;
- chart_dims = 0;
- charts_total_weight = 0.0;
- }
- if (chart_dims) buffer_sprintf(wb, ",\n");
- buffer_sprintf(wb, "\t\t\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, rrdmetric_acquired_name(t->rma), t->value);
- charts_total_weight += t->value;
- contexts_total_weight += t->value;
- chart_dims++;
- context_dims++;
- total_dimensions++;
- }
- dfe_done(t);
- // close dimensions and chart
- if (total_dimensions)
- buffer_sprintf(wb, "\n"
- "\t\t\t\t\t},\n"
- "\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
- "\t\t\t\t}\n"
- "\t\t\t},\n"
- "\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
- "\t\t}\n"
- , charts_total_weight / (double)chart_dims
- , contexts_total_weight / (double)context_dims);
- // close correlated_charts
- buffer_sprintf(wb, "\t},\n"
- "\t\"weighted_dimensions\": %zu,\n"
- "\t\"total_dimensions_count\": %zu\n"
- "}\n",
- total_dimensions,
- examined_dimensions
- );
- return total_dimensions;
- }
- // ----------------------------------------------------------------------------
- // KS2 algorithm functions
- typedef long int DIFFS_NUMBERS;
- #define DOUBLE_TO_INT_MULTIPLIER 100000
- static inline int binary_search_bigger_than(const DIFFS_NUMBERS arr[], int left, int size, DIFFS_NUMBERS K) {
- // binary search to find the index the smallest index
- // of the first value in the array that is greater than K
- int right = size;
- while(left < right) {
- int middle = (int)(((unsigned int)(left + right)) >> 1);
- if(arr[middle] > K)
- right = middle;
- else
- left = middle + 1;
- }
- return left;
- }
- int compare_diffs(const void *left, const void *right) {
- DIFFS_NUMBERS lt = *(DIFFS_NUMBERS *)left;
- DIFFS_NUMBERS rt = *(DIFFS_NUMBERS *)right;
- // https://stackoverflow.com/a/3886497/1114110
- return (lt > rt) - (lt < rt);
- }
- static size_t calculate_pairs_diff(DIFFS_NUMBERS *diffs, NETDATA_DOUBLE *arr, size_t size) {
- NETDATA_DOUBLE *last = &arr[size - 1];
- size_t added = 0;
- while(last > arr) {
- NETDATA_DOUBLE second = *last--;
- NETDATA_DOUBLE first = *last;
- *diffs++ = (DIFFS_NUMBERS)((first - second) * (NETDATA_DOUBLE)DOUBLE_TO_INT_MULTIPLIER);
- added++;
- }
- return added;
- }
- static double ks_2samp(
- DIFFS_NUMBERS baseline_diffs[], int base_size,
- DIFFS_NUMBERS highlight_diffs[], int high_size,
- uint32_t base_shifts) {
- qsort(baseline_diffs, base_size, sizeof(DIFFS_NUMBERS), compare_diffs);
- qsort(highlight_diffs, high_size, sizeof(DIFFS_NUMBERS), compare_diffs);
- // Now we should be calculating this:
- //
- // For each number in the diffs arrays, we should find the index of the
- // number bigger than them in both arrays and calculate the % of this index
- // vs the total array size. Once we have the 2 percentages, we should find
- // the min and max across the delta of all of them.
- //
- // It should look like this:
- //
- // base_pcent = binary_search_bigger_than(...) / base_size;
- // high_pcent = binary_search_bigger_than(...) / high_size;
- // delta = base_pcent - high_pcent;
- // if(delta < min) min = delta;
- // if(delta > max) max = delta;
- //
- // This would require a lot of multiplications and divisions.
- //
- // To speed it up, we do the binary search to find the index of each number
- // but, then we divide the base index by the power of two number (shifts) it
- // is bigger than high index. So the 2 indexes are now comparable.
- // We also keep track of the original indexes with min and max, to properly
- // calculate their percentages once the loops finish.
- // initialize min and max using the first number of baseline_diffs
- DIFFS_NUMBERS K = baseline_diffs[0];
- int base_idx = binary_search_bigger_than(baseline_diffs, 1, base_size, K);
- int high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
- int delta = base_idx - (high_idx << base_shifts);
- int min = delta, max = delta;
- int base_min_idx = base_idx;
- int base_max_idx = base_idx;
- int high_min_idx = high_idx;
- int high_max_idx = high_idx;
- // do the baseline_diffs starting from 1 (we did position 0 above)
- for(int i = 1; i < base_size; i++) {
- K = baseline_diffs[i];
- base_idx = binary_search_bigger_than(baseline_diffs, i + 1, base_size, K); // starting from i, since data1 is sorted
- high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
- delta = base_idx - (high_idx << base_shifts);
- if(delta < min) {
- min = delta;
- base_min_idx = base_idx;
- high_min_idx = high_idx;
- }
- else if(delta > max) {
- max = delta;
- base_max_idx = base_idx;
- high_max_idx = high_idx;
- }
- }
- // do the highlight_diffs starting from 0
- for(int i = 0; i < high_size; i++) {
- K = highlight_diffs[i];
- base_idx = binary_search_bigger_than(baseline_diffs, 0, base_size, K);
- high_idx = binary_search_bigger_than(highlight_diffs, i + 1, high_size, K); // starting from i, since data2 is sorted
- delta = base_idx - (high_idx << base_shifts);
- if(delta < min) {
- min = delta;
- base_min_idx = base_idx;
- high_min_idx = high_idx;
- }
- else if(delta > max) {
- max = delta;
- base_max_idx = base_idx;
- high_max_idx = high_idx;
- }
- }
- // now we have the min, max and their indexes
- // properly calculate min and max as dmin and dmax
- double dbase_size = (double)base_size;
- double dhigh_size = (double)high_size;
- double dmin = ((double)base_min_idx / dbase_size) - ((double)high_min_idx / dhigh_size);
- double dmax = ((double)base_max_idx / dbase_size) - ((double)high_max_idx / dhigh_size);
- dmin = -dmin;
- if(islessequal(dmin, 0.0)) dmin = 0.0;
- else if(isgreaterequal(dmin, 1.0)) dmin = 1.0;
- double d;
- if(isgreaterequal(dmin, dmax)) d = dmin;
- else d = dmax;
- double en = round(dbase_size * dhigh_size / (dbase_size + dhigh_size));
- // under these conditions, KSfbar() crashes
- if(unlikely(isnan(en) || isinf(en) || en == 0.0 || isnan(d) || isinf(d)))
- return NAN;
- return KSfbar((int)en, d);
- }
- static double kstwo(
- NETDATA_DOUBLE baseline[], int baseline_points,
- NETDATA_DOUBLE highlight[], int highlight_points,
- uint32_t base_shifts) {
- // -1 in size, since the calculate_pairs_diffs() returns one less point
- DIFFS_NUMBERS baseline_diffs[baseline_points - 1];
- DIFFS_NUMBERS highlight_diffs[highlight_points - 1];
- int base_size = (int)calculate_pairs_diff(baseline_diffs, baseline, baseline_points);
- int high_size = (int)calculate_pairs_diff(highlight_diffs, highlight, highlight_points);
- if(unlikely(!base_size || !high_size))
- return NAN;
- if(unlikely(base_size != baseline_points - 1 || high_size != highlight_points - 1)) {
- error("Metric correlations: internal error - calculate_pairs_diff() returns the wrong number of entries");
- return NAN;
- }
- return ks_2samp(baseline_diffs, base_size, highlight_diffs, high_size, base_shifts);
- }
- NETDATA_DOUBLE *rrd2rrdr_ks2(
- ONEWAYALLOC *owa, RRDHOST *host,
- RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
- time_t after, time_t before, size_t points, RRDR_OPTIONS options,
- RRDR_GROUPING group_method, const char *group_options, size_t tier,
- WEIGHTS_STATS *stats,
- size_t *entries
- ) {
- NETDATA_DOUBLE *ret = NULL;
- QUERY_TARGET_REQUEST qtr = {
- .host = host,
- .rca = rca,
- .ria = ria,
- .rma = rma,
- .after = after,
- .before = before,
- .points = points,
- .options = options,
- .group_method = group_method,
- .group_options = group_options,
- .tier = tier,
- .query_source = QUERY_SOURCE_API_WEIGHTS,
- .priority = STORAGE_PRIORITY_NORMAL,
- };
- RRDR *r = rrd2rrdr(owa, query_target_create(&qtr));
- if(!r)
- goto cleanup;
- stats->db_queries++;
- stats->result_points += r->internal.result_points_generated;
- stats->db_points += r->internal.db_points_read;
- for(size_t tr = 0; tr < storage_tiers ; tr++)
- stats->db_points_per_tier[tr] += r->internal.tier_points_read[tr];
- if(r->d != 1) {
- error("WEIGHTS: on query '%s' expected 1 dimension in RRDR but got %zu", r->internal.qt->id, r->d);
- goto cleanup;
- }
- if(unlikely(r->od[0] & RRDR_DIMENSION_HIDDEN))
- goto cleanup;
- if(unlikely(!(r->od[0] & RRDR_DIMENSION_QUERIED)))
- goto cleanup;
- if(unlikely(!(r->od[0] & RRDR_DIMENSION_NONZERO)))
- goto cleanup;
- if(rrdr_rows(r) < 2)
- goto cleanup;
- *entries = rrdr_rows(r);
- ret = onewayalloc_mallocz(owa, sizeof(NETDATA_DOUBLE) * rrdr_rows(r));
- // copy the points of the dimension to a contiguous array
- // there is no need to check for empty values, since empty values are already zero
- // https://github.com/netdata/netdata/blob/6e3144683a73a2024d51425b20ecfd569034c858/web/api/queries/average/average.c#L41-L43
- memcpy(ret, r->v, rrdr_rows(r) * sizeof(NETDATA_DOUBLE));
- cleanup:
- rrdr_free(owa, r);
- return ret;
- }
- static void rrdset_metric_correlations_ks2(
- RRDHOST *host,
- RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
- DICTIONARY *results,
- time_t baseline_after, time_t baseline_before,
- time_t after, time_t before,
- size_t points, RRDR_OPTIONS options,
- RRDR_GROUPING group_method, const char *group_options, size_t tier,
- uint32_t shifts,
- WEIGHTS_STATS *stats, bool register_zero
- ) {
- options |= RRDR_OPTION_NATURAL_POINTS;
- ONEWAYALLOC *owa = onewayalloc_create(16 * 1024);
- size_t high_points = 0;
- NETDATA_DOUBLE *highlight = rrd2rrdr_ks2(
- owa, host, rca, ria, rma, after, before, points,
- options, group_method, group_options, tier, stats, &high_points);
- if(!highlight)
- goto cleanup;
- size_t base_points = 0;
- NETDATA_DOUBLE *baseline = rrd2rrdr_ks2(
- owa, host, rca, ria, rma, baseline_after, baseline_before, high_points << shifts,
- options, group_method, group_options, tier, stats, &base_points);
- if(!baseline)
- goto cleanup;
- stats->binary_searches += 2 * (base_points - 1) + 2 * (high_points - 1);
- double prob = kstwo(baseline, (int)base_points, highlight, (int)high_points, shifts);
- if(!isnan(prob) && !isinf(prob)) {
- // these conditions should never happen, but still let's check
- if(unlikely(prob < 0.0)) {
- error("Metric correlations: kstwo() returned a negative number: %f", prob);
- prob = -prob;
- }
- if(unlikely(prob > 1.0)) {
- error("Metric correlations: kstwo() returned a number above 1.0: %f", prob);
- prob = 1.0;
- }
- // to spread the results evenly, 0.0 needs to be the less correlated and 1.0 the most correlated
- // so, we flip the result of kstwo()
- register_result(results, rca, ria, rma, 1.0 - prob, RESULT_IS_BASE_HIGH_RATIO, stats, register_zero);
- }
- cleanup:
- onewayalloc_destroy(owa);
- }
- // ----------------------------------------------------------------------------
- // VOLUME algorithm functions
- static void merge_query_value_to_stats(QUERY_VALUE *qv, WEIGHTS_STATS *stats) {
- stats->db_queries++;
- stats->result_points += qv->result_points;
- stats->db_points += qv->points_read;
- for(size_t tier = 0; tier < storage_tiers ; tier++)
- stats->db_points_per_tier[tier] += qv->storage_points_per_tier[tier];
- }
- static void rrdset_metric_correlations_volume(
- RRDHOST *host,
- RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
- DICTIONARY *results,
- time_t baseline_after, time_t baseline_before,
- time_t after, time_t before,
- RRDR_OPTIONS options, RRDR_GROUPING group_method, const char *group_options,
- size_t tier,
- WEIGHTS_STATS *stats, bool register_zero) {
- options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ABSOLUTE | RRDR_OPTION_NATURAL_POINTS;
- QUERY_VALUE baseline_average = rrdmetric2value(host, rca, ria, rma, baseline_after, baseline_before,
- options, group_method, group_options, tier, 0,
- QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_NORMAL);
- merge_query_value_to_stats(&baseline_average, stats);
- if(!netdata_double_isnumber(baseline_average.value)) {
- // this means no data for the baseline window, but we may have data for the highlighted one - assume zero
- baseline_average.value = 0.0;
- }
- QUERY_VALUE highlight_average = rrdmetric2value(host, rca, ria, rma, after, before,
- options, group_method, group_options, tier, 0,
- QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_NORMAL);
- merge_query_value_to_stats(&highlight_average, stats);
- if(!netdata_double_isnumber(highlight_average.value))
- return;
- if(baseline_average.value == highlight_average.value) {
- // they are the same - let's move on
- return;
- }
- char highlight_countif_options[50 + 1];
- snprintfz(highlight_countif_options, 50, "%s" NETDATA_DOUBLE_FORMAT, highlight_average.value < baseline_average.value ? "<" : ">", baseline_average.value);
- QUERY_VALUE highlight_countif = rrdmetric2value(host, rca, ria, rma, after, before,
- options, RRDR_GROUPING_COUNTIF, highlight_countif_options, tier, 0,
- QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_NORMAL);
- merge_query_value_to_stats(&highlight_countif, stats);
- if(!netdata_double_isnumber(highlight_countif.value)) {
- info("WEIGHTS: highlighted countif query failed, but highlighted average worked - strange...");
- return;
- }
- // this represents the percentage of time
- // the highlighted window was above/below the baseline window
- // (above or below depending on their averages)
- highlight_countif.value = highlight_countif.value / 100.0; // countif returns 0 - 100.0
- RESULT_FLAGS flags;
- NETDATA_DOUBLE pcent = NAN;
- if(isgreater(baseline_average.value, 0.0) || isless(baseline_average.value, 0.0)) {
- flags = RESULT_IS_BASE_HIGH_RATIO;
- pcent = (highlight_average.value - baseline_average.value) / baseline_average.value * highlight_countif.value;
- }
- else {
- flags = RESULT_IS_PERCENTAGE_OF_TIME;
- pcent = highlight_countif.value;
- }
- register_result(results, rca, ria, rma, pcent, flags, stats, register_zero);
- }
- // ----------------------------------------------------------------------------
- // ANOMALY RATE algorithm functions
- static void rrdset_weights_anomaly_rate(
- RRDHOST *host,
- RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
- DICTIONARY *results,
- time_t after, time_t before,
- RRDR_OPTIONS options, RRDR_GROUPING group_method, const char *group_options,
- size_t tier,
- WEIGHTS_STATS *stats, bool register_zero) {
- options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ANOMALY_BIT | RRDR_OPTION_NATURAL_POINTS;
- QUERY_VALUE qv = rrdmetric2value(host, rca, ria, rma, after, before,
- options, group_method, group_options, tier, 0,
- QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_NORMAL);
- merge_query_value_to_stats(&qv, stats);
- if(netdata_double_isnumber(qv.value))
- register_result(results, rca, ria, rma, qv.value, 0, stats, register_zero);
- }
- // ----------------------------------------------------------------------------
- int compare_netdata_doubles(const void *left, const void *right) {
- NETDATA_DOUBLE lt = *(NETDATA_DOUBLE *)left;
- NETDATA_DOUBLE rt = *(NETDATA_DOUBLE *)right;
- // https://stackoverflow.com/a/3886497/1114110
- return (lt > rt) - (lt < rt);
- }
- static inline int binary_search_bigger_than_netdata_double(const NETDATA_DOUBLE arr[], int left, int size, NETDATA_DOUBLE K) {
- // binary search to find the index the smallest index
- // of the first value in the array that is greater than K
- int right = size;
- while(left < right) {
- int middle = (int)(((unsigned int)(left + right)) >> 1);
- if(arr[middle] > K)
- right = middle;
- else
- left = middle + 1;
- }
- return left;
- }
- // ----------------------------------------------------------------------------
- // spread the results evenly according to their value
- static size_t spread_results_evenly(DICTIONARY *results, WEIGHTS_STATS *stats) {
- struct register_result *t;
- // count the dimensions
- size_t dimensions = dictionary_entries(results);
- if(!dimensions) return 0;
- if(stats->max_base_high_ratio == 0.0)
- stats->max_base_high_ratio = 1.0;
- // create an array of the right size and copy all the values in it
- NETDATA_DOUBLE slots[dimensions];
- dimensions = 0;
- dfe_start_read(results, t) {
- if(t->flags & (RESULT_IS_PERCENTAGE_OF_TIME))
- t->value = t->value * stats->max_base_high_ratio;
- slots[dimensions++] = t->value;
- }
- dfe_done(t);
- // sort the array with the values of all dimensions
- qsort(slots, dimensions, sizeof(NETDATA_DOUBLE), compare_netdata_doubles);
- // skip the duplicates in the sorted array
- NETDATA_DOUBLE last_value = NAN;
- size_t unique_values = 0;
- for(size_t i = 0; i < dimensions ;i++) {
- if(likely(slots[i] != last_value))
- slots[unique_values++] = last_value = slots[i];
- }
- // this cannot happen, but coverity thinks otherwise...
- if(!unique_values)
- unique_values = dimensions;
- // calculate the weight of each slot, using the number of unique values
- NETDATA_DOUBLE slot_weight = 1.0 / (NETDATA_DOUBLE)unique_values;
- dfe_start_read(results, t) {
- int slot = binary_search_bigger_than_netdata_double(slots, 0, (int)unique_values, t->value);
- NETDATA_DOUBLE v = slot * slot_weight;
- if(unlikely(v > 1.0)) v = 1.0;
- v = 1.0 - v;
- t->value = v;
- }
- dfe_done(t);
- return dimensions;
- }
- // ----------------------------------------------------------------------------
- // The main function
- int web_api_v1_weights(
- RRDHOST *host, BUFFER *wb, WEIGHTS_METHOD method, WEIGHTS_FORMAT format,
- RRDR_GROUPING group, const char *group_options,
- time_t baseline_after, time_t baseline_before,
- time_t after, time_t before,
- size_t points, RRDR_OPTIONS options, SIMPLE_PATTERN *contexts, size_t tier, size_t timeout) {
- WEIGHTS_STATS stats = {};
- DICTIONARY *results = register_result_init();
- DICTIONARY *metrics = NULL;
- char *error = NULL;
- int resp = HTTP_RESP_OK;
- // if the user didn't give a timeout
- // assume 60 seconds
- if(!timeout)
- timeout = 60 * MSEC_PER_SEC;
- // if the timeout is less than 1 second
- // make it at least 1 second
- if(timeout < (long)(1 * MSEC_PER_SEC))
- timeout = 1 * MSEC_PER_SEC;
- usec_t timeout_usec = timeout * USEC_PER_MS;
- usec_t started_usec = now_realtime_usec();
- if(!rrdr_relative_window_to_absolute(&after, &before))
- buffer_no_cacheable(wb);
- if (before <= after) {
- resp = HTTP_RESP_BAD_REQUEST;
- error = "Invalid selected time-range.";
- goto cleanup;
- }
- uint32_t shifts = 0;
- if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) {
- if(!points) points = 500;
- if(baseline_before <= API_RELATIVE_TIME_MAX)
- baseline_before += after;
- rrdr_relative_window_to_absolute(&baseline_after, &baseline_before);
- if (baseline_before <= baseline_after) {
- resp = HTTP_RESP_BAD_REQUEST;
- error = "Invalid baseline time-range.";
- goto cleanup;
- }
- // baseline should be a power of two multiple of highlight
- long long base_delta = baseline_before - baseline_after;
- long long high_delta = before - after;
- uint32_t multiplier = (uint32_t)round((double)base_delta / (double)high_delta);
- // check if the multiplier is a power of two
- // https://stackoverflow.com/a/600306/1114110
- if((multiplier & (multiplier - 1)) != 0) {
- // it is not power of two
- // let's find the closest power of two
- // https://stackoverflow.com/a/466242/1114110
- multiplier--;
- multiplier |= multiplier >> 1;
- multiplier |= multiplier >> 2;
- multiplier |= multiplier >> 4;
- multiplier |= multiplier >> 8;
- multiplier |= multiplier >> 16;
- multiplier++;
- }
- // convert the multiplier to the number of shifts
- // we need to do, to divide baseline numbers to match
- // the highlight ones
- while(multiplier > 1) {
- shifts++;
- multiplier = multiplier >> 1;
- }
- // if the baseline size will not comply to MAX_POINTS
- // lower the window of the baseline
- while(shifts && (points << shifts) > MAX_POINTS)
- shifts--;
- // if the baseline size still does not comply to MAX_POINTS
- // lower the resolution of the highlight and the baseline
- while((points << shifts) > MAX_POINTS)
- points = points >> 1;
- if(points < 15) {
- resp = HTTP_RESP_BAD_REQUEST;
- error = "Too few points available, at least 15 are needed.";
- goto cleanup;
- }
- // adjust the baseline to be multiplier times bigger than the highlight
- baseline_after = baseline_before - (high_delta << shifts);
- }
- size_t examined_dimensions = 0;
- bool register_zero = true;
- if(options & RRDR_OPTION_NONZERO) {
- register_zero = false;
- options &= ~RRDR_OPTION_NONZERO;
- }
- metrics = rrdcontext_all_metrics_to_dict(host, contexts);
- struct metric_entry *me;
- // for every metric_entry in the dictionary
- dfe_start_read(metrics, me) {
- usec_t now_usec = now_realtime_usec();
- if(now_usec - started_usec > timeout_usec) {
- error = "timed out";
- resp = HTTP_RESP_GATEWAY_TIMEOUT;
- goto cleanup;
- }
- examined_dimensions++;
- switch(method) {
- case WEIGHTS_METHOD_ANOMALY_RATE:
- options |= RRDR_OPTION_ANOMALY_BIT;
- rrdset_weights_anomaly_rate(
- host,
- me->rca, me->ria, me->rma,
- results,
- after, before,
- options, group, group_options, tier,
- &stats, register_zero
- );
- break;
- case WEIGHTS_METHOD_MC_VOLUME:
- rrdset_metric_correlations_volume(
- host,
- me->rca, me->ria, me->rma,
- results,
- baseline_after, baseline_before,
- after, before,
- options, group, group_options, tier,
- &stats, register_zero
- );
- break;
- default:
- case WEIGHTS_METHOD_MC_KS2:
- rrdset_metric_correlations_ks2(
- host,
- me->rca, me->ria, me->rma,
- results,
- baseline_after, baseline_before,
- after, before, points,
- options, group, group_options, tier, shifts,
- &stats, register_zero
- );
- break;
- }
- }
- dfe_done(me);
- if(!register_zero)
- options |= RRDR_OPTION_NONZERO;
- if(!(options & RRDR_OPTION_RETURN_RAW))
- spread_results_evenly(results, &stats);
- usec_t ended_usec = now_realtime_usec();
- // generate the json output we need
- buffer_flush(wb);
- size_t added_dimensions = 0;
- switch(format) {
- case WEIGHTS_FORMAT_CHARTS:
- added_dimensions =
- registered_results_to_json_charts(
- results, wb,
- after, before,
- baseline_after, baseline_before,
- points, method, group, options, shifts,
- examined_dimensions,
- ended_usec - started_usec, &stats);
- break;
- default:
- case WEIGHTS_FORMAT_CONTEXTS:
- added_dimensions =
- registered_results_to_json_contexts(
- results, wb,
- after, before,
- baseline_after, baseline_before,
- points, method, group, options, shifts,
- examined_dimensions,
- ended_usec - started_usec, &stats);
- break;
- }
- if(!added_dimensions) {
- error = "no results produced.";
- resp = HTTP_RESP_NOT_FOUND;
- }
- cleanup:
- if(metrics) dictionary_destroy(metrics);
- if(results) register_result_destroy(results);
- if(error) {
- buffer_flush(wb);
- buffer_sprintf(wb, "{\"error\": \"%s\" }", error);
- }
- return resp;
- }
- // ----------------------------------------------------------------------------
- // unittest
- /*
- Unit tests against the output of this:
- https://github.com/scipy/scipy/blob/4cf21e753cf937d1c6c2d2a0e372fbc1dbbeea81/scipy/stats/_stats_py.py#L7275-L7449
- import matplotlib.pyplot as plt
- import pandas as pd
- import numpy as np
- import scipy as sp
- from scipy import stats
- data1 = np.array([ 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 ])
- data2 = np.array([365, -123, 0])
- data1 = np.sort(data1)
- data2 = np.sort(data2)
- n1 = data1.shape[0]
- n2 = data2.shape[0]
- data_all = np.concatenate([data1, data2])
- cdf1 = np.searchsorted(data1, data_all, side='right') / n1
- cdf2 = np.searchsorted(data2, data_all, side='right') / n2
- print(data_all)
- print("\ndata1", data1, cdf1)
- print("\ndata2", data2, cdf2)
- cddiffs = cdf1 - cdf2
- print("\ncddiffs", cddiffs)
- minS = np.clip(-np.min(cddiffs), 0, 1)
- maxS = np.max(cddiffs)
- print("\nmin", minS)
- print("max", maxS)
- m, n = sorted([float(n1), float(n2)], reverse=True)
- en = m * n / (m + n)
- d = max(minS, maxS)
- prob = stats.distributions.kstwo.sf(d, np.round(en))
- print("\nprob", prob)
- */
- static int double_expect(double v, const char *str, const char *descr) {
- char buf[100 + 1];
- snprintfz(buf, 100, "%0.6f", v);
- int ret = strcmp(buf, str) ? 1 : 0;
- fprintf(stderr, "%s %s, expected %s, got %s\n", ret?"FAILED":"OK", descr, str, buf);
- return ret;
- }
- static int mc_unittest1(void) {
- int bs = 3, hs = 3;
- DIFFS_NUMBERS base[3] = { 1, 2, 3 };
- DIFFS_NUMBERS high[3] = { 3, 4, 6 };
- double prob = ks_2samp(base, bs, high, hs, 0);
- return double_expect(prob, "0.222222", "3x3");
- }
- static int mc_unittest2(void) {
- int bs = 6, hs = 3;
- DIFFS_NUMBERS base[6] = { 1, 2, 3, 10, 10, 15 };
- DIFFS_NUMBERS high[3] = { 3, 4, 6 };
- double prob = ks_2samp(base, bs, high, hs, 1);
- return double_expect(prob, "0.500000", "6x3");
- }
- static int mc_unittest3(void) {
- int bs = 12, hs = 3;
- DIFFS_NUMBERS base[12] = { 1, 2, 3, 10, 10, 15, 111, 19999, 8, 55, -1, -73 };
- DIFFS_NUMBERS high[3] = { 3, 4, 6 };
- double prob = ks_2samp(base, bs, high, hs, 2);
- return double_expect(prob, "0.347222", "12x3");
- }
- static int mc_unittest4(void) {
- int bs = 12, hs = 3;
- DIFFS_NUMBERS base[12] = { 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 };
- DIFFS_NUMBERS high[3] = { 365, -123, 0 };
- double prob = ks_2samp(base, bs, high, hs, 2);
- return double_expect(prob, "0.777778", "12x3");
- }
- int mc_unittest(void) {
- int errors = 0;
- errors += mc_unittest1();
- errors += mc_unittest2();
- errors += mc_unittest3();
- errors += mc_unittest4();
- return errors;
- }
|