query.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #include "query.h"
  3. #include "web/api/formatters/rrd2json.h"
  4. #include "rrdr.h"
  5. #include "average/average.h"
  6. #include "countif/countif.h"
  7. #include "incremental_sum/incremental_sum.h"
  8. #include "max/max.h"
  9. #include "median/median.h"
  10. #include "min/min.h"
  11. #include "sum/sum.h"
  12. #include "stddev/stddev.h"
  13. #include "ses/ses.h"
  14. #include "des/des.h"
  15. #include "percentile/percentile.h"
  16. #include "trimmed_mean/trimmed_mean.h"
  17. #define POINTS_TO_EXPAND_QUERY 5
  18. // ----------------------------------------------------------------------------
  19. static struct {
  20. const char *name;
  21. uint32_t hash;
  22. RRDR_GROUPING value;
  23. // One time initialization for the module.
  24. // This is called once, when netdata starts.
  25. void (*init)(void);
  26. // Allocate all required structures for a query.
  27. // This is called once for each netdata query.
  28. void (*create)(struct rrdresult *r, const char *options);
  29. // Cleanup collected values, but don't destroy the structures.
  30. // This is called when the query engine switches dimensions,
  31. // as part of the same query (so same chart, switching metric).
  32. void (*reset)(struct rrdresult *r);
  33. // Free all resources allocated for the query.
  34. void (*free)(struct rrdresult *r);
  35. // Add a single value into the calculation.
  36. // The module may decide to cache it, or use it in the fly.
  37. void (*add)(struct rrdresult *r, NETDATA_DOUBLE value);
  38. // Generate a single result for the values added so far.
  39. // More values and points may be requested later.
  40. // It is up to the module to reset its internal structures
  41. // when flushing it (so for a few modules it may be better to
  42. // continue after a flush as if nothing changed, for others a
  43. // cleanup of the internal structures may be required).
  44. NETDATA_DOUBLE (*flush)(struct rrdresult *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr);
  45. TIER_QUERY_FETCH tier_query_fetch;
  46. } api_v1_data_groups[] = {
  47. {.name = "average",
  48. .hash = 0,
  49. .value = RRDR_GROUPING_AVERAGE,
  50. .init = NULL,
  51. .create= grouping_create_average,
  52. .reset = grouping_reset_average,
  53. .free = grouping_free_average,
  54. .add = grouping_add_average,
  55. .flush = grouping_flush_average,
  56. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  57. },
  58. {.name = "mean", // alias on 'average'
  59. .hash = 0,
  60. .value = RRDR_GROUPING_AVERAGE,
  61. .init = NULL,
  62. .create= grouping_create_average,
  63. .reset = grouping_reset_average,
  64. .free = grouping_free_average,
  65. .add = grouping_add_average,
  66. .flush = grouping_flush_average,
  67. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  68. },
  69. {.name = "trimmed-mean1",
  70. .hash = 0,
  71. .value = RRDR_GROUPING_TRIMMED_MEAN1,
  72. .init = NULL,
  73. .create= grouping_create_trimmed_mean1,
  74. .reset = grouping_reset_trimmed_mean,
  75. .free = grouping_free_trimmed_mean,
  76. .add = grouping_add_trimmed_mean,
  77. .flush = grouping_flush_trimmed_mean,
  78. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  79. },
  80. {.name = "trimmed-mean2",
  81. .hash = 0,
  82. .value = RRDR_GROUPING_TRIMMED_MEAN2,
  83. .init = NULL,
  84. .create= grouping_create_trimmed_mean2,
  85. .reset = grouping_reset_trimmed_mean,
  86. .free = grouping_free_trimmed_mean,
  87. .add = grouping_add_trimmed_mean,
  88. .flush = grouping_flush_trimmed_mean,
  89. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  90. },
  91. {.name = "trimmed-mean3",
  92. .hash = 0,
  93. .value = RRDR_GROUPING_TRIMMED_MEAN3,
  94. .init = NULL,
  95. .create= grouping_create_trimmed_mean3,
  96. .reset = grouping_reset_trimmed_mean,
  97. .free = grouping_free_trimmed_mean,
  98. .add = grouping_add_trimmed_mean,
  99. .flush = grouping_flush_trimmed_mean,
  100. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  101. },
  102. {.name = "trimmed-mean5",
  103. .hash = 0,
  104. .value = RRDR_GROUPING_TRIMMED_MEAN5,
  105. .init = NULL,
  106. .create= grouping_create_trimmed_mean5,
  107. .reset = grouping_reset_trimmed_mean,
  108. .free = grouping_free_trimmed_mean,
  109. .add = grouping_add_trimmed_mean,
  110. .flush = grouping_flush_trimmed_mean,
  111. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  112. },
  113. {.name = "trimmed-mean10",
  114. .hash = 0,
  115. .value = RRDR_GROUPING_TRIMMED_MEAN10,
  116. .init = NULL,
  117. .create= grouping_create_trimmed_mean10,
  118. .reset = grouping_reset_trimmed_mean,
  119. .free = grouping_free_trimmed_mean,
  120. .add = grouping_add_trimmed_mean,
  121. .flush = grouping_flush_trimmed_mean,
  122. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  123. },
  124. {.name = "trimmed-mean15",
  125. .hash = 0,
  126. .value = RRDR_GROUPING_TRIMMED_MEAN15,
  127. .init = NULL,
  128. .create= grouping_create_trimmed_mean15,
  129. .reset = grouping_reset_trimmed_mean,
  130. .free = grouping_free_trimmed_mean,
  131. .add = grouping_add_trimmed_mean,
  132. .flush = grouping_flush_trimmed_mean,
  133. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  134. },
  135. {.name = "trimmed-mean20",
  136. .hash = 0,
  137. .value = RRDR_GROUPING_TRIMMED_MEAN20,
  138. .init = NULL,
  139. .create= grouping_create_trimmed_mean20,
  140. .reset = grouping_reset_trimmed_mean,
  141. .free = grouping_free_trimmed_mean,
  142. .add = grouping_add_trimmed_mean,
  143. .flush = grouping_flush_trimmed_mean,
  144. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  145. },
  146. {.name = "trimmed-mean25",
  147. .hash = 0,
  148. .value = RRDR_GROUPING_TRIMMED_MEAN25,
  149. .init = NULL,
  150. .create= grouping_create_trimmed_mean25,
  151. .reset = grouping_reset_trimmed_mean,
  152. .free = grouping_free_trimmed_mean,
  153. .add = grouping_add_trimmed_mean,
  154. .flush = grouping_flush_trimmed_mean,
  155. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  156. },
  157. {.name = "trimmed-mean",
  158. .hash = 0,
  159. .value = RRDR_GROUPING_TRIMMED_MEAN5,
  160. .init = NULL,
  161. .create= grouping_create_trimmed_mean5,
  162. .reset = grouping_reset_trimmed_mean,
  163. .free = grouping_free_trimmed_mean,
  164. .add = grouping_add_trimmed_mean,
  165. .flush = grouping_flush_trimmed_mean,
  166. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  167. },
  168. {.name = "incremental_sum",
  169. .hash = 0,
  170. .value = RRDR_GROUPING_INCREMENTAL_SUM,
  171. .init = NULL,
  172. .create= grouping_create_incremental_sum,
  173. .reset = grouping_reset_incremental_sum,
  174. .free = grouping_free_incremental_sum,
  175. .add = grouping_add_incremental_sum,
  176. .flush = grouping_flush_incremental_sum,
  177. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  178. },
  179. {.name = "incremental-sum",
  180. .hash = 0,
  181. .value = RRDR_GROUPING_INCREMENTAL_SUM,
  182. .init = NULL,
  183. .create= grouping_create_incremental_sum,
  184. .reset = grouping_reset_incremental_sum,
  185. .free = grouping_free_incremental_sum,
  186. .add = grouping_add_incremental_sum,
  187. .flush = grouping_flush_incremental_sum,
  188. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  189. },
  190. {.name = "median",
  191. .hash = 0,
  192. .value = RRDR_GROUPING_MEDIAN,
  193. .init = NULL,
  194. .create= grouping_create_median,
  195. .reset = grouping_reset_median,
  196. .free = grouping_free_median,
  197. .add = grouping_add_median,
  198. .flush = grouping_flush_median,
  199. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  200. },
  201. {.name = "trimmed-median1",
  202. .hash = 0,
  203. .value = RRDR_GROUPING_TRIMMED_MEDIAN1,
  204. .init = NULL,
  205. .create= grouping_create_trimmed_median1,
  206. .reset = grouping_reset_median,
  207. .free = grouping_free_median,
  208. .add = grouping_add_median,
  209. .flush = grouping_flush_median,
  210. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  211. },
  212. {.name = "trimmed-median2",
  213. .hash = 0,
  214. .value = RRDR_GROUPING_TRIMMED_MEDIAN2,
  215. .init = NULL,
  216. .create= grouping_create_trimmed_median2,
  217. .reset = grouping_reset_median,
  218. .free = grouping_free_median,
  219. .add = grouping_add_median,
  220. .flush = grouping_flush_median,
  221. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  222. },
  223. {.name = "trimmed-median3",
  224. .hash = 0,
  225. .value = RRDR_GROUPING_TRIMMED_MEDIAN3,
  226. .init = NULL,
  227. .create= grouping_create_trimmed_median3,
  228. .reset = grouping_reset_median,
  229. .free = grouping_free_median,
  230. .add = grouping_add_median,
  231. .flush = grouping_flush_median,
  232. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  233. },
  234. {.name = "trimmed-median5",
  235. .hash = 0,
  236. .value = RRDR_GROUPING_TRIMMED_MEDIAN5,
  237. .init = NULL,
  238. .create= grouping_create_trimmed_median5,
  239. .reset = grouping_reset_median,
  240. .free = grouping_free_median,
  241. .add = grouping_add_median,
  242. .flush = grouping_flush_median,
  243. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  244. },
  245. {.name = "trimmed-median10",
  246. .hash = 0,
  247. .value = RRDR_GROUPING_TRIMMED_MEDIAN10,
  248. .init = NULL,
  249. .create= grouping_create_trimmed_median10,
  250. .reset = grouping_reset_median,
  251. .free = grouping_free_median,
  252. .add = grouping_add_median,
  253. .flush = grouping_flush_median,
  254. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  255. },
  256. {.name = "trimmed-median15",
  257. .hash = 0,
  258. .value = RRDR_GROUPING_TRIMMED_MEDIAN15,
  259. .init = NULL,
  260. .create= grouping_create_trimmed_median15,
  261. .reset = grouping_reset_median,
  262. .free = grouping_free_median,
  263. .add = grouping_add_median,
  264. .flush = grouping_flush_median,
  265. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  266. },
  267. {.name = "trimmed-median20",
  268. .hash = 0,
  269. .value = RRDR_GROUPING_TRIMMED_MEDIAN20,
  270. .init = NULL,
  271. .create= grouping_create_trimmed_median20,
  272. .reset = grouping_reset_median,
  273. .free = grouping_free_median,
  274. .add = grouping_add_median,
  275. .flush = grouping_flush_median,
  276. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  277. },
  278. {.name = "trimmed-median25",
  279. .hash = 0,
  280. .value = RRDR_GROUPING_TRIMMED_MEDIAN25,
  281. .init = NULL,
  282. .create= grouping_create_trimmed_median25,
  283. .reset = grouping_reset_median,
  284. .free = grouping_free_median,
  285. .add = grouping_add_median,
  286. .flush = grouping_flush_median,
  287. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  288. },
  289. {.name = "trimmed-median",
  290. .hash = 0,
  291. .value = RRDR_GROUPING_TRIMMED_MEDIAN5,
  292. .init = NULL,
  293. .create= grouping_create_trimmed_median5,
  294. .reset = grouping_reset_median,
  295. .free = grouping_free_median,
  296. .add = grouping_add_median,
  297. .flush = grouping_flush_median,
  298. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  299. },
  300. {.name = "percentile25",
  301. .hash = 0,
  302. .value = RRDR_GROUPING_PERCENTILE25,
  303. .init = NULL,
  304. .create= grouping_create_percentile25,
  305. .reset = grouping_reset_percentile,
  306. .free = grouping_free_percentile,
  307. .add = grouping_add_percentile,
  308. .flush = grouping_flush_percentile,
  309. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  310. },
  311. {.name = "percentile50",
  312. .hash = 0,
  313. .value = RRDR_GROUPING_PERCENTILE50,
  314. .init = NULL,
  315. .create= grouping_create_percentile50,
  316. .reset = grouping_reset_percentile,
  317. .free = grouping_free_percentile,
  318. .add = grouping_add_percentile,
  319. .flush = grouping_flush_percentile,
  320. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  321. },
  322. {.name = "percentile75",
  323. .hash = 0,
  324. .value = RRDR_GROUPING_PERCENTILE75,
  325. .init = NULL,
  326. .create= grouping_create_percentile75,
  327. .reset = grouping_reset_percentile,
  328. .free = grouping_free_percentile,
  329. .add = grouping_add_percentile,
  330. .flush = grouping_flush_percentile,
  331. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  332. },
  333. {.name = "percentile80",
  334. .hash = 0,
  335. .value = RRDR_GROUPING_PERCENTILE80,
  336. .init = NULL,
  337. .create= grouping_create_percentile80,
  338. .reset = grouping_reset_percentile,
  339. .free = grouping_free_percentile,
  340. .add = grouping_add_percentile,
  341. .flush = grouping_flush_percentile,
  342. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  343. },
  344. {.name = "percentile90",
  345. .hash = 0,
  346. .value = RRDR_GROUPING_PERCENTILE90,
  347. .init = NULL,
  348. .create= grouping_create_percentile90,
  349. .reset = grouping_reset_percentile,
  350. .free = grouping_free_percentile,
  351. .add = grouping_add_percentile,
  352. .flush = grouping_flush_percentile,
  353. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  354. },
  355. {.name = "percentile95",
  356. .hash = 0,
  357. .value = RRDR_GROUPING_PERCENTILE95,
  358. .init = NULL,
  359. .create= grouping_create_percentile95,
  360. .reset = grouping_reset_percentile,
  361. .free = grouping_free_percentile,
  362. .add = grouping_add_percentile,
  363. .flush = grouping_flush_percentile,
  364. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  365. },
  366. {.name = "percentile97",
  367. .hash = 0,
  368. .value = RRDR_GROUPING_PERCENTILE97,
  369. .init = NULL,
  370. .create= grouping_create_percentile97,
  371. .reset = grouping_reset_percentile,
  372. .free = grouping_free_percentile,
  373. .add = grouping_add_percentile,
  374. .flush = grouping_flush_percentile,
  375. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  376. },
  377. {.name = "percentile98",
  378. .hash = 0,
  379. .value = RRDR_GROUPING_PERCENTILE98,
  380. .init = NULL,
  381. .create= grouping_create_percentile98,
  382. .reset = grouping_reset_percentile,
  383. .free = grouping_free_percentile,
  384. .add = grouping_add_percentile,
  385. .flush = grouping_flush_percentile,
  386. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  387. },
  388. {.name = "percentile99",
  389. .hash = 0,
  390. .value = RRDR_GROUPING_PERCENTILE99,
  391. .init = NULL,
  392. .create= grouping_create_percentile99,
  393. .reset = grouping_reset_percentile,
  394. .free = grouping_free_percentile,
  395. .add = grouping_add_percentile,
  396. .flush = grouping_flush_percentile,
  397. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  398. },
  399. {.name = "percentile",
  400. .hash = 0,
  401. .value = RRDR_GROUPING_PERCENTILE95,
  402. .init = NULL,
  403. .create= grouping_create_percentile95,
  404. .reset = grouping_reset_percentile,
  405. .free = grouping_free_percentile,
  406. .add = grouping_add_percentile,
  407. .flush = grouping_flush_percentile,
  408. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  409. },
  410. {.name = "min",
  411. .hash = 0,
  412. .value = RRDR_GROUPING_MIN,
  413. .init = NULL,
  414. .create= grouping_create_min,
  415. .reset = grouping_reset_min,
  416. .free = grouping_free_min,
  417. .add = grouping_add_min,
  418. .flush = grouping_flush_min,
  419. .tier_query_fetch = TIER_QUERY_FETCH_MIN
  420. },
  421. {.name = "max",
  422. .hash = 0,
  423. .value = RRDR_GROUPING_MAX,
  424. .init = NULL,
  425. .create= grouping_create_max,
  426. .reset = grouping_reset_max,
  427. .free = grouping_free_max,
  428. .add = grouping_add_max,
  429. .flush = grouping_flush_max,
  430. .tier_query_fetch = TIER_QUERY_FETCH_MAX
  431. },
  432. {.name = "sum",
  433. .hash = 0,
  434. .value = RRDR_GROUPING_SUM,
  435. .init = NULL,
  436. .create= grouping_create_sum,
  437. .reset = grouping_reset_sum,
  438. .free = grouping_free_sum,
  439. .add = grouping_add_sum,
  440. .flush = grouping_flush_sum,
  441. .tier_query_fetch = TIER_QUERY_FETCH_SUM
  442. },
  443. // standard deviation
  444. {.name = "stddev",
  445. .hash = 0,
  446. .value = RRDR_GROUPING_STDDEV,
  447. .init = NULL,
  448. .create= grouping_create_stddev,
  449. .reset = grouping_reset_stddev,
  450. .free = grouping_free_stddev,
  451. .add = grouping_add_stddev,
  452. .flush = grouping_flush_stddev,
  453. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  454. },
  455. {.name = "cv", // coefficient variation is calculated by stddev
  456. .hash = 0,
  457. .value = RRDR_GROUPING_CV,
  458. .init = NULL,
  459. .create= grouping_create_stddev, // not an error, stddev calculates this too
  460. .reset = grouping_reset_stddev, // not an error, stddev calculates this too
  461. .free = grouping_free_stddev, // not an error, stddev calculates this too
  462. .add = grouping_add_stddev, // not an error, stddev calculates this too
  463. .flush = grouping_flush_coefficient_of_variation,
  464. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  465. },
  466. {.name = "rsd", // alias of 'cv'
  467. .hash = 0,
  468. .value = RRDR_GROUPING_CV,
  469. .init = NULL,
  470. .create= grouping_create_stddev, // not an error, stddev calculates this too
  471. .reset = grouping_reset_stddev, // not an error, stddev calculates this too
  472. .free = grouping_free_stddev, // not an error, stddev calculates this too
  473. .add = grouping_add_stddev, // not an error, stddev calculates this too
  474. .flush = grouping_flush_coefficient_of_variation,
  475. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  476. },
  477. /*
  478. {.name = "mean", // same as average, no need to define it again
  479. .hash = 0,
  480. .value = RRDR_GROUPING_MEAN,
  481. .setup = NULL,
  482. .create= grouping_create_stddev,
  483. .reset = grouping_reset_stddev,
  484. .free = grouping_free_stddev,
  485. .add = grouping_add_stddev,
  486. .flush = grouping_flush_mean,
  487. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  488. },
  489. */
  490. /*
  491. {.name = "variance", // meaningless to offer
  492. .hash = 0,
  493. .value = RRDR_GROUPING_VARIANCE,
  494. .setup = NULL,
  495. .create= grouping_create_stddev,
  496. .reset = grouping_reset_stddev,
  497. .free = grouping_free_stddev,
  498. .add = grouping_add_stddev,
  499. .flush = grouping_flush_variance,
  500. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  501. },
  502. */
  503. // single exponential smoothing
  504. {.name = "ses",
  505. .hash = 0,
  506. .value = RRDR_GROUPING_SES,
  507. .init = grouping_init_ses,
  508. .create= grouping_create_ses,
  509. .reset = grouping_reset_ses,
  510. .free = grouping_free_ses,
  511. .add = grouping_add_ses,
  512. .flush = grouping_flush_ses,
  513. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  514. },
  515. {.name = "ema", // alias for 'ses'
  516. .hash = 0,
  517. .value = RRDR_GROUPING_SES,
  518. .init = NULL,
  519. .create= grouping_create_ses,
  520. .reset = grouping_reset_ses,
  521. .free = grouping_free_ses,
  522. .add = grouping_add_ses,
  523. .flush = grouping_flush_ses,
  524. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  525. },
  526. {.name = "ewma", // alias for ses
  527. .hash = 0,
  528. .value = RRDR_GROUPING_SES,
  529. .init = NULL,
  530. .create= grouping_create_ses,
  531. .reset = grouping_reset_ses,
  532. .free = grouping_free_ses,
  533. .add = grouping_add_ses,
  534. .flush = grouping_flush_ses,
  535. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  536. },
  537. // double exponential smoothing
  538. {.name = "des",
  539. .hash = 0,
  540. .value = RRDR_GROUPING_DES,
  541. .init = grouping_init_des,
  542. .create= grouping_create_des,
  543. .reset = grouping_reset_des,
  544. .free = grouping_free_des,
  545. .add = grouping_add_des,
  546. .flush = grouping_flush_des,
  547. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  548. },
  549. {.name = "countif",
  550. .hash = 0,
  551. .value = RRDR_GROUPING_COUNTIF,
  552. .init = NULL,
  553. .create= grouping_create_countif,
  554. .reset = grouping_reset_countif,
  555. .free = grouping_free_countif,
  556. .add = grouping_add_countif,
  557. .flush = grouping_flush_countif,
  558. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  559. },
  560. // terminator
  561. {.name = NULL,
  562. .hash = 0,
  563. .value = RRDR_GROUPING_UNDEFINED,
  564. .init = NULL,
  565. .create= grouping_create_average,
  566. .reset = grouping_reset_average,
  567. .free = grouping_free_average,
  568. .add = grouping_add_average,
  569. .flush = grouping_flush_average,
  570. .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
  571. }
  572. };
  573. void web_client_api_v1_init_grouping(void) {
  574. int i;
  575. for(i = 0; api_v1_data_groups[i].name ; i++) {
  576. api_v1_data_groups[i].hash = simple_hash(api_v1_data_groups[i].name);
  577. if(api_v1_data_groups[i].init)
  578. api_v1_data_groups[i].init();
  579. }
  580. }
  581. const char *group_method2string(RRDR_GROUPING group) {
  582. int i;
  583. for(i = 0; api_v1_data_groups[i].name ; i++) {
  584. if(api_v1_data_groups[i].value == group) {
  585. return api_v1_data_groups[i].name;
  586. }
  587. }
  588. return "unknown-group-method";
  589. }
  590. RRDR_GROUPING web_client_api_request_v1_data_group(const char *name, RRDR_GROUPING def) {
  591. int i;
  592. uint32_t hash = simple_hash(name);
  593. for(i = 0; api_v1_data_groups[i].name ; i++)
  594. if(unlikely(hash == api_v1_data_groups[i].hash && !strcmp(name, api_v1_data_groups[i].name)))
  595. return api_v1_data_groups[i].value;
  596. return def;
  597. }
  598. const char *web_client_api_request_v1_data_group_to_string(RRDR_GROUPING group) {
  599. int i;
  600. for(i = 0; api_v1_data_groups[i].name ; i++)
  601. if(unlikely(group == api_v1_data_groups[i].value))
  602. return api_v1_data_groups[i].name;
  603. return "unknown";
  604. }
  605. static void rrdr_set_grouping_function(RRDR *r, RRDR_GROUPING group_method) {
  606. int i, found = 0;
  607. for(i = 0; !found && api_v1_data_groups[i].name ;i++) {
  608. if(api_v1_data_groups[i].value == group_method) {
  609. r->internal.grouping_create = api_v1_data_groups[i].create;
  610. r->internal.grouping_reset = api_v1_data_groups[i].reset;
  611. r->internal.grouping_free = api_v1_data_groups[i].free;
  612. r->internal.grouping_add = api_v1_data_groups[i].add;
  613. r->internal.grouping_flush = api_v1_data_groups[i].flush;
  614. r->internal.tier_query_fetch = api_v1_data_groups[i].tier_query_fetch;
  615. found = 1;
  616. }
  617. }
  618. if(!found) {
  619. errno = 0;
  620. internal_error(true, "QUERY: grouping method %u not found. Using 'average'", (unsigned int)group_method);
  621. r->internal.grouping_create = grouping_create_average;
  622. r->internal.grouping_reset = grouping_reset_average;
  623. r->internal.grouping_free = grouping_free_average;
  624. r->internal.grouping_add = grouping_add_average;
  625. r->internal.grouping_flush = grouping_flush_average;
  626. r->internal.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE;
  627. }
  628. }
  629. // ----------------------------------------------------------------------------
  630. // helpers to find our way in RRDR
  631. static inline RRDR_VALUE_FLAGS *UNUSED_FUNCTION(rrdr_line_options)(RRDR *r, long rrdr_line) {
  632. return &r->o[ rrdr_line * r->d ];
  633. }
  634. static inline NETDATA_DOUBLE *UNUSED_FUNCTION(rrdr_line_values)(RRDR *r, long rrdr_line) {
  635. return &r->v[ rrdr_line * r->d ];
  636. }
  637. static inline long rrdr_line_init(RRDR *r, time_t t, long rrdr_line) {
  638. rrdr_line++;
  639. internal_error(rrdr_line >= (long)r->n,
  640. "QUERY: requested to step above RRDR size for query '%s'",
  641. r->internal.qt->id);
  642. internal_error(r->t[rrdr_line] != 0 && r->t[rrdr_line] != t,
  643. "QUERY: overwriting the timestamp of RRDR line %zu from %zu to %zu, of query '%s'",
  644. (size_t)rrdr_line, (size_t)r->t[rrdr_line], (size_t)t, r->internal.qt->id);
  645. // save the time
  646. r->t[rrdr_line] = t;
  647. return rrdr_line;
  648. }
  649. static inline void rrdr_done(RRDR *r, long rrdr_line) {
  650. r->rows = rrdr_line + 1;
  651. }
  652. // ----------------------------------------------------------------------------
  653. // tier management
  654. static bool query_metric_is_valid_tier(QUERY_METRIC *qm, size_t tier) {
  655. if(!qm->tiers[tier].db_metric_handle || !qm->tiers[tier].db_first_time_s || !qm->tiers[tier].db_last_time_s || !qm->tiers[tier].db_update_every_s)
  656. return false;
  657. return true;
  658. }
  659. static size_t query_metric_first_working_tier(QUERY_METRIC *qm) {
  660. for(size_t tier = 0; tier < storage_tiers ; tier++) {
  661. // find the db time-range for this tier for all metrics
  662. STORAGE_METRIC_HANDLE *db_metric_handle = qm->tiers[tier].db_metric_handle;
  663. time_t first_time_s = qm->tiers[tier].db_first_time_s;
  664. time_t last_time_s = qm->tiers[tier].db_last_time_s;
  665. time_t update_every_s = qm->tiers[tier].db_update_every_s;
  666. if(!db_metric_handle || !first_time_s || !last_time_s || !update_every_s)
  667. continue;
  668. return tier;
  669. }
  670. return 0;
  671. }
  672. static long query_plan_points_coverage_weight(time_t db_first_time_s, time_t db_last_time_s, time_t db_update_every_s, time_t after_wanted, time_t before_wanted, size_t points_wanted, size_t tier __maybe_unused) {
  673. if(db_first_time_s == 0 ||
  674. db_last_time_s == 0 ||
  675. db_update_every_s == 0 ||
  676. db_first_time_s > before_wanted ||
  677. db_last_time_s < after_wanted)
  678. return -LONG_MAX;
  679. long long common_first_t = MAX(db_first_time_s, after_wanted);
  680. long long common_last_t = MIN(db_last_time_s, before_wanted);
  681. long long time_coverage = (common_last_t - common_first_t) * 1000000LL / (before_wanted - after_wanted);
  682. long long points_wanted_in_coverage = (long long)points_wanted * time_coverage / 1000000LL;
  683. long long points_available = (common_last_t - common_first_t) / db_update_every_s;
  684. long long points_delta = (long)(points_available - points_wanted_in_coverage);
  685. long long points_coverage = (points_delta < 0) ? (long)(points_available * time_coverage / points_wanted_in_coverage) : time_coverage;
  686. // a way to benefit higher tiers
  687. // points_coverage += (long)tier * 10000;
  688. if(points_available <= 0)
  689. return -LONG_MAX;
  690. return (long)(points_coverage + (25000LL * tier)); // 2.5% benefit for each higher tier
  691. }
  692. static size_t query_metric_best_tier_for_timeframe(QUERY_METRIC *qm, time_t after_wanted, time_t before_wanted, size_t points_wanted) {
  693. if(unlikely(storage_tiers < 2))
  694. return 0;
  695. if(unlikely(after_wanted == before_wanted || points_wanted <= 0))
  696. return query_metric_first_working_tier(qm);
  697. time_t min_first_time_s = 0;
  698. time_t max_last_time_s = 0;
  699. for(size_t tier = 0; tier < storage_tiers ; tier++) {
  700. time_t first_time_s = qm->tiers[tier].db_first_time_s;
  701. time_t last_time_s = qm->tiers[tier].db_last_time_s;
  702. if(!min_first_time_s || (first_time_s && first_time_s < min_first_time_s))
  703. min_first_time_s = first_time_s;
  704. if(!max_last_time_s || (last_time_s && last_time_s > max_last_time_s))
  705. max_last_time_s = last_time_s;
  706. }
  707. for(size_t tier = 0; tier < storage_tiers ; tier++) {
  708. // find the db time-range for this tier for all metrics
  709. STORAGE_METRIC_HANDLE *db_metric_handle = qm->tiers[tier].db_metric_handle;
  710. time_t first_time_s = qm->tiers[tier].db_first_time_s;
  711. time_t last_time_s = qm->tiers[tier].db_last_time_s;
  712. time_t update_every_s = qm->tiers[tier].db_update_every_s;
  713. if( !db_metric_handle ||
  714. !first_time_s ||
  715. !last_time_s ||
  716. !update_every_s ||
  717. first_time_s > before_wanted ||
  718. last_time_s < after_wanted
  719. ) {
  720. qm->tiers[tier].weight = -LONG_MAX;
  721. continue;
  722. }
  723. internal_fatal(first_time_s > before_wanted || last_time_s < after_wanted, "QUERY: invalid db durations");
  724. qm->tiers[tier].weight = query_plan_points_coverage_weight(
  725. min_first_time_s, max_last_time_s, update_every_s,
  726. after_wanted, before_wanted, points_wanted, tier);
  727. }
  728. size_t best_tier = 0;
  729. for(size_t tier = 1; tier < storage_tiers ; tier++) {
  730. if(qm->tiers[tier].weight >= qm->tiers[best_tier].weight)
  731. best_tier = tier;
  732. }
  733. return best_tier;
  734. }
  735. static size_t rrddim_find_best_tier_for_timeframe(QUERY_TARGET *qt, time_t after_wanted, time_t before_wanted, size_t points_wanted) {
  736. if(unlikely(storage_tiers < 2))
  737. return 0;
  738. if(unlikely(after_wanted == before_wanted || points_wanted <= 0)) {
  739. internal_error(true, "QUERY: '%s' has invalid params to tier calculation", qt->id);
  740. return 0;
  741. }
  742. long weight[storage_tiers];
  743. for(size_t tier = 0; tier < storage_tiers ; tier++) {
  744. time_t common_first_time_s = 0;
  745. time_t common_last_time_s = 0;
  746. time_t common_update_every_s = 0;
  747. // find the db time-range for this tier for all metrics
  748. for(size_t i = 0, used = qt->query.used; i < used ; i++) {
  749. QUERY_METRIC *qm = &qt->query.array[i];
  750. time_t first_time_s = qm->tiers[tier].db_first_time_s;
  751. time_t last_time_s = qm->tiers[tier].db_last_time_s;
  752. time_t update_every_s = qm->tiers[tier].db_update_every_s;
  753. if(!first_time_s || !last_time_s || !update_every_s)
  754. continue;
  755. if(!common_first_time_s)
  756. common_first_time_s = first_time_s;
  757. else
  758. common_first_time_s = MIN(first_time_s, common_first_time_s);
  759. if(!common_last_time_s)
  760. common_last_time_s = last_time_s;
  761. else
  762. common_last_time_s = MAX(last_time_s, common_last_time_s);
  763. if(!common_update_every_s)
  764. common_update_every_s = update_every_s;
  765. else
  766. common_update_every_s = MIN(update_every_s, common_update_every_s);
  767. }
  768. weight[tier] = query_plan_points_coverage_weight(common_first_time_s, common_last_time_s, common_update_every_s, after_wanted, before_wanted, points_wanted, tier);
  769. }
  770. size_t best_tier = 0;
  771. for(size_t tier = 1; tier < storage_tiers ; tier++) {
  772. if(weight[tier] >= weight[best_tier])
  773. best_tier = tier;
  774. }
  775. if(weight[best_tier] == -LONG_MAX)
  776. best_tier = 0;
  777. return best_tier;
  778. }
  779. static time_t rrdset_find_natural_update_every_for_timeframe(QUERY_TARGET *qt, time_t after_wanted, time_t before_wanted, size_t points_wanted, RRDR_OPTIONS options, size_t tier) {
  780. size_t best_tier;
  781. if((options & RRDR_OPTION_SELECTED_TIER) && tier < storage_tiers)
  782. best_tier = tier;
  783. else
  784. best_tier = rrddim_find_best_tier_for_timeframe(qt, after_wanted, before_wanted, points_wanted);
  785. // find the db minimum update every for this tier for all metrics
  786. time_t common_update_every_s = default_rrd_update_every;
  787. for(size_t i = 0, used = qt->query.used; i < used ; i++) {
  788. QUERY_METRIC *qm = &qt->query.array[i];
  789. time_t update_every_s = qm->tiers[best_tier].db_update_every_s;
  790. if(!i)
  791. common_update_every_s = update_every_s;
  792. else
  793. common_update_every_s = MIN(update_every_s, common_update_every_s);
  794. }
  795. return common_update_every_s;
  796. }
  797. // ----------------------------------------------------------------------------
  798. // query ops
  799. typedef struct query_point {
  800. time_t end_time;
  801. time_t start_time;
  802. NETDATA_DOUBLE value;
  803. NETDATA_DOUBLE anomaly;
  804. SN_FLAGS flags;
  805. #ifdef NETDATA_INTERNAL_CHECKS
  806. size_t id;
  807. #endif
  808. } QUERY_POINT;
  809. QUERY_POINT QUERY_POINT_EMPTY = {
  810. .end_time = 0,
  811. .start_time = 0,
  812. .value = NAN,
  813. .anomaly = 0,
  814. .flags = SN_FLAG_NONE,
  815. #ifdef NETDATA_INTERNAL_CHECKS
  816. .id = 0,
  817. #endif
  818. };
  819. #ifdef NETDATA_INTERNAL_CHECKS
  820. #define query_point_set_id(point, point_id) (point).id = point_id
  821. #else
  822. #define query_point_set_id(point, point_id) debug_dummy()
  823. #endif
  824. typedef struct query_engine_ops {
  825. // configuration
  826. RRDR *r;
  827. QUERY_METRIC *qm;
  828. time_t view_update_every;
  829. time_t query_granularity;
  830. TIER_QUERY_FETCH tier_query_fetch;
  831. // query planer
  832. size_t current_plan;
  833. time_t current_plan_expire_time;
  834. time_t plan_expanded_after;
  835. time_t plan_expanded_before;
  836. // storage queries
  837. size_t tier;
  838. struct query_metric_tier *tier_ptr;
  839. struct storage_engine_query_handle *handle;
  840. STORAGE_POINT (*next_metric)(struct storage_engine_query_handle *handle);
  841. int (*is_finished)(struct storage_engine_query_handle *handle);
  842. void (*finalize)(struct storage_engine_query_handle *handle);
  843. // aggregating points over time
  844. void (*grouping_add)(struct rrdresult *r, NETDATA_DOUBLE value);
  845. NETDATA_DOUBLE (*grouping_flush)(struct rrdresult *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr);
  846. size_t group_points_non_zero;
  847. size_t group_points_added;
  848. NETDATA_DOUBLE group_anomaly_rate;
  849. RRDR_VALUE_FLAGS group_value_flags;
  850. // statistics
  851. size_t db_total_points_read;
  852. size_t db_points_read_per_tier[RRD_STORAGE_TIERS];
  853. } QUERY_ENGINE_OPS;
  854. // ----------------------------------------------------------------------------
  855. // query planer
  856. #define query_plan_should_switch_plan(ops, now) ((now) >= (ops)->current_plan_expire_time)
  857. static size_t query_planer_expand_duration_in_points(time_t this_update_every, time_t next_update_every) {
  858. time_t delta = this_update_every - next_update_every;
  859. if(delta < 0) delta = -delta;
  860. size_t points;
  861. if(delta < this_update_every * POINTS_TO_EXPAND_QUERY)
  862. points = POINTS_TO_EXPAND_QUERY;
  863. else
  864. points = (delta + this_update_every - 1) / this_update_every;
  865. return points;
  866. }
  867. static void query_planer_initialize_plans(QUERY_ENGINE_OPS *ops) {
  868. QUERY_METRIC *qm = ops->qm;
  869. for(size_t p = 0; p < qm->plan.used ; p++) {
  870. size_t tier = qm->plan.array[p].tier;
  871. time_t update_every = qm->tiers[tier].db_update_every_s;
  872. size_t points_to_add_to_after;
  873. if(p > 0) {
  874. // there is another plan before to this
  875. size_t tier0 = qm->plan.array[p - 1].tier;
  876. time_t update_every0 = qm->tiers[tier0].db_update_every_s;
  877. points_to_add_to_after = query_planer_expand_duration_in_points(update_every, update_every0);
  878. }
  879. else
  880. points_to_add_to_after = (tier == 0) ? 0 : POINTS_TO_EXPAND_QUERY;
  881. size_t points_to_add_to_before;
  882. if(p + 1 < qm->plan.used) {
  883. // there is another plan after to this
  884. size_t tier1 = qm->plan.array[p+1].tier;
  885. time_t update_every1 = qm->tiers[tier1].db_update_every_s;
  886. points_to_add_to_before = query_planer_expand_duration_in_points(update_every, update_every1);
  887. }
  888. else
  889. points_to_add_to_before = POINTS_TO_EXPAND_QUERY;
  890. time_t after = qm->plan.array[p].after - (time_t)(update_every * points_to_add_to_after);
  891. time_t before = qm->plan.array[p].before + (time_t)(update_every * points_to_add_to_before);
  892. qm->plan.array[p].expanded_after = after;
  893. qm->plan.array[p].expanded_before = before;
  894. struct query_metric_tier *tier_ptr = &qm->tiers[tier];
  895. tier_ptr->eng->api.query_ops.init(
  896. tier_ptr->db_metric_handle,
  897. &qm->plan.array[p].handle,
  898. after, before,
  899. ops->r->internal.qt->request.priority);
  900. qm->plan.array[p].next_metric = tier_ptr->eng->api.query_ops.next_metric;
  901. qm->plan.array[p].is_finished = tier_ptr->eng->api.query_ops.is_finished;
  902. qm->plan.array[p].finalize = tier_ptr->eng->api.query_ops.finalize;
  903. qm->plan.array[p].initialized = true;
  904. qm->plan.array[p].finalized = false;
  905. }
  906. }
  907. static void query_planer_finalize_plan(QUERY_ENGINE_OPS *ops, size_t plan_id) {
  908. QUERY_METRIC *qm = ops->qm;
  909. if(qm->plan.array[plan_id].initialized && !qm->plan.array[plan_id].finalized) {
  910. qm->plan.array[plan_id].finalize(&qm->plan.array[plan_id].handle);
  911. qm->plan.array[plan_id].initialized = false;
  912. qm->plan.array[plan_id].finalized = true;
  913. qm->plan.array[plan_id].next_metric = NULL;
  914. qm->plan.array[plan_id].is_finished = NULL;
  915. qm->plan.array[plan_id].finalize = NULL;
  916. if(ops->current_plan == plan_id) {
  917. ops->next_metric = NULL;
  918. ops->is_finished = NULL;
  919. ops->finalize = NULL;
  920. }
  921. }
  922. }
  923. static void query_planer_finalize_remaining_plans(QUERY_ENGINE_OPS *ops) {
  924. QUERY_METRIC *qm = ops->qm;
  925. for(size_t p = 0; p < qm->plan.used ; p++)
  926. query_planer_finalize_plan(ops, p);
  927. }
  928. static void query_planer_activate_plan(QUERY_ENGINE_OPS *ops, size_t plan_id, time_t overwrite_after __maybe_unused) {
  929. QUERY_METRIC *qm = ops->qm;
  930. internal_fatal(plan_id >= qm->plan.used, "QUERY: invalid plan_id given");
  931. internal_fatal(!qm->plan.array[plan_id].initialized, "QUERY: plan has not been initialized");
  932. internal_fatal(qm->plan.array[plan_id].finalized, "QUERY: plan has been finalized");
  933. internal_fatal(qm->plan.array[plan_id].after > qm->plan.array[plan_id].before, "QUERY: flipped after/before");
  934. ops->tier = qm->plan.array[plan_id].tier;
  935. ops->tier_ptr = &qm->tiers[ops->tier];
  936. ops->handle = &qm->plan.array[plan_id].handle;
  937. ops->next_metric = qm->plan.array[plan_id].next_metric;
  938. ops->is_finished = qm->plan.array[plan_id].is_finished;
  939. ops->finalize = qm->plan.array[plan_id].finalize;
  940. ops->current_plan = plan_id;
  941. if(plan_id + 1 < qm->plan.used && qm->plan.array[plan_id + 1].after < qm->plan.array[plan_id].before)
  942. ops->current_plan_expire_time = qm->plan.array[plan_id + 1].after;
  943. else
  944. ops->current_plan_expire_time = qm->plan.array[plan_id].before;
  945. ops->plan_expanded_after = qm->plan.array[plan_id].expanded_after;
  946. ops->plan_expanded_before = qm->plan.array[plan_id].expanded_before;
  947. }
  948. static bool query_planer_next_plan(QUERY_ENGINE_OPS *ops, time_t now, time_t last_point_end_time) {
  949. QUERY_METRIC *qm = ops->qm;
  950. size_t old_plan = ops->current_plan;
  951. time_t next_plan_before_time;
  952. do {
  953. ops->current_plan++;
  954. if (ops->current_plan >= qm->plan.used) {
  955. ops->current_plan = old_plan;
  956. ops->current_plan_expire_time = ops->r->internal.qt->window.before;
  957. // let the query run with current plan
  958. // we will not switch it
  959. return false;
  960. }
  961. next_plan_before_time = qm->plan.array[ops->current_plan].before;
  962. } while(now >= next_plan_before_time || last_point_end_time >= next_plan_before_time);
  963. if(!query_metric_is_valid_tier(qm, qm->plan.array[ops->current_plan].tier)) {
  964. ops->current_plan = old_plan;
  965. ops->current_plan_expire_time = ops->r->internal.qt->window.before;
  966. return false;
  967. }
  968. query_planer_finalize_plan(ops, old_plan);
  969. query_planer_activate_plan(ops, ops->current_plan, MIN(now, last_point_end_time));
  970. return true;
  971. }
  972. static int compare_query_plan_entries_on_start_time(const void *a, const void *b) {
  973. QUERY_PLAN_ENTRY *p1 = (QUERY_PLAN_ENTRY *)a;
  974. QUERY_PLAN_ENTRY *p2 = (QUERY_PLAN_ENTRY *)b;
  975. return (p1->after < p2->after)?-1:1;
  976. }
  977. static bool query_plan(QUERY_ENGINE_OPS *ops, time_t after_wanted, time_t before_wanted, size_t points_wanted) {
  978. QUERY_METRIC *qm = ops->qm;
  979. // put our selected tier as the first plan
  980. size_t selected_tier;
  981. if(ops->r->internal.query_options & RRDR_OPTION_SELECTED_TIER
  982. && ops->r->internal.qt->window.tier < storage_tiers
  983. && query_metric_is_valid_tier(qm, ops->r->internal.qt->window.tier)) {
  984. selected_tier = ops->r->internal.qt->window.tier;
  985. }
  986. else {
  987. selected_tier = query_metric_best_tier_for_timeframe(qm, after_wanted, before_wanted, points_wanted);
  988. if(ops->r->internal.query_options & RRDR_OPTION_SELECTED_TIER)
  989. ops->r->internal.query_options &= ~RRDR_OPTION_SELECTED_TIER;
  990. if(!query_metric_is_valid_tier(qm, selected_tier))
  991. return false;
  992. if(qm->tiers[selected_tier].db_first_time_s > before_wanted ||
  993. qm->tiers[selected_tier].db_last_time_s < after_wanted)
  994. return false;
  995. }
  996. qm->plan.used = 1;
  997. qm->plan.array[0].tier = selected_tier;
  998. qm->plan.array[0].after = (qm->tiers[selected_tier].db_first_time_s < after_wanted) ? after_wanted : qm->tiers[selected_tier].db_first_time_s;
  999. qm->plan.array[0].before = (qm->tiers[selected_tier].db_last_time_s > before_wanted) ? before_wanted : qm->tiers[selected_tier].db_last_time_s;
  1000. if(!(ops->r->internal.query_options & RRDR_OPTION_SELECTED_TIER)) {
  1001. // the selected tier
  1002. time_t selected_tier_first_time_s = qm->plan.array[0].after;
  1003. time_t selected_tier_last_time_s = qm->plan.array[0].before;
  1004. // check if our selected tier can start the query
  1005. if (selected_tier_first_time_s > after_wanted) {
  1006. // we need some help from other tiers
  1007. for (size_t tr = (int)selected_tier + 1; tr < storage_tiers; tr++) {
  1008. if(!query_metric_is_valid_tier(qm, tr))
  1009. continue;
  1010. // find the first time of this tier
  1011. time_t tier_first_time_s = qm->tiers[tr].db_first_time_s;
  1012. // can it help?
  1013. if (tier_first_time_s < selected_tier_first_time_s) {
  1014. // it can help us add detail at the beginning of the query
  1015. QUERY_PLAN_ENTRY t = {
  1016. .tier = tr,
  1017. .after = (tier_first_time_s < after_wanted) ? after_wanted : tier_first_time_s,
  1018. .before = selected_tier_first_time_s,
  1019. .initialized = false,
  1020. .finalized = false,
  1021. };
  1022. qm->plan.array[qm->plan.used++] = t;
  1023. internal_fatal(!t.after || !t.before, "QUERY: invalid plan selected");
  1024. // prepare for the tier
  1025. selected_tier_first_time_s = t.after;
  1026. if (t.after <= after_wanted)
  1027. break;
  1028. }
  1029. }
  1030. }
  1031. // check if our selected tier can finish the query
  1032. if (selected_tier_last_time_s < before_wanted) {
  1033. // we need some help from other tiers
  1034. for (int tr = (int)selected_tier - 1; tr >= 0; tr--) {
  1035. if(!query_metric_is_valid_tier(qm, tr))
  1036. continue;
  1037. // find the last time of this tier
  1038. time_t tier_last_time_s = qm->tiers[tr].db_last_time_s;
  1039. //buffer_sprintf(wb, ": EVAL BEFORE tier %d, %ld", tier, last_time_s);
  1040. // can it help?
  1041. if (tier_last_time_s > selected_tier_last_time_s) {
  1042. // it can help us add detail at the end of the query
  1043. QUERY_PLAN_ENTRY t = {
  1044. .tier = tr,
  1045. .after = selected_tier_last_time_s,
  1046. .before = (tier_last_time_s > before_wanted) ? before_wanted : tier_last_time_s,
  1047. .initialized = false,
  1048. .finalized = false,
  1049. };
  1050. qm->plan.array[qm->plan.used++] = t;
  1051. // prepare for the tier
  1052. selected_tier_last_time_s = t.before;
  1053. internal_fatal(!t.after || !t.before, "QUERY: invalid plan selected");
  1054. if (t.before >= before_wanted)
  1055. break;
  1056. }
  1057. }
  1058. }
  1059. }
  1060. // sort the query plan
  1061. if(qm->plan.used > 1)
  1062. qsort(&qm->plan.array, qm->plan.used, sizeof(QUERY_PLAN_ENTRY), compare_query_plan_entries_on_start_time);
  1063. if(!query_metric_is_valid_tier(qm, qm->plan.array[0].tier))
  1064. return false;
  1065. #ifdef NETDATA_INTERNAL_CHECKS
  1066. for(size_t p = 0; p < qm->plan.used ;p++) {
  1067. internal_fatal(qm->plan.array[p].after > qm->plan.array[p].before, "QUERY: flipped after/before");
  1068. internal_fatal(qm->plan.array[p].after < after_wanted, "QUERY: too small plan first time");
  1069. internal_fatal(qm->plan.array[p].before > before_wanted, "QUERY: too big plan last time");
  1070. }
  1071. #endif
  1072. query_planer_initialize_plans(ops);
  1073. query_planer_activate_plan(ops, 0, 0);
  1074. return true;
  1075. }
  1076. // ----------------------------------------------------------------------------
  1077. // dimension level query engine
  1078. #define query_interpolate_point(this_point, last_point, now) do { \
  1079. if(likely( \
  1080. /* the point to interpolate is more than 1s wide */ \
  1081. (this_point).end_time - (this_point).start_time > 1 \
  1082. \
  1083. /* the two points are exactly next to each other */ \
  1084. && (last_point).end_time == (this_point).start_time \
  1085. \
  1086. /* both points are valid numbers */ \
  1087. && netdata_double_isnumber((this_point).value) \
  1088. && netdata_double_isnumber((last_point).value) \
  1089. \
  1090. )) { \
  1091. (this_point).value = (last_point).value + ((this_point).value - (last_point).value) * (1.0 - (NETDATA_DOUBLE)((this_point).end_time - (now)) / (NETDATA_DOUBLE)((this_point).end_time - (this_point).start_time)); \
  1092. (this_point).end_time = now; \
  1093. } \
  1094. } while(0)
  1095. #define query_add_point_to_group(r, point, ops) do { \
  1096. if(likely(netdata_double_isnumber((point).value))) { \
  1097. if(likely(fpclassify((point).value) != FP_ZERO)) \
  1098. (ops)->group_points_non_zero++; \
  1099. \
  1100. if(unlikely((point).flags & SN_FLAG_RESET)) \
  1101. (ops)->group_value_flags |= RRDR_VALUE_RESET; \
  1102. \
  1103. (ops)->grouping_add(r, (point).value); \
  1104. } \
  1105. \
  1106. (ops)->group_points_added++; \
  1107. (ops)->group_anomaly_rate += (point).anomaly; \
  1108. } while(0)
  1109. static QUERY_ENGINE_OPS *rrd2rrdr_query_prep(RRDR *r, size_t dim_id_in_rrdr) {
  1110. QUERY_TARGET *qt = r->internal.qt;
  1111. QUERY_ENGINE_OPS *ops = onewayalloc_mallocz(r->internal.owa, sizeof(QUERY_ENGINE_OPS));
  1112. *ops = (QUERY_ENGINE_OPS) {
  1113. .r = r,
  1114. .qm = &qt->query.array[dim_id_in_rrdr],
  1115. .grouping_add = r->internal.grouping_add,
  1116. .grouping_flush = r->internal.grouping_flush,
  1117. .tier_query_fetch = r->internal.tier_query_fetch,
  1118. .view_update_every = r->update_every,
  1119. .query_granularity = (time_t)(r->update_every / r->group),
  1120. .group_value_flags = RRDR_VALUE_NOTHING,
  1121. };
  1122. if(!query_plan(ops, qt->window.after, qt->window.before, qt->window.points))
  1123. return NULL;
  1124. return ops;
  1125. }
  1126. static void rrd2rrdr_query_execute(RRDR *r, size_t dim_id_in_rrdr, QUERY_ENGINE_OPS *ops) {
  1127. QUERY_TARGET *qt = r->internal.qt;
  1128. QUERY_METRIC *qm = &qt->query.array[dim_id_in_rrdr]; (void)qm;
  1129. size_t points_wanted = qt->window.points;
  1130. time_t after_wanted = qt->window.after;
  1131. time_t before_wanted = qt->window.before; (void)before_wanted;
  1132. // bool debug_this = false;
  1133. // if(strcmp("user", string2str(rd->id)) == 0 && strcmp("system.cpu", string2str(rd->rrdset->id)) == 0)
  1134. // debug_this = true;
  1135. time_t max_date = 0,
  1136. min_date = 0;
  1137. size_t points_added = 0;
  1138. long rrdr_line = -1;
  1139. bool use_anomaly_bit_as_value = (r->internal.query_options & RRDR_OPTION_ANOMALY_BIT) ? true : false;
  1140. NETDATA_DOUBLE min = r->min, max = r->max;
  1141. QUERY_POINT last2_point = QUERY_POINT_EMPTY;
  1142. QUERY_POINT last1_point = QUERY_POINT_EMPTY;
  1143. QUERY_POINT new_point = QUERY_POINT_EMPTY;
  1144. // ONE POINT READ-AHEAD
  1145. // when we switch plans, we read-ahead a point from the next plan
  1146. // to join them smoothly at the exact time the next plan begins
  1147. STORAGE_POINT next1_point = STORAGE_POINT_UNSET;
  1148. time_t now_start_time = after_wanted - ops->query_granularity;
  1149. time_t now_end_time = after_wanted + ops->view_update_every - ops->query_granularity;
  1150. size_t db_points_read_since_plan_switch = 0; (void)db_points_read_since_plan_switch;
  1151. // The main loop, based on the query granularity we need
  1152. for( ; points_added < points_wanted ; now_start_time = now_end_time, now_end_time += ops->view_update_every) {
  1153. if(unlikely(query_plan_should_switch_plan(ops, now_end_time))) {
  1154. query_planer_next_plan(ops, now_end_time, new_point.end_time);
  1155. db_points_read_since_plan_switch = 0;
  1156. }
  1157. // read all the points of the db, prior to the time we need (now_end_time)
  1158. size_t count_same_end_time = 0;
  1159. while(count_same_end_time < 100) {
  1160. if(likely(count_same_end_time == 0)) {
  1161. last2_point = last1_point;
  1162. last1_point = new_point;
  1163. }
  1164. if(unlikely(ops->is_finished(ops->handle))) {
  1165. if(count_same_end_time != 0) {
  1166. last2_point = last1_point;
  1167. last1_point = new_point;
  1168. }
  1169. new_point = QUERY_POINT_EMPTY;
  1170. new_point.start_time = last1_point.end_time;
  1171. new_point.end_time = now_end_time;
  1172. //
  1173. // if(debug_this) info("QUERY: is finished() returned true");
  1174. //
  1175. break;
  1176. }
  1177. // fetch the new point
  1178. {
  1179. STORAGE_POINT sp;
  1180. if(likely(storage_point_is_unset(next1_point))) {
  1181. db_points_read_since_plan_switch++;
  1182. sp = ops->next_metric(ops->handle);
  1183. }
  1184. else {
  1185. // ONE POINT READ-AHEAD
  1186. sp = next1_point;
  1187. storage_point_unset(next1_point);
  1188. db_points_read_since_plan_switch = 1;
  1189. }
  1190. // ONE POINT READ-AHEAD
  1191. if(unlikely(query_plan_should_switch_plan(ops, sp.end_time_s) &&
  1192. query_planer_next_plan(ops, now_end_time, new_point.end_time))) {
  1193. // The end time of the current point, crosses our plans (tiers)
  1194. // so, we switched plan (tier)
  1195. //
  1196. // There are 2 cases now:
  1197. //
  1198. // A. the entire point of the previous plan is to the future of point from the next plan
  1199. // B. part of the point of the previous plan overlaps with the point from the next plan
  1200. STORAGE_POINT sp2 = ops->next_metric(ops->handle);
  1201. if(sp.start_time_s > sp2.start_time_s)
  1202. // the point from the previous plan is useless
  1203. sp = sp2;
  1204. else
  1205. // let the query run from the previous plan
  1206. // but setting this will also cut off the interpolation
  1207. // of the point from the previous plan
  1208. next1_point = sp2;
  1209. }
  1210. ops->db_points_read_per_tier[ops->tier]++;
  1211. ops->db_total_points_read++;
  1212. new_point.start_time = sp.start_time_s;
  1213. new_point.end_time = sp.end_time_s;
  1214. new_point.anomaly = sp.count ? (NETDATA_DOUBLE)sp.anomaly_count * 100.0 / (NETDATA_DOUBLE)sp.count : 0.0;
  1215. query_point_set_id(new_point, ops->db_total_points_read);
  1216. // if(debug_this)
  1217. // info("QUERY: got point %zu, from time %ld to %ld // now from %ld to %ld // query from %ld to %ld",
  1218. // new_point.id, new_point.start_time, new_point.end_time, now_start_time, now_end_time, after_wanted, before_wanted);
  1219. //
  1220. // get the right value from the point we got
  1221. if(likely(!storage_point_is_unset(sp) && !storage_point_is_gap(sp))) {
  1222. if(unlikely(use_anomaly_bit_as_value))
  1223. new_point.value = new_point.anomaly;
  1224. else {
  1225. switch (ops->tier_query_fetch) {
  1226. default:
  1227. case TIER_QUERY_FETCH_AVERAGE:
  1228. new_point.value = sp.sum / sp.count;
  1229. break;
  1230. case TIER_QUERY_FETCH_MIN:
  1231. new_point.value = sp.min;
  1232. break;
  1233. case TIER_QUERY_FETCH_MAX:
  1234. new_point.value = sp.max;
  1235. break;
  1236. case TIER_QUERY_FETCH_SUM:
  1237. new_point.value = sp.sum;
  1238. break;
  1239. };
  1240. }
  1241. }
  1242. else {
  1243. new_point.value = NAN;
  1244. new_point.flags = SN_FLAG_NONE;
  1245. }
  1246. }
  1247. // check if the db is giving us zero duration points
  1248. if(unlikely(db_points_read_since_plan_switch > 1 &&
  1249. new_point.start_time == new_point.end_time)) {
  1250. internal_error(true, "QUERY: '%s', dimension '%s' next_metric() returned "
  1251. "point %zu from %ld to %ld, that are both equal",
  1252. qt->id, string2str(qm->dimension.id),
  1253. new_point.id, new_point.start_time, new_point.end_time);
  1254. new_point.start_time = new_point.end_time - ops->tier_ptr->db_update_every_s;
  1255. }
  1256. // check if the db is advancing the query
  1257. if(unlikely(db_points_read_since_plan_switch > 1 &&
  1258. new_point.end_time <= last1_point.end_time)) {
  1259. internal_error(true,
  1260. "QUERY: '%s', dimension '%s' next_metric() returned "
  1261. "point %zu from %ld to %ld, before the "
  1262. "last point %zu from %ld to %ld, "
  1263. "now is %ld to %ld",
  1264. qt->id, string2str(qm->dimension.id),
  1265. new_point.id, new_point.start_time, new_point.end_time,
  1266. last1_point.id, last1_point.start_time, last1_point.end_time,
  1267. now_start_time, now_end_time);
  1268. count_same_end_time++;
  1269. continue;
  1270. }
  1271. count_same_end_time = 0;
  1272. // decide how to use this point
  1273. if(likely(new_point.end_time < now_end_time)) { // likely to favor tier0
  1274. // this db point ends before our now_end_time
  1275. if(likely(new_point.end_time >= now_start_time)) { // likely to favor tier0
  1276. // this db point ends after our now_start time
  1277. query_add_point_to_group(r, new_point, ops);
  1278. }
  1279. else {
  1280. // we don't need this db point
  1281. // it is totally outside our current time-frame
  1282. // this is desirable for the first point of the query
  1283. // because it allows us to interpolate the next point
  1284. // at exactly the time we will want
  1285. // we only log if this is not point 1
  1286. internal_error(new_point.end_time < ops->plan_expanded_after &&
  1287. db_points_read_since_plan_switch > 1,
  1288. "QUERY: '%s', dimension '%s' next_metric() "
  1289. "returned point %zu from %ld time %ld, "
  1290. "which is entirely before our current timeframe %ld to %ld "
  1291. "(and before the entire query, after %ld, before %ld)",
  1292. qt->id, string2str(qm->dimension.id),
  1293. new_point.id, new_point.start_time, new_point.end_time,
  1294. now_start_time, now_end_time,
  1295. ops->plan_expanded_after, ops->plan_expanded_before);
  1296. }
  1297. }
  1298. else {
  1299. // the point ends in the future
  1300. // so, we will interpolate it below, at the inner loop
  1301. break;
  1302. }
  1303. }
  1304. if(unlikely(count_same_end_time)) {
  1305. internal_error(true,
  1306. "QUERY: '%s', dimension '%s', the database does not advance the query,"
  1307. " it returned an end time less or equal to the end time of the last "
  1308. "point we got %ld, %zu times",
  1309. qt->id, string2str(qm->dimension.id),
  1310. last1_point.end_time, count_same_end_time);
  1311. if(unlikely(new_point.end_time <= last1_point.end_time))
  1312. new_point.end_time = now_end_time;
  1313. }
  1314. time_t stop_time = new_point.end_time;
  1315. if(unlikely(!storage_point_is_unset(next1_point))) {
  1316. // ONE POINT READ-AHEAD
  1317. // the point crosses the start time of the
  1318. // read ahead storage point we have read
  1319. stop_time = next1_point.start_time_s;
  1320. }
  1321. // the inner loop
  1322. // we have 3 points in memory: last2, last1, new
  1323. // we select the one to use based on their timestamps
  1324. size_t iterations = 0;
  1325. for ( ; now_end_time <= stop_time && points_added < points_wanted ;
  1326. now_end_time += ops->view_update_every, iterations++) {
  1327. // now_start_time is wrong in this loop
  1328. // but, we don't need it
  1329. QUERY_POINT current_point;
  1330. if(likely(now_end_time > new_point.start_time)) {
  1331. // it is time for our NEW point to be used
  1332. current_point = new_point;
  1333. query_interpolate_point(current_point, last1_point, now_end_time);
  1334. // internal_error(current_point.id > 0
  1335. // && last1_point.id == 0
  1336. // && current_point.end_time > after_wanted
  1337. // && current_point.end_time > now_end_time,
  1338. // "QUERY: '%s', dimension '%s', after %ld, before %ld, view update every %ld,"
  1339. // " query granularity %ld, interpolating point %zu (from %ld to %ld) at %ld,"
  1340. // " but we could really favor by having last_point1 in this query.",
  1341. // qt->id, string2str(qm->dimension.id),
  1342. // after_wanted, before_wanted,
  1343. // ops.view_update_every, ops.query_granularity,
  1344. // current_point.id, current_point.start_time, current_point.end_time,
  1345. // now_end_time);
  1346. }
  1347. else if(likely(now_end_time <= last1_point.end_time)) {
  1348. // our LAST point is still valid
  1349. current_point = last1_point;
  1350. query_interpolate_point(current_point, last2_point, now_end_time);
  1351. // internal_error(current_point.id > 0
  1352. // && last2_point.id == 0
  1353. // && current_point.end_time > after_wanted
  1354. // && current_point.end_time > now_end_time,
  1355. // "QUERY: '%s', dimension '%s', after %ld, before %ld, view update every %ld,"
  1356. // " query granularity %ld, interpolating point %zu (from %ld to %ld) at %ld,"
  1357. // " but we could really favor by having last_point2 in this query.",
  1358. // qt->id, string2str(qm->dimension.id),
  1359. // after_wanted, before_wanted, ops.view_update_every, ops.query_granularity,
  1360. // current_point.id, current_point.start_time, current_point.end_time,
  1361. // now_end_time);
  1362. }
  1363. else {
  1364. // a GAP, we don't have a value this time
  1365. current_point = QUERY_POINT_EMPTY;
  1366. }
  1367. query_add_point_to_group(r, current_point, ops);
  1368. rrdr_line = rrdr_line_init(r, now_end_time, rrdr_line);
  1369. size_t rrdr_o_v_index = rrdr_line * r->d + dim_id_in_rrdr;
  1370. if(unlikely(!min_date)) min_date = now_end_time;
  1371. max_date = now_end_time;
  1372. // find the place to store our values
  1373. RRDR_VALUE_FLAGS *rrdr_value_options_ptr = &r->o[rrdr_o_v_index];
  1374. // update the dimension options
  1375. if(likely(ops->group_points_non_zero))
  1376. r->od[dim_id_in_rrdr] |= RRDR_DIMENSION_NONZERO;
  1377. // store the specific point options
  1378. *rrdr_value_options_ptr = ops->group_value_flags;
  1379. // store the group value
  1380. NETDATA_DOUBLE group_value = ops->grouping_flush(r, rrdr_value_options_ptr);
  1381. r->v[rrdr_o_v_index] = group_value;
  1382. // we only store uint8_t anomaly rates,
  1383. // so let's get double precision by storing
  1384. // anomaly rates in the range 0 - 200
  1385. r->ar[rrdr_o_v_index] = ops->group_anomaly_rate / (NETDATA_DOUBLE)ops->group_points_added;
  1386. if(likely(points_added || dim_id_in_rrdr)) {
  1387. // find the min/max across all dimensions
  1388. if(unlikely(group_value < min)) min = group_value;
  1389. if(unlikely(group_value > max)) max = group_value;
  1390. }
  1391. else {
  1392. // runs only when dim_id_in_rrdr == 0 && points_added == 0
  1393. // so, on the first point added for the query.
  1394. min = max = group_value;
  1395. }
  1396. points_added++;
  1397. ops->group_points_added = 0;
  1398. ops->group_value_flags = RRDR_VALUE_NOTHING;
  1399. ops->group_points_non_zero = 0;
  1400. ops->group_anomaly_rate = 0;
  1401. }
  1402. // the loop above increased "now" by query_granularity,
  1403. // but the main loop will increase it too,
  1404. // so, let's undo the last iteration of this loop
  1405. if(iterations)
  1406. now_end_time -= ops->view_update_every;
  1407. }
  1408. query_planer_finalize_remaining_plans(ops);
  1409. r->internal.result_points_generated += points_added;
  1410. r->internal.db_points_read += ops->db_total_points_read;
  1411. for(size_t tr = 0; tr < storage_tiers ; tr++)
  1412. r->internal.tier_points_read[tr] += ops->db_points_read_per_tier[tr];
  1413. r->min = min;
  1414. r->max = max;
  1415. r->before = max_date;
  1416. r->after = min_date - ops->view_update_every + ops->query_granularity;
  1417. rrdr_done(r, rrdr_line);
  1418. internal_error(points_added != points_wanted,
  1419. "QUERY: '%s', dimension '%s', requested %zu points, but RRDR added %zu (%zu db points read).",
  1420. qt->id, string2str(qm->dimension.id),
  1421. (size_t)points_wanted, (size_t)points_added, ops->db_total_points_read);
  1422. }
  1423. // ----------------------------------------------------------------------------
  1424. // fill the gap of a tier
  1425. void store_metric_at_tier(RRDDIM *rd, size_t tier, struct rrddim_tier *t, STORAGE_POINT sp, usec_t now_ut);
  1426. void rrdr_fill_tier_gap_from_smaller_tiers(RRDDIM *rd, size_t tier, time_t now_s) {
  1427. if(unlikely(tier >= storage_tiers)) return;
  1428. if(storage_tiers_backfill[tier] == RRD_BACKFILL_NONE) return;
  1429. struct rrddim_tier *t = &rd->tiers[tier];
  1430. if(unlikely(!t)) return;
  1431. time_t latest_time_s = t->query_ops->latest_time_s(t->db_metric_handle);
  1432. time_t granularity = (time_t)t->tier_grouping * (time_t)rd->update_every;
  1433. time_t time_diff = now_s - latest_time_s;
  1434. // if the user wants only NEW backfilling, and we don't have any data
  1435. if(storage_tiers_backfill[tier] == RRD_BACKFILL_NEW && latest_time_s <= 0) return;
  1436. // there is really nothing we can do
  1437. if(now_s <= latest_time_s || time_diff < granularity) return;
  1438. struct storage_engine_query_handle handle;
  1439. // for each lower tier
  1440. for(int read_tier = (int)tier - 1; read_tier >= 0 ; read_tier--){
  1441. time_t smaller_tier_first_time = rd->tiers[read_tier].query_ops->oldest_time_s(rd->tiers[read_tier].db_metric_handle);
  1442. time_t smaller_tier_last_time = rd->tiers[read_tier].query_ops->latest_time_s(rd->tiers[read_tier].db_metric_handle);
  1443. if(smaller_tier_last_time <= latest_time_s) continue; // it is as bad as we are
  1444. long after_wanted = (latest_time_s < smaller_tier_first_time) ? smaller_tier_first_time : latest_time_s;
  1445. long before_wanted = smaller_tier_last_time;
  1446. struct rrddim_tier *tmp = &rd->tiers[read_tier];
  1447. tmp->query_ops->init(tmp->db_metric_handle, &handle, after_wanted, before_wanted, STORAGE_PRIORITY_HIGH);
  1448. size_t points_read = 0;
  1449. while(!tmp->query_ops->is_finished(&handle)) {
  1450. STORAGE_POINT sp = tmp->query_ops->next_metric(&handle);
  1451. points_read++;
  1452. if(sp.end_time_s > latest_time_s) {
  1453. latest_time_s = sp.end_time_s;
  1454. store_metric_at_tier(rd, tier, t, sp, sp.end_time_s * USEC_PER_SEC);
  1455. }
  1456. }
  1457. tmp->query_ops->finalize(&handle);
  1458. store_metric_collection_completed();
  1459. global_statistics_backfill_query_completed(points_read);
  1460. //internal_error(true, "DBENGINE: backfilled chart '%s', dimension '%s', tier %d, from %ld to %ld, with %zu points from tier %d",
  1461. // rd->rrdset->name, rd->name, tier, after_wanted, before_wanted, points, tr);
  1462. }
  1463. }
  1464. // ----------------------------------------------------------------------------
  1465. // fill RRDR for the whole chart
  1466. #ifdef NETDATA_INTERNAL_CHECKS
  1467. static void rrd2rrdr_log_request_response_metadata(RRDR *r
  1468. , RRDR_OPTIONS options __maybe_unused
  1469. , RRDR_GROUPING group_method
  1470. , bool aligned
  1471. , size_t group
  1472. , time_t resampling_time
  1473. , size_t resampling_group
  1474. , time_t after_wanted
  1475. , time_t after_requested
  1476. , time_t before_wanted
  1477. , time_t before_requested
  1478. , size_t points_requested
  1479. , size_t points_wanted
  1480. //, size_t after_slot
  1481. //, size_t before_slot
  1482. , const char *msg
  1483. ) {
  1484. time_t first_entry_s = r->internal.qt->db.first_time_s;
  1485. time_t last_entry_s = r->internal.qt->db.last_time_s;
  1486. internal_error(
  1487. true,
  1488. "rrd2rrdr() on %s update every %ld with %s grouping %s (group: %zu, resampling_time: %ld, resampling_group: %zu), "
  1489. "after (got: %ld, want: %ld, req: %ld, db: %ld), "
  1490. "before (got: %ld, want: %ld, req: %ld, db: %ld), "
  1491. "duration (got: %ld, want: %ld, req: %ld, db: %ld), "
  1492. "points (got: %zu, want: %zu, req: %zu), "
  1493. "%s"
  1494. , r->internal.qt->id
  1495. , r->internal.qt->window.query_granularity
  1496. // grouping
  1497. , (aligned) ? "aligned" : "unaligned"
  1498. , group_method2string(group_method)
  1499. , group
  1500. , resampling_time
  1501. , resampling_group
  1502. // after
  1503. , r->after
  1504. , after_wanted
  1505. , after_requested
  1506. , first_entry_s
  1507. // before
  1508. , r->before
  1509. , before_wanted
  1510. , before_requested
  1511. , last_entry_s
  1512. // duration
  1513. , (long)(r->before - r->after + r->internal.qt->window.query_granularity)
  1514. , (long)(before_wanted - after_wanted + r->internal.qt->window.query_granularity)
  1515. , (long)before_requested - after_requested
  1516. , (long)((last_entry_s - first_entry_s) + r->internal.qt->window.query_granularity)
  1517. // points
  1518. , r->rows
  1519. , points_wanted
  1520. , points_requested
  1521. // message
  1522. , msg
  1523. );
  1524. }
  1525. #endif // NETDATA_INTERNAL_CHECKS
  1526. // Returns 1 if an absolute period was requested or 0 if it was a relative period
  1527. bool rrdr_relative_window_to_absolute(time_t *after, time_t *before) {
  1528. time_t now = now_realtime_sec() - 1;
  1529. int absolute_period_requested = -1;
  1530. long long after_requested, before_requested;
  1531. before_requested = *before;
  1532. after_requested = *after;
  1533. // allow relative for before (smaller than API_RELATIVE_TIME_MAX)
  1534. if(ABS(before_requested) <= API_RELATIVE_TIME_MAX) {
  1535. // if the user asked for a positive relative time,
  1536. // flip it to a negative
  1537. if(before_requested > 0)
  1538. before_requested = -before_requested;
  1539. before_requested = now + before_requested;
  1540. absolute_period_requested = 0;
  1541. }
  1542. // allow relative for after (smaller than API_RELATIVE_TIME_MAX)
  1543. if(ABS(after_requested) <= API_RELATIVE_TIME_MAX) {
  1544. if(after_requested > 0)
  1545. after_requested = -after_requested;
  1546. // if the user didn't give an after, use the number of points
  1547. // to give a sane default
  1548. if(after_requested == 0)
  1549. after_requested = -600;
  1550. // since the query engine now returns inclusive timestamps
  1551. // it is awkward to return 6 points when after=-5 is given
  1552. // so for relative queries we add 1 second, to give
  1553. // more predictable results to users.
  1554. after_requested = before_requested + after_requested + 1;
  1555. absolute_period_requested = 0;
  1556. }
  1557. if(absolute_period_requested == -1)
  1558. absolute_period_requested = 1;
  1559. // check if the parameters are flipped
  1560. if(after_requested > before_requested) {
  1561. long long t = before_requested;
  1562. before_requested = after_requested;
  1563. after_requested = t;
  1564. }
  1565. // if the query requests future data
  1566. // shift the query back to be in the present time
  1567. // (this may also happen because of the rules above)
  1568. if(before_requested > now) {
  1569. long long delta = before_requested - now;
  1570. before_requested -= delta;
  1571. after_requested -= delta;
  1572. }
  1573. time_t absolute_minimum_time = now - (10 * 365 * 86400);
  1574. time_t absolute_maximum_time = now + (1 * 365 * 86400);
  1575. if (after_requested < absolute_minimum_time && !unittest_running)
  1576. after_requested = absolute_minimum_time;
  1577. if (after_requested > absolute_maximum_time && !unittest_running)
  1578. after_requested = absolute_maximum_time;
  1579. if (before_requested < absolute_minimum_time && !unittest_running)
  1580. before_requested = absolute_minimum_time;
  1581. if (before_requested > absolute_maximum_time && !unittest_running)
  1582. before_requested = absolute_maximum_time;
  1583. *before = before_requested;
  1584. *after = after_requested;
  1585. return (absolute_period_requested != 1);
  1586. }
  1587. // #define DEBUG_QUERY_LOGIC 1
  1588. #ifdef DEBUG_QUERY_LOGIC
  1589. #define query_debug_log_init() BUFFER *debug_log = buffer_create(1000)
  1590. #define query_debug_log(args...) buffer_sprintf(debug_log, ##args)
  1591. #define query_debug_log_fin() { \
  1592. info("QUERY: '%s', after:%ld, before:%ld, duration:%ld, points:%zu, res:%ld - wanted => after:%ld, before:%ld, points:%zu, group:%zu, granularity:%ld, resgroup:%ld, resdiv:" NETDATA_DOUBLE_FORMAT_AUTO " %s", qt->id, after_requested, before_requested, before_requested - after_requested, points_requested, resampling_time_requested, after_wanted, before_wanted, points_wanted, group, query_granularity, resampling_group, resampling_divisor, buffer_tostring(debug_log)); \
  1593. buffer_free(debug_log); \
  1594. debug_log = NULL; \
  1595. }
  1596. #define query_debug_log_free() do { buffer_free(debug_log); } while(0)
  1597. #else
  1598. #define query_debug_log_init() debug_dummy()
  1599. #define query_debug_log(args...) debug_dummy()
  1600. #define query_debug_log_fin() debug_dummy()
  1601. #define query_debug_log_free() debug_dummy()
  1602. #endif
  1603. bool query_target_calculate_window(QUERY_TARGET *qt) {
  1604. if (unlikely(!qt)) return false;
  1605. size_t points_requested = (long)qt->request.points;
  1606. time_t after_requested = qt->request.after;
  1607. time_t before_requested = qt->request.before;
  1608. RRDR_GROUPING group_method = qt->request.group_method;
  1609. time_t resampling_time_requested = qt->request.resampling_time;
  1610. RRDR_OPTIONS options = qt->request.options;
  1611. size_t tier = qt->request.tier;
  1612. time_t update_every = qt->db.minimum_latest_update_every_s;
  1613. // RULES
  1614. // points_requested = 0
  1615. // the user wants all the natural points the database has
  1616. //
  1617. // after_requested = 0
  1618. // the user wants to start the query from the oldest point in our database
  1619. //
  1620. // before_requested = 0
  1621. // the user wants the query to end to the latest point in our database
  1622. //
  1623. // when natural points are wanted, the query has to be aligned to the update_every
  1624. // of the database
  1625. size_t points_wanted = points_requested;
  1626. time_t after_wanted = after_requested;
  1627. time_t before_wanted = before_requested;
  1628. bool aligned = !(options & RRDR_OPTION_NOT_ALIGNED);
  1629. bool automatic_natural_points = (points_wanted == 0);
  1630. bool relative_period_requested = false;
  1631. bool natural_points = (options & RRDR_OPTION_NATURAL_POINTS) || automatic_natural_points;
  1632. bool before_is_aligned_to_db_end = false;
  1633. query_debug_log_init();
  1634. if (ABS(before_requested) <= API_RELATIVE_TIME_MAX || ABS(after_requested) <= API_RELATIVE_TIME_MAX) {
  1635. relative_period_requested = true;
  1636. natural_points = true;
  1637. options |= RRDR_OPTION_NATURAL_POINTS;
  1638. query_debug_log(":relative+natural");
  1639. }
  1640. // if the user wants virtual points, make sure we do it
  1641. if (options & RRDR_OPTION_VIRTUAL_POINTS)
  1642. natural_points = false;
  1643. // set the right flag about natural and virtual points
  1644. if (natural_points) {
  1645. options |= RRDR_OPTION_NATURAL_POINTS;
  1646. if (options & RRDR_OPTION_VIRTUAL_POINTS)
  1647. options &= ~RRDR_OPTION_VIRTUAL_POINTS;
  1648. }
  1649. else {
  1650. options |= RRDR_OPTION_VIRTUAL_POINTS;
  1651. if (options & RRDR_OPTION_NATURAL_POINTS)
  1652. options &= ~RRDR_OPTION_NATURAL_POINTS;
  1653. }
  1654. if (after_wanted == 0 || before_wanted == 0) {
  1655. relative_period_requested = true;
  1656. time_t first_entry_s = qt->db.first_time_s;
  1657. time_t last_entry_s = qt->db.last_time_s;
  1658. if (first_entry_s == 0 || last_entry_s == 0) {
  1659. internal_error(true, "QUERY: no data detected on query '%s' (db first_entry_t = %ld, last_entry_t = %ld", qt->id, first_entry_s, last_entry_s);
  1660. query_debug_log_free();
  1661. return false;
  1662. }
  1663. query_debug_log(":first_entry_t %ld, last_entry_t %ld", first_entry_s, last_entry_s);
  1664. if (after_wanted == 0) {
  1665. after_wanted = first_entry_s;
  1666. query_debug_log(":zero after_wanted %ld", after_wanted);
  1667. }
  1668. if (before_wanted == 0) {
  1669. before_wanted = last_entry_s;
  1670. before_is_aligned_to_db_end = true;
  1671. query_debug_log(":zero before_wanted %ld", before_wanted);
  1672. }
  1673. if (points_wanted == 0) {
  1674. points_wanted = (last_entry_s - first_entry_s) / update_every;
  1675. query_debug_log(":zero points_wanted %zu", points_wanted);
  1676. }
  1677. }
  1678. if (points_wanted == 0) {
  1679. points_wanted = 600;
  1680. query_debug_log(":zero600 points_wanted %zu", points_wanted);
  1681. }
  1682. // convert our before_wanted and after_wanted to absolute
  1683. rrdr_relative_window_to_absolute(&after_wanted, &before_wanted);
  1684. query_debug_log(":relative2absolute after %ld, before %ld", after_wanted, before_wanted);
  1685. if (natural_points && (options & RRDR_OPTION_SELECTED_TIER) && tier > 0 && storage_tiers > 1) {
  1686. update_every = rrdset_find_natural_update_every_for_timeframe(
  1687. qt, after_wanted, before_wanted, points_wanted, options, tier);
  1688. if (update_every <= 0) update_every = qt->db.minimum_latest_update_every_s;
  1689. query_debug_log(":natural update every %ld", update_every);
  1690. }
  1691. // this is the update_every of the query
  1692. // it may be different to the update_every of the database
  1693. time_t query_granularity = (natural_points) ? update_every : 1;
  1694. if (query_granularity <= 0) query_granularity = 1;
  1695. query_debug_log(":query_granularity %ld", query_granularity);
  1696. // align before_wanted and after_wanted to query_granularity
  1697. if (before_wanted % query_granularity) {
  1698. before_wanted -= before_wanted % query_granularity;
  1699. query_debug_log(":granularity align before_wanted %ld", before_wanted);
  1700. }
  1701. if (after_wanted % query_granularity) {
  1702. after_wanted -= after_wanted % query_granularity;
  1703. query_debug_log(":granularity align after_wanted %ld", after_wanted);
  1704. }
  1705. // automatic_natural_points is set when the user wants all the points available in the database
  1706. if (automatic_natural_points) {
  1707. points_wanted = (before_wanted - after_wanted + 1) / query_granularity;
  1708. if (unlikely(points_wanted <= 0)) points_wanted = 1;
  1709. query_debug_log(":auto natural points_wanted %zu", points_wanted);
  1710. }
  1711. time_t duration = before_wanted - after_wanted;
  1712. // if the resampling time is too big, extend the duration to the past
  1713. if (unlikely(resampling_time_requested > duration)) {
  1714. after_wanted = before_wanted - resampling_time_requested;
  1715. duration = before_wanted - after_wanted;
  1716. query_debug_log(":resampling after_wanted %ld", after_wanted);
  1717. }
  1718. // if the duration is not aligned to resampling time
  1719. // extend the duration to the past, to avoid a gap at the chart
  1720. // only when the missing duration is above 1/10th of a point
  1721. if (resampling_time_requested > query_granularity && duration % resampling_time_requested) {
  1722. time_t delta = duration % resampling_time_requested;
  1723. if (delta > resampling_time_requested / 10) {
  1724. after_wanted -= resampling_time_requested - delta;
  1725. duration = before_wanted - after_wanted;
  1726. query_debug_log(":resampling2 after_wanted %ld", after_wanted);
  1727. }
  1728. }
  1729. // the available points of the query
  1730. size_t points_available = (duration + 1) / query_granularity;
  1731. if (unlikely(points_available <= 0)) points_available = 1;
  1732. query_debug_log(":points_available %zu", points_available);
  1733. if (points_wanted > points_available) {
  1734. points_wanted = points_available;
  1735. query_debug_log(":max points_wanted %zu", points_wanted);
  1736. }
  1737. if(points_wanted > 86400 && !unittest_running) {
  1738. points_wanted = 86400;
  1739. query_debug_log(":absolute max points_wanted %zu", points_wanted);
  1740. }
  1741. // calculate the desired grouping of source data points
  1742. size_t group = points_available / points_wanted;
  1743. if (group == 0) group = 1;
  1744. // round "group" to the closest integer
  1745. if (points_available % points_wanted > points_wanted / 2)
  1746. group++;
  1747. query_debug_log(":group %zu", group);
  1748. if (points_wanted * group * query_granularity < (size_t)duration) {
  1749. // the grouping we are going to do, is not enough
  1750. // to cover the entire duration requested, so
  1751. // we have to change the number of points, to make sure we will
  1752. // respect the timeframe as closely as possibly
  1753. // let's see how many points are the optimal
  1754. points_wanted = points_available / group;
  1755. if (points_wanted * group < points_available)
  1756. points_wanted++;
  1757. if (unlikely(points_wanted == 0))
  1758. points_wanted = 1;
  1759. query_debug_log(":optimal points %zu", points_wanted);
  1760. }
  1761. // resampling_time_requested enforces a certain grouping multiple
  1762. NETDATA_DOUBLE resampling_divisor = 1.0;
  1763. size_t resampling_group = 1;
  1764. if (unlikely(resampling_time_requested > query_granularity)) {
  1765. // the points we should group to satisfy gtime
  1766. resampling_group = resampling_time_requested / query_granularity;
  1767. if (unlikely(resampling_time_requested % query_granularity))
  1768. resampling_group++;
  1769. query_debug_log(":resampling group %zu", resampling_group);
  1770. // adapt group according to resampling_group
  1771. if (unlikely(group < resampling_group)) {
  1772. group = resampling_group; // do not allow grouping below the desired one
  1773. query_debug_log(":group less res %zu", group);
  1774. }
  1775. if (unlikely(group % resampling_group)) {
  1776. group += resampling_group - (group % resampling_group); // make sure group is multiple of resampling_group
  1777. query_debug_log(":group mod res %zu", group);
  1778. }
  1779. // resampling_divisor = group / resampling_group;
  1780. resampling_divisor = (NETDATA_DOUBLE) (group * query_granularity) / (NETDATA_DOUBLE) resampling_time_requested;
  1781. query_debug_log(":resampling divisor " NETDATA_DOUBLE_FORMAT, resampling_divisor);
  1782. }
  1783. // now that we have group, align the requested timeframe to fit it.
  1784. if (aligned && before_wanted % (group * query_granularity)) {
  1785. if (before_is_aligned_to_db_end)
  1786. before_wanted -= before_wanted % (time_t)(group * query_granularity);
  1787. else
  1788. before_wanted += (time_t)(group * query_granularity) - before_wanted % (time_t)(group * query_granularity);
  1789. query_debug_log(":align before_wanted %ld", before_wanted);
  1790. }
  1791. after_wanted = before_wanted - (time_t)(points_wanted * group * query_granularity) + query_granularity;
  1792. query_debug_log(":final after_wanted %ld", after_wanted);
  1793. duration = before_wanted - after_wanted;
  1794. query_debug_log(":final duration %ld", duration + 1);
  1795. query_debug_log_fin();
  1796. internal_error(points_wanted != duration / (query_granularity * group) + 1,
  1797. "QUERY: points_wanted %zu is not points %zu",
  1798. points_wanted, (size_t)(duration / (query_granularity * group) + 1));
  1799. internal_error(group < resampling_group,
  1800. "QUERY: group %zu is less than the desired group points %zu",
  1801. group, resampling_group);
  1802. internal_error(group > resampling_group && group % resampling_group,
  1803. "QUERY: group %zu is not a multiple of the desired group points %zu",
  1804. group, resampling_group);
  1805. // -------------------------------------------------------------------------
  1806. // update QUERY_TARGET with our calculations
  1807. qt->window.after = after_wanted;
  1808. qt->window.before = before_wanted;
  1809. qt->window.relative = relative_period_requested;
  1810. qt->window.points = points_wanted;
  1811. qt->window.group = group;
  1812. qt->window.group_method = group_method;
  1813. qt->window.group_options = qt->request.group_options;
  1814. qt->window.query_granularity = query_granularity;
  1815. qt->window.resampling_group = resampling_group;
  1816. qt->window.resampling_divisor = resampling_divisor;
  1817. qt->window.options = options;
  1818. qt->window.tier = tier;
  1819. qt->window.aligned = aligned;
  1820. return true;
  1821. }
  1822. RRDR *rrd2rrdr_legacy(
  1823. ONEWAYALLOC *owa,
  1824. RRDSET *st, size_t points, time_t after, time_t before,
  1825. RRDR_GROUPING group_method, time_t resampling_time, RRDR_OPTIONS options, const char *dimensions,
  1826. const char *group_options, time_t timeout, size_t tier, QUERY_SOURCE query_source,
  1827. STORAGE_PRIORITY priority) {
  1828. QUERY_TARGET_REQUEST qtr = {
  1829. .st = st,
  1830. .points = points,
  1831. .after = after,
  1832. .before = before,
  1833. .group_method = group_method,
  1834. .resampling_time = resampling_time,
  1835. .options = options,
  1836. .dimensions = dimensions,
  1837. .group_options = group_options,
  1838. .timeout = timeout,
  1839. .tier = tier,
  1840. .query_source = query_source,
  1841. .priority = priority,
  1842. };
  1843. return rrd2rrdr(owa, query_target_create(&qtr));
  1844. }
  1845. RRDR *rrd2rrdr(ONEWAYALLOC *owa, QUERY_TARGET *qt) {
  1846. if(!qt)
  1847. return NULL;
  1848. if(!owa) {
  1849. query_target_release(qt);
  1850. return NULL;
  1851. }
  1852. // qt.window members are the WANTED ones.
  1853. // qt.request members are the REQUESTED ones.
  1854. RRDR *r = rrdr_create(owa, qt);
  1855. if(unlikely(!r)) {
  1856. internal_error(true, "QUERY: cannot create RRDR for %s, after=%ld, before=%ld, points=%zu",
  1857. qt->id, qt->window.after, qt->window.before, qt->window.points);
  1858. return NULL;
  1859. }
  1860. if(unlikely(!r->d || !qt->window.points)) {
  1861. internal_error(true, "QUERY: returning empty RRDR (no dimensions in RRDSET) for %s, after=%ld, before=%ld, points=%zu",
  1862. qt->id, qt->window.after, qt->window.before, qt->window.points);
  1863. return r;
  1864. }
  1865. if(qt->window.relative)
  1866. r->result_options |= RRDR_RESULT_OPTION_RELATIVE;
  1867. else
  1868. r->result_options |= RRDR_RESULT_OPTION_ABSOLUTE;
  1869. // -------------------------------------------------------------------------
  1870. // initialize RRDR
  1871. r->group = qt->window.group;
  1872. r->update_every = (int) (qt->window.group * qt->window.query_granularity);
  1873. r->before = qt->window.before;
  1874. r->after = qt->window.after;
  1875. r->internal.points_wanted = qt->window.points;
  1876. r->internal.resampling_group = qt->window.resampling_group;
  1877. r->internal.resampling_divisor = qt->window.resampling_divisor;
  1878. r->internal.query_options = qt->window.options;
  1879. // -------------------------------------------------------------------------
  1880. // assign the processor functions
  1881. rrdr_set_grouping_function(r, qt->window.group_method);
  1882. // allocate any memory required by the grouping method
  1883. r->internal.grouping_create(r, qt->window.group_options);
  1884. // -------------------------------------------------------------------------
  1885. // do the work for each dimension
  1886. time_t max_after = 0, min_before = 0;
  1887. size_t max_rows = 0;
  1888. long dimensions_used = 0, dimensions_nonzero = 0;
  1889. struct timeval query_start_time;
  1890. struct timeval query_current_time;
  1891. if (qt->request.timeout)
  1892. now_realtime_timeval(&query_start_time);
  1893. size_t last_db_points_read = 0;
  1894. size_t last_result_points_generated = 0;
  1895. QUERY_ENGINE_OPS **ops = onewayalloc_callocz(r->internal.owa, qt->query.used, sizeof(QUERY_ENGINE_OPS *));
  1896. size_t capacity = libuv_worker_threads * 2;
  1897. size_t max_queries_to_prepare = (qt->query.used > (capacity - 1)) ? (capacity - 1) : qt->query.used;
  1898. size_t queries_prepared = 0;
  1899. while(queries_prepared < max_queries_to_prepare) {
  1900. // preload another query
  1901. ops[queries_prepared] = rrd2rrdr_query_prep(r, queries_prepared);
  1902. queries_prepared++;
  1903. }
  1904. for(size_t c = 0, max = qt->query.used; c < max ; c++) {
  1905. if(queries_prepared < max) {
  1906. // preload another query
  1907. ops[queries_prepared] = rrd2rrdr_query_prep(r, queries_prepared);
  1908. queries_prepared++;
  1909. }
  1910. // set the query target dimension options to rrdr
  1911. r->od[c] = qt->query.array[c].dimension.options;
  1912. // reset the grouping for the new dimension
  1913. r->internal.grouping_reset(r);
  1914. if(ops[c]) {
  1915. r->od[c] |= RRDR_DIMENSION_QUERIED;
  1916. rrd2rrdr_query_execute(r, c, ops[c]);
  1917. }
  1918. else
  1919. continue;
  1920. global_statistics_rrdr_query_completed(
  1921. 1,
  1922. r->internal.db_points_read - last_db_points_read,
  1923. r->internal.result_points_generated - last_result_points_generated,
  1924. qt->request.query_source);
  1925. last_db_points_read = r->internal.db_points_read;
  1926. last_result_points_generated = r->internal.result_points_generated;
  1927. if (qt->request.timeout)
  1928. now_realtime_timeval(&query_current_time);
  1929. if(r->od[c] & RRDR_DIMENSION_NONZERO)
  1930. dimensions_nonzero++;
  1931. // verify all dimensions are aligned
  1932. if(unlikely(!dimensions_used)) {
  1933. min_before = r->before;
  1934. max_after = r->after;
  1935. max_rows = r->rows;
  1936. }
  1937. else {
  1938. if(r->after != max_after) {
  1939. internal_error(true, "QUERY: 'after' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
  1940. string2str(qt->query.array[c].dimension.id), (size_t)max_after, string2str(qt->query.array[c].dimension.name), (size_t)r->after);
  1941. r->after = (r->after > max_after) ? r->after : max_after;
  1942. }
  1943. if(r->before != min_before) {
  1944. internal_error(true, "QUERY: 'before' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
  1945. string2str(qt->query.array[c].dimension.id), (size_t)min_before, string2str(qt->query.array[c].dimension.name), (size_t)r->before);
  1946. r->before = (r->before < min_before) ? r->before : min_before;
  1947. }
  1948. if(r->rows != max_rows) {
  1949. internal_error(true, "QUERY: 'rows' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
  1950. string2str(qt->query.array[c].dimension.id), (size_t)max_rows, string2str(qt->query.array[c].dimension.name), (size_t)r->rows);
  1951. r->rows = (r->rows > max_rows) ? r->rows : max_rows;
  1952. }
  1953. }
  1954. dimensions_used++;
  1955. if (qt->request.timeout && ((NETDATA_DOUBLE)dt_usec(&query_start_time, &query_current_time) / 1000.0) > (NETDATA_DOUBLE)qt->request.timeout) {
  1956. log_access("QUERY CANCELED RUNTIME EXCEEDED %0.2f ms (LIMIT %lld ms)",
  1957. (NETDATA_DOUBLE)dt_usec(&query_start_time, &query_current_time) / 1000.0, (long long)qt->request.timeout);
  1958. r->result_options |= RRDR_RESULT_OPTION_CANCEL;
  1959. for(size_t i = c + 1; i < queries_prepared ; i++) {
  1960. if(ops[i])
  1961. query_planer_finalize_remaining_plans(ops[i]);
  1962. }
  1963. break;
  1964. }
  1965. }
  1966. #ifdef NETDATA_INTERNAL_CHECKS
  1967. if (dimensions_used) {
  1968. if(r->internal.log)
  1969. rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
  1970. qt->window.after, qt->request.after, qt->window.before, qt->request.before,
  1971. qt->request.points, qt->window.points, /*after_slot, before_slot,*/
  1972. r->internal.log);
  1973. if(r->rows != qt->window.points)
  1974. rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
  1975. qt->window.after, qt->request.after, qt->window.before, qt->request.before,
  1976. qt->request.points, qt->window.points, /*after_slot, before_slot,*/
  1977. "got 'points' is not wanted 'points'");
  1978. if(qt->window.aligned && (r->before % (qt->window.group * qt->window.query_granularity)) != 0)
  1979. rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
  1980. qt->window.after, qt->request.after, qt->window.before,qt->request.before,
  1981. qt->request.points, qt->window.points, /*after_slot, before_slot,*/
  1982. "'before' is not aligned but alignment is required");
  1983. // 'after' should not be aligned, since we start inside the first group
  1984. //if(qt->window.aligned && (r->after % group) != 0)
  1985. // rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group, qt->window.after, after_requested, before_wanted, before_requested, points_requested, points_wanted, after_slot, before_slot, "'after' is not aligned but alignment is required");
  1986. if(r->before != qt->window.before)
  1987. rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
  1988. qt->window.after, qt->request.after, qt->window.before, qt->request.before,
  1989. qt->request.points, qt->window.points, /*after_slot, before_slot,*/
  1990. "chart is not aligned to requested 'before'");
  1991. if(r->before != qt->window.before)
  1992. rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
  1993. qt->window.after, qt->request.after, qt->window.before, qt->request.before,
  1994. qt->request.points, qt->window.points, /*after_slot, before_slot,*/
  1995. "got 'before' is not wanted 'before'");
  1996. // reported 'after' varies, depending on group
  1997. if(r->after != qt->window.after)
  1998. rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
  1999. qt->window.after, qt->request.after, qt->window.before, qt->request.before,
  2000. qt->request.points, qt->window.points, /*after_slot, before_slot,*/
  2001. "got 'after' is not wanted 'after'");
  2002. }
  2003. #endif
  2004. // free all resources used by the grouping method
  2005. r->internal.grouping_free(r);
  2006. if(likely(dimensions_used)) {
  2007. // when all the dimensions are zero, we should return all of them
  2008. if (unlikely((qt->window.options & RRDR_OPTION_NONZERO) && !dimensions_nonzero &&
  2009. !(r->result_options & RRDR_RESULT_OPTION_CANCEL))) {
  2010. // all the dimensions are zero
  2011. // mark them as NONZERO to send them all
  2012. for (size_t c = 0, max = qt->query.used; c < max; c++) {
  2013. if (unlikely(r->od[c] & RRDR_DIMENSION_HIDDEN)) continue;
  2014. if (unlikely(!(r->od[c] & RRDR_DIMENSION_QUERIED))) continue;
  2015. r->od[c] |= RRDR_DIMENSION_NONZERO;
  2016. }
  2017. }
  2018. return r;
  2019. }
  2020. // we couldn't query any dimension
  2021. rrdr_free(owa, r);
  2022. return NULL;
  2023. }