|
@@ -73,7 +73,6 @@ class Service(SimpleService):
|
|
|
self.fitted_at = {}
|
|
|
self.df_allmetrics = pd.DataFrame()
|
|
|
self.data_latest = {}
|
|
|
- self.expected_cols = []
|
|
|
self.last_train_at = 0
|
|
|
self.include_average_prob = bool(self.configuration.get('include_average_prob', True))
|
|
|
|
|
@@ -101,7 +100,7 @@ class Service(SimpleService):
|
|
|
self.custom_models_host_charts_dict = {}
|
|
|
for host in self.custom_models_hosts:
|
|
|
self.custom_models_host_charts_dict[host] = list(set([dim.split('::')[1].split('|')[0] for dim in self.custom_models_dims if dim.startswith(host)]))
|
|
|
- self.custom_models_dims_renamed = [f"{model['name']}.{dim}" for model in self.custom_models for dim in model['dimensions'].split(',')]
|
|
|
+ self.custom_models_dims_renamed = [f"{model['name']}|{dim}" for model in self.custom_models for dim in model['dimensions'].split(',')]
|
|
|
self.models_in_scope = list(set([f'{self.host}::{c}' for c in self.charts_in_scope] + self.custom_models_names))
|
|
|
self.charts_in_scope = list(set(self.charts_in_scope + self.custom_models_charts))
|
|
|
self.host_charts_dict = {self.host: self.charts_in_scope}
|
|
@@ -245,7 +244,6 @@ class Service(SimpleService):
|
|
|
host_charts_dict=self.host_charts_dict, host_prefix=True, host_sep='::', after=after, before=before,
|
|
|
sort_cols=True, numeric_only=True, protocol=self.protocol, float_size='float32', user=self.username, pwd=self.password
|
|
|
).ffill()
|
|
|
- self.expected_cols = list(df_train.columns)
|
|
|
if self.custom_models:
|
|
|
df_train = self.add_custom_models_dims(df_train)
|
|
|
|
|
@@ -287,7 +285,7 @@ class Service(SimpleService):
|
|
|
df_allmetrics = get_allmetrics_async(
|
|
|
host_charts_dict=self.host_charts_dict, host_prefix=True, host_sep='::', wide=True, sort_cols=True,
|
|
|
protocol=self.protocol, numeric_only=True, float_size='float32', user=self.username, pwd=self.password
|
|
|
- )[self.expected_cols]
|
|
|
+ )
|
|
|
if self.custom_models:
|
|
|
df_allmetrics = self.add_custom_models_dims(df_allmetrics)
|
|
|
self.df_allmetrics = self.df_allmetrics.append(df_allmetrics).ffill().tail((max(self.lags_n.values()) + max(self.smooth_n.values()) + max(self.diffs_n.values())) * 2)
|