123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- /**************************************\
- * *
- * OpenSCAD Mesh Display *
- * by Thinkyhead - April 2017 *
- * *
- * Copy the grid output from Marlin, *
- * paste below as shown, and use *
- * OpenSCAD to see a visualization *
- * of your mesh. *
- * *
- \**************************************/
- //$t = 0.15; // comment out during animation
- //
- // Mesh info and points
- //
- mesh_width = 200; // X Size in mm of the probed area
- mesh_height = 200; // Y Size...
- zprobe_offset = 0; // Added to the points
- NAN = 0; // Z to use for un-measured points
- measured_z = [
- [ -1.20, -1.13, -1.09, -1.03, -1.19 ],
- [ -1.16, -1.25, -1.27, -1.25, -1.08 ],
- [ -1.13, -1.26, -1.39, -1.31, -1.18 ],
- [ -1.09, -1.20, -1.26, -1.21, -1.18 ],
- [ -1.13, -0.99, -1.03, -1.06, -1.32 ]
- ];
- //
- // Geometry
- //
- max_z_scale = 100; // Scale at Time 0.5
- min_z_scale = 10; // Scale at Time 0.0 and 1.0
- thickness = 0.5; // thickness of the mesh triangles
- tesselation = 1; // levels of tesselation from 0-2
- alternation = 2; // direction change modulus (try it)
- //
- // Appearance
- //
- show_plane = true;
- show_labels = true;
- arrow_length = 5;
- label_font_lg = "Arial";
- label_font_sm = "Arial";
- mesh_color = [1,1,1,0.5];
- plane_color = [0.4,0.6,0.9,0.6];
- //================================================ Derive useful values
- big_z = max_2D(measured_z,0);
- lil_z = min_2D(measured_z,0);
- mean_value = (big_z + lil_z) / 2.0;
- mesh_points_y = len(measured_z);
- mesh_points_x = len(measured_z[0]);
- xspace = mesh_width / (mesh_points_x - 1);
- yspace = mesh_height / (mesh_points_y - 1);
- // At $t=0 and $t=1 scale will be 100%
- z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min_z_scale) * 2;
- //
- // Min and max recursive functions for 1D and 2D arrays
- // Return the smallest or largest value in the array
- //
- function min_1D(b,i) = (i<len(b)-1) ? min(b[i], min_1D(b,i+1)) : b[i];
- function min_2D(a,j) = (j<len(a)-1) ? min_2D(a,j+1) : min_1D(a[j], 0);
- function max_1D(b,i) = (i<len(b)-1) ? max(b[i], max_1D(b,i+1)) : b[i];
- function max_2D(a,j) = (j<len(a)-1) ? max_2D(a,j+1) : max_1D(a[j], 0);
- //
- // Get the corner probe points of a grid square.
- //
- // Input : x,y grid indexes
- // Output : An array of the 4 corner points
- //
- function grid_square(x,y) = [
- [x * xspace, y * yspace, z_scale_factor * (measured_z[y][x] - mean_value)],
- [x * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x] - mean_value)],
- [(x+1) * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x+1] - mean_value)],
- [(x+1) * xspace, y * yspace, z_scale_factor * (measured_z[y][x+1] - mean_value)]
- ];
- // The corner point of a grid square with Z centered on the mean
- function pos(x,y,z) = [x * xspace, y * yspace, z_scale_factor * (z - mean_value)];
- //
- // Draw the point markers and labels
- //
- module point_markers(show_home=true) {
- // Mark the home position 0,0
- color([0,0,0,0.25]) translate([1,1]) cylinder(r=1, h=z_scale_factor, center=true);
- for (x=[0:mesh_points_x-1], y=[0:mesh_points_y-1]) {
- z = measured_z[y][x];
- down = z < mean_value;
- translate(pos(x, y, z)) {
- // Label each point with the Z
- if (show_labels) {
- v = z - mean_value;
- color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0])
- translate([0,0,down?-10:10]) {
- $fn=8;
- rotate([90,0])
- text(str(z), 6, label_font_lg, halign="center", valign="center");
- translate([0,0,down?-6:6]) rotate([90,0])
- text(str(down ? "" : "+", v), 3, label_font_sm, halign="center", valign="center");
- }
- }
- // Show an arrow pointing up or down
- rotate([0, down ? 180 : 0]) translate([0,0,-1])
- cylinder(
- r1=0.5,
- r2=0.1,
- h=arrow_length, $fn=12, center=1
- );
- }
- }
- }
- //
- // Split a square on the diagonal into
- // two triangles and render them.
- //
- // s : a square
- // alt : a flag to split on the other diagonal
- //
- module tesselated_square(s, alt=false) {
- add = [0,0,thickness];
- p1 = [
- s[0], s[1], s[2], s[3],
- s[0]+add, s[1]+add, s[2]+add, s[3]+add
- ];
- f1 = alt
- ? [ [0,1,3], [4,5,1,0], [4,7,5], [5,7,3,1], [7,4,0,3] ]
- : [ [0,1,2], [4,5,1,0], [4,6,5], [5,6,2,1], [6,4,0,2] ];
- f2 = alt
- ? [ [1,2,3], [5,6,2,1], [5,6,7], [6,7,3,2], [7,5,1,3] ]
- : [ [0,2,3], [4,6,2,0], [4,7,6], [6,7,3,2], [7,4,0,3] ];
- // Use the other diagonal
- polyhedron(points=p1, faces=f1);
- polyhedron(points=p1, faces=f2);
- }
- /**
- * The simplest mesh display
- */
- module simple_mesh(show_plane=show_plane) {
- if (show_plane) color(plane_color) cube([mesh_width, mesh_height, thickness]);
- color(mesh_color)
- for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2])
- tesselated_square(grid_square(x, y));
- }
- /**
- * Subdivide the mesh into smaller squares.
- */
- module bilinear_mesh(show_plane=show_plane,tesselation=tesselation) {
- if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_width+10, mesh_height+10, thickness]);
- tesselation = tesselation % 4;
- color(mesh_color)
- for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) {
- square = grid_square(x, y);
- if (tesselation < 1) {
- tesselated_square(square,(x%alternation)-(y%alternation));
- }
- else {
- subdiv_4 = subdivided_square(square);
- if (tesselation < 2) {
- for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation);
- }
- else {
- for (i=[0:3]) {
- subdiv_16 = subdivided_square(subdiv_4[i]);
- if (tesselation < 3) {
- for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation);
- }
- else {
- for (j=[0:3]) {
- subdiv_64 = subdivided_square(subdiv_16[j]);
- if (tesselation < 4) {
- for (k=[0:3]) tesselated_square(subdiv_64[k]);
- }
- }
- }
- }
- }
- }
- }
- }
- //
- // Subdivision helpers
- //
- function ctrz(a) = (a[0][2]+a[1][2]+a[3][2]+a[2][2])/4;
- function avgx(a,i) = (a[i][0]+a[(i+1)%4][0])/2;
- function avgy(a,i) = (a[i][1]+a[(i+1)%4][1])/2;
- function avgz(a,i) = (a[i][2]+a[(i+1)%4][2])/2;
- //
- // Convert one square into 4, applying bilinear averaging
- //
- // Input : 1 square (4 points)
- // Output : An array of 4 squares
- //
- function subdivided_square(a) = [
- [ // SW square
- a[0], // SW
- [a[0][0],avgy(a,0),avgz(a,0)], // CW
- [avgx(a,1),avgy(a,0),ctrz(a)], // CC
- [avgx(a,1),a[0][1],avgz(a,3)] // SC
- ],
- [ // NW square
- [a[0][0],avgy(a,0),avgz(a,0)], // CW
- a[1], // NW
- [avgx(a,1),a[1][1],avgz(a,1)], // NC
- [avgx(a,1),avgy(a,0),ctrz(a)] // CC
- ],
- [ // NE square
- [avgx(a,1),avgy(a,0),ctrz(a)], // CC
- [avgx(a,1),a[1][1],avgz(a,1)], // NC
- a[2], // NE
- [a[2][0],avgy(a,0),avgz(a,2)] // CE
- ],
- [ // SE square
- [avgx(a,1),a[0][1],avgz(a,3)], // SC
- [avgx(a,1),avgy(a,0),ctrz(a)], // CC
- [a[2][0],avgy(a,0),avgz(a,2)], // CE
- a[3] // SE
- ]
- ];
- //================================================ Run the plan
- translate([-mesh_width / 2, -mesh_height / 2]) {
- $fn = 12;
- point_markers();
- bilinear_mesh();
- }
|