planner.cpp 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. //===========================================================================
  43. //=============================public variables ============================
  44. //===========================================================================
  45. unsigned long minsegmenttime;
  46. float max_feedrate[NUM_AXIS]; // set the max speeds
  47. float axis_steps_per_unit[NUM_AXIS];
  48. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  49. float minimumfeedrate;
  50. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  51. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  52. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  53. float max_z_jerk;
  54. float max_e_jerk;
  55. float mintravelfeedrate;
  56. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  57. #ifdef ENABLE_AUTO_BED_LEVELING
  58. // this holds the required transform to compensate for bed level
  59. matrix_3x3 plan_bed_level_matrix = {
  60. 1.0, 0.0, 0.0,
  61. 0.0, 1.0, 0.0,
  62. 0.0, 0.0, 1.0,
  63. };
  64. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  65. // The current position of the tool in absolute steps
  66. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  67. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  68. static float previous_nominal_speed; // Nominal speed of previous path line segment
  69. #ifdef AUTOTEMP
  70. float autotemp_max=250;
  71. float autotemp_min=210;
  72. float autotemp_factor=0.1;
  73. bool autotemp_enabled=false;
  74. #endif
  75. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  76. //===========================================================================
  77. //=================semi-private variables, used in inline functions =====
  78. //===========================================================================
  79. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  80. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  81. volatile unsigned char block_buffer_tail; // Index of the block to process now
  82. //===========================================================================
  83. //=============================private variables ============================
  84. //===========================================================================
  85. #ifdef PREVENT_DANGEROUS_EXTRUDE
  86. float extrude_min_temp=EXTRUDE_MINTEMP;
  87. #endif
  88. #ifdef XY_FREQUENCY_LIMIT
  89. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  90. // Used for the frequency limit
  91. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  92. static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
  93. static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
  94. #endif
  95. #ifdef FILAMENT_SENSOR
  96. static char meas_sample; //temporary variable to hold filament measurement sample
  97. #endif
  98. // Returns the index of the next block in the ring buffer
  99. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  100. static int8_t next_block_index(int8_t block_index) {
  101. block_index++;
  102. if (block_index == BLOCK_BUFFER_SIZE) {
  103. block_index = 0;
  104. }
  105. return(block_index);
  106. }
  107. // Returns the index of the previous block in the ring buffer
  108. static int8_t prev_block_index(int8_t block_index) {
  109. if (block_index == 0) {
  110. block_index = BLOCK_BUFFER_SIZE;
  111. }
  112. block_index--;
  113. return(block_index);
  114. }
  115. //===========================================================================
  116. //=============================functions ============================
  117. //===========================================================================
  118. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  119. // given acceleration:
  120. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  121. {
  122. if (acceleration!=0) {
  123. return((target_rate*target_rate-initial_rate*initial_rate)/
  124. (2.0*acceleration));
  125. }
  126. else {
  127. return 0.0; // acceleration was 0, set acceleration distance to 0
  128. }
  129. }
  130. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  131. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  132. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  133. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  134. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  135. {
  136. if (acceleration!=0) {
  137. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  138. (4.0*acceleration) );
  139. }
  140. else {
  141. return 0.0; // acceleration was 0, set intersection distance to 0
  142. }
  143. }
  144. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  145. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  146. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  147. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  148. // Limit minimal step rate (Otherwise the timer will overflow.)
  149. if(initial_rate <120) {
  150. initial_rate=120;
  151. }
  152. if(final_rate < 120) {
  153. final_rate=120;
  154. }
  155. long acceleration = block->acceleration_st;
  156. int32_t accelerate_steps =
  157. ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  158. int32_t decelerate_steps =
  159. floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  160. // Calculate the size of Plateau of Nominal Rate.
  161. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  162. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  163. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  164. // in order to reach the final_rate exactly at the end of this block.
  165. if (plateau_steps < 0) {
  166. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  167. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  168. accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  169. plateau_steps = 0;
  170. }
  171. #ifdef ADVANCE
  172. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  173. volatile long final_advance = block->advance*exit_factor*exit_factor;
  174. #endif // ADVANCE
  175. // block->accelerate_until = accelerate_steps;
  176. // block->decelerate_after = accelerate_steps+plateau_steps;
  177. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  178. if(block->busy == false) { // Don't update variables if block is busy.
  179. block->accelerate_until = accelerate_steps;
  180. block->decelerate_after = accelerate_steps+plateau_steps;
  181. block->initial_rate = initial_rate;
  182. block->final_rate = final_rate;
  183. #ifdef ADVANCE
  184. block->initial_advance = initial_advance;
  185. block->final_advance = final_advance;
  186. #endif //ADVANCE
  187. }
  188. CRITICAL_SECTION_END;
  189. }
  190. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  191. // acceleration within the allotted distance.
  192. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  193. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  194. }
  195. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  196. // This method will calculate the junction jerk as the euclidean distance between the nominal
  197. // velocities of the respective blocks.
  198. //inline float junction_jerk(block_t *before, block_t *after) {
  199. // return sqrt(
  200. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  201. //}
  202. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  203. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  204. if(!current) {
  205. return;
  206. }
  207. if (next) {
  208. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  209. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  210. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  211. if (current->entry_speed != current->max_entry_speed) {
  212. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  213. // for max allowable speed if block is decelerating and nominal length is false.
  214. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  215. current->entry_speed = min( current->max_entry_speed,
  216. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  217. }
  218. else {
  219. current->entry_speed = current->max_entry_speed;
  220. }
  221. current->recalculate_flag = true;
  222. }
  223. } // Skip last block. Already initialized and set for recalculation.
  224. }
  225. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  226. // implements the reverse pass.
  227. void planner_reverse_pass() {
  228. uint8_t block_index = block_buffer_head;
  229. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  230. CRITICAL_SECTION_START;
  231. unsigned char tail = block_buffer_tail;
  232. CRITICAL_SECTION_END
  233. if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  234. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  235. block_t *block[3] = {
  236. NULL, NULL, NULL };
  237. while(block_index != tail) {
  238. block_index = prev_block_index(block_index);
  239. block[2]= block[1];
  240. block[1]= block[0];
  241. block[0] = &block_buffer[block_index];
  242. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  243. }
  244. }
  245. }
  246. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  247. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  248. if(!previous) {
  249. return;
  250. }
  251. // If the previous block is an acceleration block, but it is not long enough to complete the
  252. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  253. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  254. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  255. if (!previous->nominal_length_flag) {
  256. if (previous->entry_speed < current->entry_speed) {
  257. double entry_speed = min( current->entry_speed,
  258. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  259. // Check for junction speed change
  260. if (current->entry_speed != entry_speed) {
  261. current->entry_speed = entry_speed;
  262. current->recalculate_flag = true;
  263. }
  264. }
  265. }
  266. }
  267. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  268. // implements the forward pass.
  269. void planner_forward_pass() {
  270. uint8_t block_index = block_buffer_tail;
  271. block_t *block[3] = {
  272. NULL, NULL, NULL };
  273. while(block_index != block_buffer_head) {
  274. block[0] = block[1];
  275. block[1] = block[2];
  276. block[2] = &block_buffer[block_index];
  277. planner_forward_pass_kernel(block[0],block[1],block[2]);
  278. block_index = next_block_index(block_index);
  279. }
  280. planner_forward_pass_kernel(block[1], block[2], NULL);
  281. }
  282. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  283. // entry_factor for each junction. Must be called by planner_recalculate() after
  284. // updating the blocks.
  285. void planner_recalculate_trapezoids() {
  286. int8_t block_index = block_buffer_tail;
  287. block_t *current;
  288. block_t *next = NULL;
  289. while(block_index != block_buffer_head) {
  290. current = next;
  291. next = &block_buffer[block_index];
  292. if (current) {
  293. // Recalculate if current block entry or exit junction speed has changed.
  294. if (current->recalculate_flag || next->recalculate_flag) {
  295. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  296. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  297. next->entry_speed/current->nominal_speed);
  298. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  299. }
  300. }
  301. block_index = next_block_index( block_index );
  302. }
  303. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  304. if(next != NULL) {
  305. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  306. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  307. next->recalculate_flag = false;
  308. }
  309. }
  310. // Recalculates the motion plan according to the following algorithm:
  311. //
  312. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  313. // so that:
  314. // a. The junction jerk is within the set limit
  315. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  316. // acceleration.
  317. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  318. // a. The speed increase within one block would require faster accelleration than the one, true
  319. // constant acceleration.
  320. //
  321. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  322. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  323. // the set limit. Finally it will:
  324. //
  325. // 3. Recalculate trapezoids for all blocks.
  326. void planner_recalculate() {
  327. planner_reverse_pass();
  328. planner_forward_pass();
  329. planner_recalculate_trapezoids();
  330. }
  331. void plan_init() {
  332. block_buffer_head = 0;
  333. block_buffer_tail = 0;
  334. memset(position, 0, sizeof(position)); // clear position
  335. previous_speed[0] = 0.0;
  336. previous_speed[1] = 0.0;
  337. previous_speed[2] = 0.0;
  338. previous_speed[3] = 0.0;
  339. previous_nominal_speed = 0.0;
  340. }
  341. #ifdef AUTOTEMP
  342. void getHighESpeed()
  343. {
  344. static float oldt=0;
  345. if(!autotemp_enabled){
  346. return;
  347. }
  348. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  349. return; //do nothing
  350. }
  351. float high=0.0;
  352. uint8_t block_index = block_buffer_tail;
  353. while(block_index != block_buffer_head) {
  354. if((block_buffer[block_index].steps_x != 0) ||
  355. (block_buffer[block_index].steps_y != 0) ||
  356. (block_buffer[block_index].steps_z != 0)) {
  357. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  358. //se; mm/sec;
  359. if(se>high)
  360. {
  361. high=se;
  362. }
  363. }
  364. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  365. }
  366. float g=autotemp_min+high*autotemp_factor;
  367. float t=g;
  368. if(t<autotemp_min)
  369. t=autotemp_min;
  370. if(t>autotemp_max)
  371. t=autotemp_max;
  372. if(oldt>t)
  373. {
  374. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  375. }
  376. oldt=t;
  377. setTargetHotend0(t);
  378. }
  379. #endif
  380. void check_axes_activity()
  381. {
  382. unsigned char x_active = 0;
  383. unsigned char y_active = 0;
  384. unsigned char z_active = 0;
  385. unsigned char e_active = 0;
  386. unsigned char tail_fan_speed = fanSpeed;
  387. #ifdef BARICUDA
  388. unsigned char tail_valve_pressure = ValvePressure;
  389. unsigned char tail_e_to_p_pressure = EtoPPressure;
  390. #endif
  391. block_t *block;
  392. if(block_buffer_tail != block_buffer_head)
  393. {
  394. uint8_t block_index = block_buffer_tail;
  395. tail_fan_speed = block_buffer[block_index].fan_speed;
  396. #ifdef BARICUDA
  397. tail_valve_pressure = block_buffer[block_index].valve_pressure;
  398. tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
  399. #endif
  400. while(block_index != block_buffer_head)
  401. {
  402. block = &block_buffer[block_index];
  403. if(block->steps_x != 0) x_active++;
  404. if(block->steps_y != 0) y_active++;
  405. if(block->steps_z != 0) z_active++;
  406. if(block->steps_e != 0) e_active++;
  407. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  408. }
  409. }
  410. if((DISABLE_X) && (x_active == 0)) disable_x();
  411. if((DISABLE_Y) && (y_active == 0)) disable_y();
  412. if((DISABLE_Z) && (z_active == 0)) disable_z();
  413. if((DISABLE_E) && (e_active == 0))
  414. {
  415. disable_e0();
  416. disable_e1();
  417. disable_e2();
  418. }
  419. #if defined(FAN_PIN) && FAN_PIN > -1
  420. #ifdef FAN_KICKSTART_TIME
  421. static unsigned long fan_kick_end;
  422. if (tail_fan_speed) {
  423. if (fan_kick_end == 0) {
  424. // Just starting up fan - run at full power.
  425. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  426. tail_fan_speed = 255;
  427. } else if (fan_kick_end > millis())
  428. // Fan still spinning up.
  429. tail_fan_speed = 255;
  430. } else {
  431. fan_kick_end = 0;
  432. }
  433. #endif//FAN_KICKSTART_TIME
  434. #ifdef FAN_SOFT_PWM
  435. fanSpeedSoftPwm = tail_fan_speed;
  436. #else
  437. analogWrite(FAN_PIN,tail_fan_speed);
  438. #endif//!FAN_SOFT_PWM
  439. #endif//FAN_PIN > -1
  440. #ifdef AUTOTEMP
  441. getHighESpeed();
  442. #endif
  443. #ifdef BARICUDA
  444. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  445. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  446. #endif
  447. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  448. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  449. #endif
  450. #endif
  451. }
  452. float junction_deviation = 0.1;
  453. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  454. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  455. // calculation the caller must also provide the physical length of the line in millimeters.
  456. #ifdef ENABLE_AUTO_BED_LEVELING
  457. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  458. #else
  459. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  460. #endif //ENABLE_AUTO_BED_LEVELING
  461. {
  462. // Calculate the buffer head after we push this byte
  463. int next_buffer_head = next_block_index(block_buffer_head);
  464. // If the buffer is full: good! That means we are well ahead of the robot.
  465. // Rest here until there is room in the buffer.
  466. while(block_buffer_tail == next_buffer_head)
  467. {
  468. manage_heater();
  469. manage_inactivity();
  470. lcd_update();
  471. }
  472. #ifdef ENABLE_AUTO_BED_LEVELING
  473. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  474. #endif // ENABLE_AUTO_BED_LEVELING
  475. // The target position of the tool in absolute steps
  476. // Calculate target position in absolute steps
  477. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  478. long target[4];
  479. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  480. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  481. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  482. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  483. #ifdef PREVENT_DANGEROUS_EXTRUDE
  484. if(target[E_AXIS]!=position[E_AXIS])
  485. {
  486. if(degHotend(active_extruder)<extrude_min_temp)
  487. {
  488. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  489. SERIAL_ECHO_START;
  490. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  491. }
  492. #ifdef PREVENT_LENGTHY_EXTRUDE
  493. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  494. {
  495. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  496. SERIAL_ECHO_START;
  497. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  498. }
  499. #endif
  500. }
  501. #endif
  502. // Prepare to set up new block
  503. block_t *block = &block_buffer[block_buffer_head];
  504. // Mark block as not busy (Not executed by the stepper interrupt)
  505. block->busy = false;
  506. // Number of steps for each axis
  507. #ifndef COREXY
  508. // default non-h-bot planning
  509. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  510. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  511. #else
  512. // corexy planning
  513. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  514. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  515. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  516. #endif
  517. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  518. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  519. block->steps_e *= volumetric_multiplier[active_extruder];
  520. block->steps_e *= extrudemultiply;
  521. block->steps_e /= 100;
  522. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  523. // Bail if this is a zero-length block
  524. if (block->step_event_count <= dropsegments)
  525. {
  526. return;
  527. }
  528. block->fan_speed = fanSpeed;
  529. #ifdef BARICUDA
  530. block->valve_pressure = ValvePressure;
  531. block->e_to_p_pressure = EtoPPressure;
  532. #endif
  533. // Compute direction bits for this block
  534. block->direction_bits = 0;
  535. #ifndef COREXY
  536. if (target[X_AXIS] < position[X_AXIS])
  537. {
  538. block->direction_bits |= (1<<X_AXIS);
  539. }
  540. if (target[Y_AXIS] < position[Y_AXIS])
  541. {
  542. block->direction_bits |= (1<<Y_AXIS);
  543. }
  544. #else
  545. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  546. {
  547. block->direction_bits |= (1<<X_AXIS);
  548. }
  549. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  550. {
  551. block->direction_bits |= (1<<Y_AXIS);
  552. }
  553. #endif
  554. if (target[Z_AXIS] < position[Z_AXIS])
  555. {
  556. block->direction_bits |= (1<<Z_AXIS);
  557. }
  558. if (target[E_AXIS] < position[E_AXIS])
  559. {
  560. block->direction_bits |= (1<<E_AXIS);
  561. }
  562. block->active_extruder = extruder;
  563. //enable active axes
  564. #ifdef COREXY
  565. if((block->steps_x != 0) || (block->steps_y != 0))
  566. {
  567. enable_x();
  568. enable_y();
  569. }
  570. #else
  571. if(block->steps_x != 0) enable_x();
  572. if(block->steps_y != 0) enable_y();
  573. #endif
  574. #ifndef Z_LATE_ENABLE
  575. if(block->steps_z != 0) enable_z();
  576. #endif
  577. // Enable extruder(s)
  578. if(block->steps_e != 0)
  579. {
  580. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  581. {
  582. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  583. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  584. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  585. switch(extruder)
  586. {
  587. case 0:
  588. enable_e0();
  589. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  590. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  591. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  592. break;
  593. case 1:
  594. enable_e1();
  595. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  596. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  597. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  598. break;
  599. case 2:
  600. enable_e2();
  601. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  602. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  603. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  604. break;
  605. }
  606. }
  607. else //enable all
  608. {
  609. enable_e0();
  610. enable_e1();
  611. enable_e2();
  612. }
  613. }
  614. if (block->steps_e == 0)
  615. {
  616. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  617. }
  618. else
  619. {
  620. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  621. }
  622. /* This part of the code calculates the total length of the movement.
  623. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  624. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  625. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  626. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  627. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  628. */
  629. #ifndef COREXY
  630. float delta_mm[4];
  631. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  632. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  633. #else
  634. float delta_mm[6];
  635. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  636. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  637. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  638. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  639. #endif
  640. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  641. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  642. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  643. {
  644. block->millimeters = fabs(delta_mm[E_AXIS]);
  645. }
  646. else
  647. {
  648. #ifndef COREXY
  649. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  650. #else
  651. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  652. #endif
  653. }
  654. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  655. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  656. float inverse_second = feed_rate * inverse_millimeters;
  657. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  658. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  659. #ifdef OLD_SLOWDOWN
  660. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
  661. feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  662. #endif
  663. #ifdef SLOWDOWN
  664. // segment time im micro seconds
  665. unsigned long segment_time = lround(1000000.0/inverse_second);
  666. if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
  667. {
  668. if (segment_time < minsegmenttime)
  669. { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  670. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  671. #ifdef XY_FREQUENCY_LIMIT
  672. segment_time = lround(1000000.0/inverse_second);
  673. #endif
  674. }
  675. }
  676. #endif
  677. // END OF SLOW DOWN SECTION
  678. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  679. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  680. #ifdef FILAMENT_SENSOR
  681. //FMM update ring buffer used for delay with filament measurements
  682. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  683. {
  684. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  685. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  686. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  687. while (delay_dist<0)
  688. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  689. delay_index1=delay_dist/10.0; //calculate index
  690. //ensure the number is within range of the array after converting from floating point
  691. if(delay_index1<0)
  692. delay_index1=0;
  693. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  694. delay_index1=MAX_MEASUREMENT_DELAY;
  695. if(delay_index1 != delay_index2) //moved index
  696. {
  697. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  698. }
  699. while( delay_index1 != delay_index2)
  700. {
  701. delay_index2 = delay_index2 + 1;
  702. if(delay_index2>MAX_MEASUREMENT_DELAY)
  703. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  704. if(delay_index2<0)
  705. delay_index2=0;
  706. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  707. delay_index2=MAX_MEASUREMENT_DELAY;
  708. measurement_delay[delay_index2]=meas_sample;
  709. }
  710. }
  711. #endif
  712. // Calculate and limit speed in mm/sec for each axis
  713. float current_speed[4];
  714. float speed_factor = 1.0; //factor <=1 do decrease speed
  715. for(int i=0; i < 4; i++)
  716. {
  717. current_speed[i] = delta_mm[i] * inverse_second;
  718. if(fabs(current_speed[i]) > max_feedrate[i])
  719. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  720. }
  721. // Max segement time in us.
  722. #ifdef XY_FREQUENCY_LIMIT
  723. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  724. // Check and limit the xy direction change frequency
  725. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  726. old_direction_bits = block->direction_bits;
  727. segment_time = lround((float)segment_time / speed_factor);
  728. if((direction_change & (1<<X_AXIS)) == 0)
  729. {
  730. x_segment_time[0] += segment_time;
  731. }
  732. else
  733. {
  734. x_segment_time[2] = x_segment_time[1];
  735. x_segment_time[1] = x_segment_time[0];
  736. x_segment_time[0] = segment_time;
  737. }
  738. if((direction_change & (1<<Y_AXIS)) == 0)
  739. {
  740. y_segment_time[0] += segment_time;
  741. }
  742. else
  743. {
  744. y_segment_time[2] = y_segment_time[1];
  745. y_segment_time[1] = y_segment_time[0];
  746. y_segment_time[0] = segment_time;
  747. }
  748. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  749. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  750. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  751. if(min_xy_segment_time < MAX_FREQ_TIME)
  752. speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  753. #endif
  754. // Correct the speed
  755. if( speed_factor < 1.0)
  756. {
  757. for(unsigned char i=0; i < 4; i++)
  758. {
  759. current_speed[i] *= speed_factor;
  760. }
  761. block->nominal_speed *= speed_factor;
  762. block->nominal_rate *= speed_factor;
  763. }
  764. // Compute and limit the acceleration rate for the trapezoid generator.
  765. float steps_per_mm = block->step_event_count/block->millimeters;
  766. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  767. {
  768. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  769. }
  770. else
  771. {
  772. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  773. // Limit acceleration per axis
  774. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  775. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  776. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  777. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  778. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  779. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  780. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  781. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  782. }
  783. block->acceleration = block->acceleration_st / steps_per_mm;
  784. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  785. #if 0 // Use old jerk for now
  786. // Compute path unit vector
  787. double unit_vec[3];
  788. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  789. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  790. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  791. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  792. // Let a circle be tangent to both previous and current path line segments, where the junction
  793. // deviation is defined as the distance from the junction to the closest edge of the circle,
  794. // colinear with the circle center. The circular segment joining the two paths represents the
  795. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  796. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  797. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  798. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  799. // nonlinearities of both the junction angle and junction velocity.
  800. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  801. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  802. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  803. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  804. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  805. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  806. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  807. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  808. // Skip and use default max junction speed for 0 degree acute junction.
  809. if (cos_theta < 0.95) {
  810. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  811. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  812. if (cos_theta > -0.95) {
  813. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  814. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  815. vmax_junction = min(vmax_junction,
  816. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  817. }
  818. }
  819. }
  820. #endif
  821. // Start with a safe speed
  822. float vmax_junction = max_xy_jerk/2;
  823. float vmax_junction_factor = 1.0;
  824. if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
  825. vmax_junction = min(vmax_junction, max_z_jerk/2);
  826. if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
  827. vmax_junction = min(vmax_junction, max_e_jerk/2);
  828. vmax_junction = min(vmax_junction, block->nominal_speed);
  829. float safe_speed = vmax_junction;
  830. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  831. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  832. // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  833. vmax_junction = block->nominal_speed;
  834. // }
  835. if (jerk > max_xy_jerk) {
  836. vmax_junction_factor = (max_xy_jerk/jerk);
  837. }
  838. if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  839. vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
  840. }
  841. if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
  842. vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
  843. }
  844. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  845. }
  846. block->max_entry_speed = vmax_junction;
  847. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  848. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  849. block->entry_speed = min(vmax_junction, v_allowable);
  850. // Initialize planner efficiency flags
  851. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  852. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  853. // the current block and next block junction speeds are guaranteed to always be at their maximum
  854. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  855. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  856. // the reverse and forward planners, the corresponding block junction speed will always be at the
  857. // the maximum junction speed and may always be ignored for any speed reduction checks.
  858. if (block->nominal_speed <= v_allowable) {
  859. block->nominal_length_flag = true;
  860. }
  861. else {
  862. block->nominal_length_flag = false;
  863. }
  864. block->recalculate_flag = true; // Always calculate trapezoid for new block
  865. // Update previous path unit_vector and nominal speed
  866. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  867. previous_nominal_speed = block->nominal_speed;
  868. #ifdef ADVANCE
  869. // Calculate advance rate
  870. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  871. block->advance_rate = 0;
  872. block->advance = 0;
  873. }
  874. else {
  875. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  876. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  877. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;
  878. block->advance = advance;
  879. if(acc_dist == 0) {
  880. block->advance_rate = 0;
  881. }
  882. else {
  883. block->advance_rate = advance / (float)acc_dist;
  884. }
  885. }
  886. /*
  887. SERIAL_ECHO_START;
  888. SERIAL_ECHOPGM("advance :");
  889. SERIAL_ECHO(block->advance/256.0);
  890. SERIAL_ECHOPGM("advance rate :");
  891. SERIAL_ECHOLN(block->advance_rate/256.0);
  892. */
  893. #endif // ADVANCE
  894. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  895. safe_speed/block->nominal_speed);
  896. // Move buffer head
  897. block_buffer_head = next_buffer_head;
  898. // Update position
  899. memcpy(position, target, sizeof(target)); // position[] = target[]
  900. planner_recalculate();
  901. st_wake_up();
  902. }
  903. #ifdef ENABLE_AUTO_BED_LEVELING
  904. vector_3 plan_get_position() {
  905. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  906. //position.debug("in plan_get position");
  907. //plan_bed_level_matrix.debug("in plan_get bed_level");
  908. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  909. //inverse.debug("in plan_get inverse");
  910. position.apply_rotation(inverse);
  911. //position.debug("after rotation");
  912. return position;
  913. }
  914. #endif // ENABLE_AUTO_BED_LEVELING
  915. #ifdef ENABLE_AUTO_BED_LEVELING
  916. void plan_set_position(float x, float y, float z, const float &e)
  917. {
  918. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  919. #else
  920. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  921. {
  922. #endif // ENABLE_AUTO_BED_LEVELING
  923. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  924. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  925. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  926. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  927. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  928. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  929. previous_speed[0] = 0.0;
  930. previous_speed[1] = 0.0;
  931. previous_speed[2] = 0.0;
  932. previous_speed[3] = 0.0;
  933. }
  934. void plan_set_e_position(const float &e)
  935. {
  936. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  937. st_set_e_position(position[E_AXIS]);
  938. }
  939. uint8_t movesplanned()
  940. {
  941. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  942. }
  943. #ifdef PREVENT_DANGEROUS_EXTRUDE
  944. void set_extrude_min_temp(float temp)
  945. {
  946. extrude_min_temp=temp;
  947. }
  948. #endif
  949. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  950. void reset_acceleration_rates()
  951. {
  952. for(int8_t i=0; i < NUM_AXIS; i++)
  953. {
  954. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  955. }
  956. }