|
@@ -10,17 +10,13 @@
|
|
* *
|
|
* *
|
|
\**************************************/
|
|
\**************************************/
|
|
|
|
|
|
-//$t = 0.15; // comment out during animation
|
|
|
|
|
|
+$t = 0.15; // comment out during animation!
|
|
|
|
+X = 0; Y = 1;
|
|
|
|
+L = 0; R = 1; F = 2; B = 3;
|
|
|
|
|
|
//
|
|
//
|
|
-// Mesh info and points
|
|
|
|
|
|
+// Sample Mesh - Replace with your own
|
|
//
|
|
//
|
|
-
|
|
|
|
-mesh_width = 200; // X Size in mm of the probed area
|
|
|
|
-mesh_height = 200; // Y Size...
|
|
|
|
-zprobe_offset = 0; // Added to the points
|
|
|
|
-NAN = 0; // Z to use for un-measured points
|
|
|
|
-
|
|
|
|
measured_z = [
|
|
measured_z = [
|
|
[ -1.20, -1.13, -1.09, -1.03, -1.19 ],
|
|
[ -1.20, -1.13, -1.09, -1.03, -1.19 ],
|
|
[ -1.16, -1.25, -1.27, -1.25, -1.08 ],
|
|
[ -1.16, -1.25, -1.27, -1.25, -1.08 ],
|
|
@@ -29,6 +25,28 @@ measured_z = [
|
|
[ -1.13, -0.99, -1.03, -1.06, -1.32 ]
|
|
[ -1.13, -0.99, -1.03, -1.06, -1.32 ]
|
|
];
|
|
];
|
|
|
|
|
|
|
|
+//
|
|
|
|
+// An offset to add to all points in the mesh
|
|
|
|
+//
|
|
|
|
+zadjust = 0;
|
|
|
|
+
|
|
|
|
+//
|
|
|
|
+// Mesh characteristics
|
|
|
|
+//
|
|
|
|
+bed_size = [ 200, 200 ];
|
|
|
|
+
|
|
|
|
+mesh_inset = [ 10, 10, 10, 10 ]; // L, F, R, B
|
|
|
|
+
|
|
|
|
+mesh_bounds = [
|
|
|
|
+ [ mesh_inset[L], mesh_inset[F] ],
|
|
|
|
+ [ bed_size[X] - mesh_inset[R], bed_size[Y] - mesh_inset[B] ]
|
|
|
|
+];
|
|
|
|
+
|
|
|
|
+mesh_size = mesh_bounds[1] - mesh_bounds[0];
|
|
|
|
+
|
|
|
|
+ // NOTE: Marlin meshes already subtract the probe offset
|
|
|
|
+NAN = 0; // Z to use for un-measured points
|
|
|
|
+
|
|
//
|
|
//
|
|
// Geometry
|
|
// Geometry
|
|
//
|
|
//
|
|
@@ -45,6 +63,7 @@ alternation = 2; // direction change modulus (try it)
|
|
|
|
|
|
show_plane = true;
|
|
show_plane = true;
|
|
show_labels = true;
|
|
show_labels = true;
|
|
|
|
+show_coords = true;
|
|
arrow_length = 5;
|
|
arrow_length = 5;
|
|
|
|
|
|
label_font_lg = "Arial";
|
|
label_font_lg = "Arial";
|
|
@@ -62,8 +81,8 @@ mean_value = (big_z + lil_z) / 2.0;
|
|
mesh_points_y = len(measured_z);
|
|
mesh_points_y = len(measured_z);
|
|
mesh_points_x = len(measured_z[0]);
|
|
mesh_points_x = len(measured_z[0]);
|
|
|
|
|
|
-xspace = mesh_width / (mesh_points_x - 1);
|
|
|
|
-yspace = mesh_height / (mesh_points_y - 1);
|
|
|
|
|
|
+xspace = mesh_size[X] / (mesh_points_x - 1);
|
|
|
|
+yspace = mesh_size[Y] / (mesh_points_y - 1);
|
|
|
|
|
|
// At $t=0 and $t=1 scale will be 100%
|
|
// At $t=0 and $t=1 scale will be 100%
|
|
z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min_z_scale) * 2;
|
|
z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min_z_scale) * 2;
|
|
@@ -72,6 +91,8 @@ z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min
|
|
// Min and max recursive functions for 1D and 2D arrays
|
|
// Min and max recursive functions for 1D and 2D arrays
|
|
// Return the smallest or largest value in the array
|
|
// Return the smallest or largest value in the array
|
|
//
|
|
//
|
|
|
|
+function some_1D(b,i) = (i<len(b)-1) ? (b[i] && some_1D(b,i+1)) : b[i] != 0;
|
|
|
|
+function some_2D(a,j) = (j<len(a)-1) ? some_2D(a,j+1) : some_1D(a[j], 0);
|
|
function min_1D(b,i) = (i<len(b)-1) ? min(b[i], min_1D(b,i+1)) : b[i];
|
|
function min_1D(b,i) = (i<len(b)-1) ? min(b[i], min_1D(b,i+1)) : b[i];
|
|
function min_2D(a,j) = (j<len(a)-1) ? min_2D(a,j+1) : min_1D(a[j], 0);
|
|
function min_2D(a,j) = (j<len(a)-1) ? min_2D(a,j+1) : min_1D(a[j], 0);
|
|
function max_1D(b,i) = (i<len(b)-1) ? max(b[i], max_1D(b,i+1)) : b[i];
|
|
function max_1D(b,i) = (i<len(b)-1) ? max(b[i], max_1D(b,i+1)) : b[i];
|
|
@@ -98,36 +119,59 @@ function pos(x,y,z) = [x * xspace, y * yspace, z_scale_factor * (z - mean_value)
|
|
//
|
|
//
|
|
module point_markers(show_home=true) {
|
|
module point_markers(show_home=true) {
|
|
// Mark the home position 0,0
|
|
// Mark the home position 0,0
|
|
- color([0,0,0,0.25]) translate([1,1]) cylinder(r=1, h=z_scale_factor, center=true);
|
|
|
|
|
|
+ if (show_home)
|
|
|
|
+ translate([1,1]) color([0,0,0,0.25])
|
|
|
|
+ cylinder(r=1, h=z_scale_factor, center=true);
|
|
|
|
|
|
for (x=[0:mesh_points_x-1], y=[0:mesh_points_y-1]) {
|
|
for (x=[0:mesh_points_x-1], y=[0:mesh_points_y-1]) {
|
|
- z = measured_z[y][x];
|
|
|
|
|
|
+ z = measured_z[y][x] - zadjust;
|
|
down = z < mean_value;
|
|
down = z < mean_value;
|
|
- translate(pos(x, y, z)) {
|
|
|
|
|
|
+ xyz = pos(x, y, z);
|
|
|
|
+ translate([ xyz[0], xyz[1] ]) {
|
|
|
|
+
|
|
|
|
+ // Show the XY as well as the Z!
|
|
|
|
+ if (show_coords) {
|
|
|
|
+ color("black")
|
|
|
|
+ translate([0,0,0.5]) {
|
|
|
|
+ $fn=8;
|
|
|
|
+ rotate([0,0]) {
|
|
|
|
+ posx = floor(mesh_bounds[0][X] + x * xspace);
|
|
|
|
+ posy = floor(mesh_bounds[0][Y] + y * yspace);
|
|
|
|
+ text(str(posx, ",", posy), 2, label_font_sm, halign="center", valign="center");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
- // Label each point with the Z
|
|
|
|
- if (show_labels) {
|
|
|
|
|
|
+ translate([ 0, 0, xyz[2] ]) {
|
|
|
|
+ // Label each point with the Z
|
|
v = z - mean_value;
|
|
v = z - mean_value;
|
|
|
|
+ if (show_labels) {
|
|
|
|
|
|
- color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0])
|
|
|
|
- translate([0,0,down?-10:10]) {
|
|
|
|
|
|
+ color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0])
|
|
|
|
+ translate([0,0,down?-10:10]) {
|
|
|
|
|
|
- $fn=8;
|
|
|
|
- rotate([90,0])
|
|
|
|
- text(str(z), 6, label_font_lg, halign="center", valign="center");
|
|
|
|
|
|
+ $fn=8;
|
|
|
|
+ rotate([90,0])
|
|
|
|
+ text(str(z), 6, label_font_lg, halign="center", valign="center");
|
|
|
|
|
|
- translate([0,0,down?-6:6]) rotate([90,0])
|
|
|
|
- text(str(down ? "" : "+", v), 3, label_font_sm, halign="center", valign="center");
|
|
|
|
|
|
+ if (v)
|
|
|
|
+ translate([0,0,down?-6:6]) rotate([90,0])
|
|
|
|
+ text(str(down || !v ? "" : "+", v), 3, label_font_sm, halign="center", valign="center");
|
|
|
|
+ }
|
|
}
|
|
}
|
|
- }
|
|
|
|
|
|
|
|
- // Show an arrow pointing up or down
|
|
|
|
- rotate([0, down ? 180 : 0]) translate([0,0,-1])
|
|
|
|
- cylinder(
|
|
|
|
- r1=0.5,
|
|
|
|
- r2=0.1,
|
|
|
|
- h=arrow_length, $fn=12, center=1
|
|
|
|
- );
|
|
|
|
|
|
+ // Show an arrow pointing up or down
|
|
|
|
+ if (v) {
|
|
|
|
+ rotate([0, down ? 180 : 0]) translate([0,0,-1])
|
|
|
|
+ cylinder(
|
|
|
|
+ r1=0.5,
|
|
|
|
+ r2=0.1,
|
|
|
|
+ h=arrow_length, $fn=12, center=1
|
|
|
|
+ );
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ color([1,0,1,0.4]) sphere(r=1.0, $fn=20, center=1);
|
|
|
|
+ }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
@@ -161,7 +205,7 @@ module tesselated_square(s, alt=false) {
|
|
* The simplest mesh display
|
|
* The simplest mesh display
|
|
*/
|
|
*/
|
|
module simple_mesh(show_plane=show_plane) {
|
|
module simple_mesh(show_plane=show_plane) {
|
|
- if (show_plane) color(plane_color) cube([mesh_width, mesh_height, thickness]);
|
|
|
|
|
|
+ if (show_plane) color(plane_color) cube([mesh_size[X], mesh_size[Y], thickness]);
|
|
color(mesh_color)
|
|
color(mesh_color)
|
|
for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2])
|
|
for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2])
|
|
tesselated_square(grid_square(x, y));
|
|
tesselated_square(grid_square(x, y));
|
|
@@ -171,30 +215,34 @@ module simple_mesh(show_plane=show_plane) {
|
|
* Subdivide the mesh into smaller squares.
|
|
* Subdivide the mesh into smaller squares.
|
|
*/
|
|
*/
|
|
module bilinear_mesh(show_plane=show_plane,tesselation=tesselation) {
|
|
module bilinear_mesh(show_plane=show_plane,tesselation=tesselation) {
|
|
- if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_width+10, mesh_height+10, thickness]);
|
|
|
|
- tesselation = tesselation % 4;
|
|
|
|
- color(mesh_color)
|
|
|
|
- for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) {
|
|
|
|
- square = grid_square(x, y);
|
|
|
|
- if (tesselation < 1) {
|
|
|
|
- tesselated_square(square,(x%alternation)-(y%alternation));
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- subdiv_4 = subdivided_square(square);
|
|
|
|
- if (tesselation < 2) {
|
|
|
|
- for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation);
|
|
|
|
|
|
+ if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_size[X]+10, mesh_size[Y]+10, thickness]);
|
|
|
|
+
|
|
|
|
+ if (some_2D(measured_z, 0)) {
|
|
|
|
+
|
|
|
|
+ tesselation = tesselation % 4;
|
|
|
|
+ color(mesh_color)
|
|
|
|
+ for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) {
|
|
|
|
+ square = grid_square(x, y);
|
|
|
|
+ if (tesselation < 1) {
|
|
|
|
+ tesselated_square(square,(x%alternation)-(y%alternation));
|
|
}
|
|
}
|
|
else {
|
|
else {
|
|
- for (i=[0:3]) {
|
|
|
|
- subdiv_16 = subdivided_square(subdiv_4[i]);
|
|
|
|
- if (tesselation < 3) {
|
|
|
|
- for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- for (j=[0:3]) {
|
|
|
|
- subdiv_64 = subdivided_square(subdiv_16[j]);
|
|
|
|
- if (tesselation < 4) {
|
|
|
|
- for (k=[0:3]) tesselated_square(subdiv_64[k]);
|
|
|
|
|
|
+ subdiv_4 = subdivided_square(square);
|
|
|
|
+ if (tesselation < 2) {
|
|
|
|
+ for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation);
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ for (i=[0:3]) {
|
|
|
|
+ subdiv_16 = subdivided_square(subdiv_4[i]);
|
|
|
|
+ if (tesselation < 3) {
|
|
|
|
+ for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation);
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ for (j=[0:3]) {
|
|
|
|
+ subdiv_64 = subdivided_square(subdiv_16[j]);
|
|
|
|
+ if (tesselation < 4) {
|
|
|
|
+ for (k=[0:3]) tesselated_square(subdiv_64[k]);
|
|
|
|
+ }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
@@ -249,7 +297,7 @@ function subdivided_square(a) = [
|
|
|
|
|
|
//================================================ Run the plan
|
|
//================================================ Run the plan
|
|
|
|
|
|
-translate([-mesh_width / 2, -mesh_height / 2]) {
|
|
|
|
|
|
+translate([-mesh_size[X] / 2, -mesh_size[Y] / 2]) {
|
|
$fn = 12;
|
|
$fn = 12;
|
|
point_markers();
|
|
point_markers();
|
|
bilinear_mesh();
|
|
bilinear_mesh();
|