Browse Source

G33 evolutionary changes

Scott Lahteine 7 years ago
parent
commit
6ce2b1ff4a

+ 131 - 93
Marlin/Marlin_main.cpp

@@ -3019,12 +3019,12 @@ static void homeaxis(const AxisEnum axis) {
     // so here it re-homes each tower in turn.
     // Delta homing treats the axes as normal linear axes.
 
-    // retrace by the amount specified in endstop_adj
-    if (endstop_adj[axis] * Z_HOME_DIR < 0) {
+    // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
+    if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
       #if ENABLED(DEBUG_LEVELING_FEATURE)
         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
       #endif
-      do_homing_move(axis, endstop_adj[axis]);
+      do_homing_move(axis, endstop_adj[axis] - 0.1);
     }
 
   #else
@@ -5098,20 +5098,18 @@ void home_all_axes() { gcode_G28(true); }
      *
      * Parameters:
      *
-     *   P  Number of probe points:
+     *   Pn  Number of probe points:
      *
      *      P1     Probe center and set height only.
      *      P2     Probe center and towers. Set height, endstops, and delta radius.
      *      P3     Probe all positions: center, towers and opposite towers. Set all.
      *      P4-P7  Probe all positions at different locations and average them.
      *
-     *   A  Abort delta height calibration after 1 probe (only P1)
-     *
-     *   O  Use opposite tower points instead of tower points (only P2)
-     *
-     *   T  Don't calibrate tower angle corrections (P3-P7)
-     *
-     *   V  Verbose level:
+     *   T   Don't calibrate tower angle corrections
+     *   
+     *   Cn.nn Calibration precision; when omitted calibrates to maximum precision
+     *   
+     *   Vn  Verbose level:
      *
      *      V0  Dry-run mode. Report settings and probe results. No calibration.
      *      V1  Report settings
@@ -5131,30 +5129,61 @@ void home_all_axes() { gcode_G28(true); }
         return;
       }
 
-      const bool do_height_only       = probe_points == 1,
-                 do_center_and_towers = probe_points == 2,
-                 do_all_positions     = probe_points == 3,
-                 do_circle_x2         = probe_points == 5,
-                 do_circle_x3         = probe_points == 6,
-                 do_circle_x4         = probe_points == 7,
-                 probe_center_plus_3  = probe_points >= 3,
-                 point_averaging      = probe_points >= 4,
-                 probe_center_plus_6  = probe_points >= 5;
+      const float calibration_precision = code_seen('C') ? code_value_float() : 0.0;
+      if (calibration_precision < 0) {
+        SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
+        return;
+      }
 
-      const char negating_parameter = do_height_only ? 'A' : do_center_and_towers ? 'O' : 'T';
-      int8_t probe_mode = code_seen(negating_parameter) && code_value_bool() ? -probe_points : probe_points;
+      const bool towers_set = !code_seen('T'),
+      
+                 _1p_calibration      = probe_points == 1,
+                 _4p_calibration      = probe_points == 2,
+                 _4p_towers_points    = _4p_calibration && towers_set,
+                 _4p_opposite_points  = _4p_calibration && !towers_set,
+                 _7p_calibration      = probe_points >= 3,
+                 _7p_half_circle      = probe_points == 3,
+                 _7p_double_circle    = probe_points == 5,
+                 _7p_triple_circle    = probe_points == 6,
+                 _7p_quadruple_circle = probe_points == 7,
+                 _7p_multi_circle     = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
+                 _7p_intermed_points  = _7p_calibration && !_7p_half_circle;
+
+      if (!_1p_calibration) {  // test if the outer radius is reachable
+        for (uint8_t axis = 1; axis < 13; ++axis) {
+          float circles = (_7p_quadruple_circle ? 1.5 :
+                          _7p_triple_circle ? 1.0 :
+                          _7p_double_circle ? 0.5 : 0);
+          if (!position_is_reachable_by_probe_xy(cos(RADIANS(180 + 30 * axis)) * 
+                                                 delta_calibration_radius * (1 + circles * 0.1),
+                                                 sin(RADIANS(180 + 30 * axis)) * 
+                                                 delta_calibration_radius * (1 + circles * 0.1))) {
+            SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
+            return;
+          }
+        }
+      }
 
       SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
 
+      stepper.synchronize();
       #if HAS_LEVELING
-        set_bed_leveling_enabled(false);
+        reset_bed_level(); // After calibration bed-level data is no longer valid
       #endif
+      #if HOTENDS > 1
+        const uint8_t old_tool_index = active_extruder;
+        tool_change(0, 0, true);
+      #endif
+      setup_for_endstop_or_probe_move();
 
-      home_all_axes();
+      endstops.enable(true);
+      home_delta();
+      endstops.not_homing();
 
       const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
       float test_precision,
             zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
+            zero_std_dev_old = zero_std_dev,
             e_old[XYZ] = {
               endstop_adj[A_AXIS],
               endstop_adj[B_AXIS],
@@ -5173,7 +5202,7 @@ void home_all_axes() { gcode_G28(true); }
       LCD_MESSAGEPGM("Checking... AC"); // TODO: Make translatable string
 
       SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
-      if (!do_height_only) {
+      if (!_1p_calibration) {
         SERIAL_PROTOCOLPGM("    Ex:");
         if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
         SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
@@ -5186,7 +5215,7 @@ void home_all_axes() { gcode_G28(true); }
         SERIAL_PROTOCOLPAIR("    Radius:", delta_radius);
       }
       SERIAL_EOL;
-      if (probe_mode > 2) { // negative disables tower angles
+      if (_7p_calibration && towers_set) {
         SERIAL_PROTOCOLPGM(".Tower angle :    Tx:");
         if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
         SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
@@ -5202,80 +5231,76 @@ void home_all_axes() { gcode_G28(true); }
       #endif
 
       int8_t iterations = 0;
+      
+      home_offset[Z_AXIS] -= probe_pt(0.0, 0.0 , true, 1); // 1st probe to set height
+      do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
 
       do {
 
-        float z_at_pt[13] = { 0 },
-              S1 = 0.0,
-              S2 = 0.0;
+        float z_at_pt[13] = { 0.0 }, S1 = 0.0, S2 = 0.0;
         int16_t N = 0;
 
-        test_precision = zero_std_dev;
+        test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
+        
         iterations++;
 
         // Probe the points
 
-        if (!do_all_positions && !do_circle_x3) { // probe the center
-          setup_for_endstop_or_probe_move();
-          z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);   // TODO: Needs error handling
-          clean_up_after_endstop_or_probe_move();
+        if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
+          z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
         }
-        if (probe_center_plus_3) { // probe extra center points
-          for (int8_t axis = probe_center_plus_6 ? 11 : 9; axis > 0; axis -= probe_center_plus_6 ? 2 : 4) {
-            setup_for_endstop_or_probe_move();
-            z_at_pt[0] += probe_pt(                     // TODO: Needs error handling
-              cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
-              sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
-            clean_up_after_endstop_or_probe_move();
+        if (_7p_calibration) { // probe extra center points
+          for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
+            const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
+            z_at_pt[0] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling
           }
-          z_at_pt[0] /= float(do_circle_x2 ? 7 : probe_points);
+          z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
         }
-        if (!do_height_only) {  // probe the radius
+        if (!_1p_calibration) {  // probe the radius
           bool zig_zag = true;
-          for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13;
-                       axis += (do_center_and_towers ? 4 : do_all_positions ? 2 : 1)) {
-            float offset_circles = (do_circle_x4 ? (zig_zag ? 1.5 : 1.0) :
-                                    do_circle_x3 ? (zig_zag ? 1.0 : 0.5) :
-                                    do_circle_x2 ? (zig_zag ? 0.5 : 0.0) : 0);
+          const uint8_t start = _4p_opposite_points ? 3 : 1,
+                         step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
+          for (uint8_t axis = start; axis < 13; axis += step) {
+            const float offset_circles = _7p_quadruple_circle ? (zig_zag ? 1.5 : 1.0) :
+                                         _7p_triple_circle    ? (zig_zag ? 1.0 : 0.5) :
+                                         _7p_double_circle    ? (zig_zag ? 0.5 : 0.0) : 0;
             for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
-              setup_for_endstop_or_probe_move();
-              z_at_pt[axis] += probe_pt(                // TODO: Needs error handling
-                cos(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
-                (1 + circles * 0.1 * (zig_zag ? 1 : -1)),
-                sin(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
-                (1 + circles * 0.1 * (zig_zag ? 1 : -1)), true, 1);
-              clean_up_after_endstop_or_probe_move();
+              const float a = RADIANS(180 + 30 * axis),
+                          r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
+              z_at_pt[axis] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling
             }
             zig_zag = !zig_zag;
             z_at_pt[axis] /= (2 * offset_circles + 1);
           }
         }
-        if (point_averaging) // average intermediates to tower and opposites
+        if (_7p_intermed_points) // average intermediates to tower and opposites
           for (uint8_t axis = 1; axis <= 11; axis += 2)
             z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
 
         S1 += z_at_pt[0];
         S2 += sq(z_at_pt[0]);
         N++;
-        if (!do_height_only) // std dev from zero plane
-          for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (do_center_and_towers ? 4 : 2)) {
+        if (!_1p_calibration) // std dev from zero plane
+          for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
             S1 += z_at_pt[axis];
             S2 += sq(z_at_pt[axis]);
             N++;
           }
+        zero_std_dev_old = zero_std_dev;
         zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
+        
+        if (iterations == 1) home_offset[Z_AXIS] = zh_old; // reset height after 1st probe change
 
         // Solve matrices
 
-        if (zero_std_dev < test_precision) {
+        if (zero_std_dev < test_precision && zero_std_dev > calibration_precision) {
           COPY(e_old, endstop_adj);
           dr_old = delta_radius;
           zh_old = home_offset[Z_AXIS];
           alpha_old = delta_tower_angle_trim[A_AXIS];
           beta_old = delta_tower_angle_trim[B_AXIS];
 
-          float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
-                t_alpha = 0.0, t_beta = 0.0;
+          float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
           const float r_diff = delta_radius - delta_calibration_radius,
                       h_factor = 1.00 + r_diff * 0.001,                          //1.02 for r_diff = 20mm
                       r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)),  //2.25 for r_diff = 20mm
@@ -5293,25 +5318,25 @@ void home_all_axes() { gcode_G28(true); }
           #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
           #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
 
-          switch (probe_mode) {
-            case -1:
-              test_precision = 0.00;
+          switch (probe_points) {
             case 1:
+              test_precision = 0.00;
               LOOP_XYZ(i) e_delta[i] = Z1000(0);
               break;
 
             case 2:
-              e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
-              e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
-              e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
-              r_delta         = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
-              break;
-
-            case -2:
-              e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
-              e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
-              e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
-              r_delta         = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
+              if (towers_set) {
+                e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
+                e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
+                e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
+                r_delta         = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
+              }
+              else {
+                e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
+                e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
+                e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
+                r_delta         = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
+              }
               break;
 
             default:
@@ -5320,9 +5345,9 @@ void home_all_axes() { gcode_G28(true); }
               e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
               r_delta         = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
 
-              if (probe_mode > 0) {  // negative disables tower angles
-                t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
-                t_beta  = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
+              if (towers_set) {
+                t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
+                t_beta  = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
               }
               break;
           }
@@ -5330,7 +5355,7 @@ void home_all_axes() { gcode_G28(true); }
           LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
           delta_radius += r_delta;
           delta_tower_angle_trim[A_AXIS] += t_alpha;
-          delta_tower_angle_trim[B_AXIS] -= t_beta;
+          delta_tower_angle_trim[B_AXIS] += t_beta;
 
           // adjust delta_height and endstops by the max amount
           const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
@@ -5339,7 +5364,7 @@ void home_all_axes() { gcode_G28(true); }
 
           recalc_delta_settings(delta_radius, delta_diagonal_rod);
         }
-        else {   // step one back
+        else if(zero_std_dev >= test_precision) {   // step one back
           COPY(endstop_adj, e_old);
           delta_radius = dr_old;
           home_offset[Z_AXIS] = zh_old;
@@ -5355,7 +5380,7 @@ void home_all_axes() { gcode_G28(true); }
           SERIAL_PROTOCOLPGM(".      c:");
           if (z_at_pt[0] > 0) SERIAL_CHAR('+');
           SERIAL_PROTOCOL_F(z_at_pt[0], 2);
-          if (probe_mode == 2 || probe_center_plus_3) {
+          if (_4p_towers_points || _7p_calibration) {
             SERIAL_PROTOCOLPGM("     x:");
             if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
             SERIAL_PROTOCOL_F(z_at_pt[1], 2);
@@ -5366,9 +5391,9 @@ void home_all_axes() { gcode_G28(true); }
             if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
             SERIAL_PROTOCOL_F(z_at_pt[9], 2);
           }
-          if (probe_mode != -2) SERIAL_EOL;
-          if (probe_mode == -2 || probe_center_plus_3) {
-            if (probe_center_plus_3) {
+          if (!_4p_opposite_points) SERIAL_EOL;
+          if ((_4p_opposite_points) || _7p_calibration) {
+            if (_7p_calibration) {
               SERIAL_CHAR('.');
               SERIAL_PROTOCOL_SP(13);
             }
@@ -5385,10 +5410,15 @@ void home_all_axes() { gcode_G28(true); }
           }
         }
         if (test_precision != 0.0) {                                 // !forced end
-          if (zero_std_dev >= test_precision) {                      // end iterations
+          if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) {  // end iterations
             SERIAL_PROTOCOLPGM("Calibration OK");
             SERIAL_PROTOCOL_SP(36);
-            SERIAL_PROTOCOLPGM("rolling back.");
+            if (zero_std_dev >= test_precision)
+              SERIAL_PROTOCOLPGM("rolling back.");
+            else {
+              SERIAL_PROTOCOLPGM("std dev:");
+              SERIAL_PROTOCOL_F(zero_std_dev, 3);
+            }            
             SERIAL_EOL;
             LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
           }
@@ -5404,7 +5434,7 @@ void home_all_axes() { gcode_G28(true); }
             lcd_setstatus(mess);
           }
           SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
-          if (!do_height_only) {
+          if (!_1p_calibration) {
             SERIAL_PROTOCOLPGM("    Ex:");
             if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
             SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
@@ -5417,7 +5447,7 @@ void home_all_axes() { gcode_G28(true); }
             SERIAL_PROTOCOLPAIR("    Radius:", delta_radius);
           }
           SERIAL_EOL;
-          if (probe_mode > 2) { // negative disables tower angles
+          if (_7p_calibration && towers_set) {
             SERIAL_PROTOCOLPGM(".Tower angle :    Tx:");
             if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
             SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
@@ -5427,7 +5457,7 @@ void home_all_axes() { gcode_G28(true); }
             SERIAL_PROTOCOLPGM("  Tz:+0.00");
             SERIAL_EOL;
           }
-          if (zero_std_dev >= test_precision)
+          if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision)
             serialprintPGM(save_message);
             SERIAL_EOL;
         }
@@ -5449,12 +5479,20 @@ void home_all_axes() { gcode_G28(true); }
           }
         }
 
-        stepper.synchronize();
-
-        home_all_axes();
+        endstops.enable(true);
+        home_delta();
+        endstops.not_homing();
 
-      } while (zero_std_dev < test_precision && iterations < 31);
+      } 
+      while (zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31);
 
+      #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
+        do_blocking_move_to_z(delta_clip_start_height);
+      #endif
+      clean_up_after_endstop_or_probe_move();
+      #if HOTENDS > 1
+        tool_change(old_tool_index, 0, true);
+      #endif
       #if ENABLED(Z_PROBE_SLED)
         RETRACT_PROBE();
       #endif

+ 4 - 4
Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h

@@ -447,10 +447,10 @@
   #define DELTA_DIAGONAL_ROD 218.0 // mm
 
   // Horizontal distance bridged by diagonal push rods when effector is centered.
-  #define DELTA_RADIUS 100.00 //mm // get this value from auto calibrate
+  #define DELTA_RADIUS 100.00 //mm  Get this value from auto calibrate
 
   // height from z=0 to home position
-  #define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 A at 1st time calibration
+  #define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 at 1st time calibration
 
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
   #define DELTA_PRINTABLE_RADIUS 85.0
@@ -460,8 +460,8 @@
   // See http://minow.blogspot.com/index.html#4918805519571907051
   #define DELTA_CALIBRATION_MENU
 
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
 
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   #define DELTA_AUTO_CALIBRATION

+ 4 - 4
Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h

@@ -454,10 +454,10 @@
   #define DELTA_CARRIAGE_OFFSET 22.0 // mm
 
   // Horizontal distance bridged by diagonal push rods when effector is centered.
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
 
   // height from z=0.00 to home position
-  #define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
+  #define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 P1 at 1st time calibration
 
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
   #define DELTA_PRINTABLE_RADIUS 85.0
@@ -467,8 +467,8 @@
   // See http://minow.blogspot.com/index.html#4918805519571907051
   //#define DELTA_CALIBRATION_MENU
 
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
 
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION

+ 4 - 4
Marlin/example_configurations/delta/generic/Configuration.h

@@ -444,10 +444,10 @@
   #define DELTA_CARRIAGE_OFFSET 18.0 // mm
 
   // Horizontal distance bridged by diagonal push rods when effector is centered.
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate  // height from z=0.00 to home position
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
 
   // height from z=0.00 to home position
-  #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
+  #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 P1 at 1st time calibration
 
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
   #define DELTA_PRINTABLE_RADIUS 140.0
@@ -456,8 +456,8 @@
   // See http://minow.blogspot.com/index.html#4918805519571907051
   //#define DELTA_CALIBRATION_MENU
 
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
 
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION

+ 4 - 4
Marlin/example_configurations/delta/kossel_mini/Configuration.h

@@ -444,10 +444,10 @@
   #define DELTA_CARRIAGE_OFFSET 19.5 // mm
 
   // Horizontal distance bridged by diagonal push rods when effector is centered.
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
 
   // height from z=0.00 to home position
-  #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
+  #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 P1 at 1st time calibration
 
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
   #define DELTA_PRINTABLE_RADIUS 90.0
@@ -456,8 +456,8 @@
   // See http://minow.blogspot.com/index.html#4918805519571907051
   //#define DELTA_CALIBRATION_MENU
 
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 18) // mm
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
 
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION

+ 4 - 4
Marlin/example_configurations/delta/kossel_pro/Configuration.h

@@ -431,10 +431,10 @@
   #define DELTA_CARRIAGE_OFFSET 30.0 // mm
 
   // Horizontal distance bridged by diagonal push rods when effector is centered.
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
 
   // height from z=0.00 to home position
-  #define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
+  #define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 P1 at 1st time calibration
 
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
   #define DELTA_PRINTABLE_RADIUS 127.0
@@ -443,8 +443,8 @@
   // See http://minow.blogspot.com/index.html#4918805519571907051
   //#define DELTA_CALIBRATION_MENU
 
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 25.4) // mm
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
 
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION

+ 4 - 4
Marlin/example_configurations/delta/kossel_xl/Configuration.h

@@ -449,10 +449,10 @@
   #define DELTA_CARRIAGE_OFFSET 22.0 // mm
 
   // Horizontal distance bridged by diagonal push rods when effector is centered.
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
 
   // height from z=0.00 to home position
-  #define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
+  #define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 P1 at 1st time calibration
 
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
   #define DELTA_PRINTABLE_RADIUS 140.0
@@ -461,8 +461,8 @@
   // See http://minow.blogspot.com/index.html#4918805519571907051
   //#define DELTA_CALIBRATION_MENU
 
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
 
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION

+ 4 - 2
Marlin/planner.h

@@ -160,8 +160,10 @@ class Planner {
                  min_travel_feedrate_mm_s;
 
     #if HAS_ABL
-      static bool abl_enabled;            // Flag that bed leveling is enabled
-      static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
+      static bool abl_enabled;              // Flag that bed leveling is enabled
+      #if ABL_PLANAR
+        static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
+      #endif
     #endif
 
     #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)

+ 8 - 0
Marlin/ultralcd.cpp

@@ -2151,6 +2151,10 @@ void kill_screen(const char* lcd_msg) {
     }
 
     void _lcd_delta_calibrate_home() {
+      #if HAS_LEVELING
+        reset_bed_level(); // After calibration bed-level data is no longer valid
+      #endif
+
       enqueue_and_echo_commands_P(PSTR("G28"));
       lcd_goto_screen(_lcd_calibrate_homing);
     }
@@ -2158,6 +2162,10 @@ void kill_screen(const char* lcd_msg) {
     // Move directly to the tower position with uninterpolated moves
     // If we used interpolated moves it would cause this to become re-entrant
     void _goto_tower_pos(const float &a) {
+      #if HAS_LEVELING
+        reset_bed_level(); // After calibration bed-level data is no longer valid
+      #endif
+
       current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
       line_to_current(Z_AXIS);
 

+ 1 - 1
README.md

@@ -69,7 +69,7 @@ More features have been added by:
  - [[@Tannoo](https://github.com/Tannoo)]
  - [[@teemuatlut](https://github.com/teemuatlut)]
  - [[@bgort](https://github.com/bgort)]
- - [[@LVD-AC](https://github.com/LVD-AC)]
+ - Luc Van Daele[[@LVD-AC](https://github.com/LVD-AC)] - Dutch, French, English
  - [[@paulusjacobus](https://github.com/paulusjacobus)]
  - ...and many others