123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484 |
- /*
- * Copyright 2014 Google Inc. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * Contributor: Raph Levien
- */
- #include <iostream>
- #include <fstream>
- #include <cmath>
- #include <vector>
- #include <algorithm>
- using std::vector;
- #define HALF_STEP 1
- class Point {
- public:
- Point() : x(0), y(0) { }
- Point(double x, double y) : x(x), y(y) { }
- double x, y;
- };
- bool operator==(const Point& p0, const Point& p1) {
- return p0.x == p1.x && p0.y == p1.y;
- }
- std::ostream& operator<<(std::ostream& os, const Point& p) {
- os << "(" << p.x << ", " << p.y << ")";
- return os;
- }
- double dist(Point p0, Point p1) {
- return std::hypot(p0.x - p1.x, p0.y - p1.y);
- }
- double dist2(Point p0, Point p1) {
- double dx = p0.x - p1.x;
- double dy = p0.y - p1.y;
- return dx * dx + dy * dy;
- }
- Point lerp(double t, Point p0, Point p1) {
- return Point(p0.x + t * (p1.x - p0.x), p0.y + t * (p1.y - p0.y));
- }
- Point unitize(Point p) {
- double scale = 1/std::hypot(p.x, p.y);
- return Point(p.x * scale, p.y * scale);
- }
- Point round(Point p) {
- return Point(std::round(p.x), std::round(p.y));
- }
- class Quad {
- public:
- Quad() : p() { }
- Quad(Point p0, Point p1, Point p2) : p() {
- p[0] = p0;
- p[1] = p1;
- p[2] = p2;
- }
- Point p[3];
- double arclen() const;
- Point eval(double t) const;
- bool isLine() const;
- void print(std::ostream& o) const {
- o << p[0].x << " " << p[0].y << " " << p[1].x << " " << p[1].y << " "
- << p[2].x << " " << p[2].y << std::endl;
- }
- };
- bool Quad::isLine() const {
- return p[1] == lerp(0.5, p[0], p[2]);
- }
- // One step of a 4th-order Runge-Kutta numerical integration
- template <size_t n, typename F>
- void rk4(double y[n], double x, double h, F& derivs) {
- double dydx[n];
- double dyt[n];
- double dym[n];
- double yt[n];
- derivs(dydx, x, y);
- double hh = h * .5;
- double h6 = h * (1./6);
- for (size_t i = 0; i < n; i++) {
- yt[i] = y[i] + hh * dydx[i];
- }
- derivs(dyt, x + hh, yt);
- for (size_t i = 0; i < n; i++) {
- yt[i] = y[i] + hh * dyt[i];
- }
- derivs(dym, x + hh, yt);
- for (size_t i = 0; i < n; i++) {
- yt[i] = y[i] + h * dym[i];
- dym[i] += dyt[i];
- }
- derivs(dyt, x + h, yt);
- for (size_t i = 0; i < n; i++) {
- y[i] += h6 * (dydx[i] + dyt[i] + 2 * dym[i]);
- }
- }
- class ArclenFunctor {
- public:
- ArclenFunctor(const Quad& q)
- : dx0(2 * (q.p[1].x - q.p[0].x))
- , dy0(2 * (q.p[1].y - q.p[0].y))
- , dx1(2 * (q.p[2].x - q.p[1].x))
- , dy1(2 * (q.p[2].y - q.p[1].y)) { }
- void operator()(double dydx[1], double t, const double y[1]) {
- Point p(deriv(t));
- dydx[0] = std::hypot(p.x, p.y);
- }
- Point deriv(double t) const {
- return Point(dx0 + t * (dx1 - dx0), dy0 + t * (dy1 - dy0));
- }
- private:
- double dx0, dy0, dx1, dy1;
- };
- double Quad::arclen() const {
- ArclenFunctor derivs(*this);
- const int n = 10;
- double dt = 1./n;
- double t = 0;
- double y[1] = { 0 };
- for (int i = 0; i < n; i++) {
- rk4<1>(y, t, dt, derivs);
- t += dt;
- }
- return y[0];
- }
- Point Quad::eval(double t) const {
- Point p01(lerp(t, p[0], p[1]));
- Point p12(lerp(t, p[1], p[2]));
- return lerp(t, p01, p12);
- }
- class Thetas {
- public:
- void init(const vector<Quad>& qs);
- Point xy(double s) const;
- Point dir(double s) const;
- double arclen;
- private:
- vector<Point> xys;
- vector<Point> dirs;
- };
- void Thetas::init(const vector<Quad>& qs) {
- xys.clear();
- dirs.clear();
- double s = 0;
- int ix = 0;
- Point lastxy;
- Point lastd;
- double lasts = -1;
- for (size_t i = 0; i < qs.size(); i++) {
- const Quad& q = qs[i];
- ArclenFunctor derivs(q);
- const int n = 100;
- double dt = 1./n;
- double t = 0;
- double y[1];
- y[0] = s;
- for (int j = 0; j < n; j++) {
- Point thisxy(q.eval(t));
- Point thisd(derivs.deriv(t));
- while (ix <= y[0]) {
- double u = (ix - lasts) / (y[0] - lasts);
- xys.push_back(lerp(u, lastxy, thisxy));
- dirs.push_back(unitize(lerp(u, lastd, thisd)));
- ix++;
- }
- lasts = y[0];
- rk4<1>(y, t, dt, derivs);
- t += dt;
- lastxy = thisxy;
- lastd = thisd;
- }
- s = y[0];
- }
- const Quad& q = qs[qs.size() - 1];
- Point thisxy(q.p[2]);
- Point thisd(ArclenFunctor(q).deriv(1));
- while (ix <= s + 1) {
- double u = (ix - lasts) / (s - lasts);
- xys.push_back(lerp(u, lastxy, thisxy));
- dirs.push_back(unitize(lerp(u, lastd, thisd)));
- ix++;
- }
- arclen = s;
- }
- Point Thetas::xy(double s) const {
- int bucket = (int)s;
- double frac = s - bucket;
- return lerp(frac, xys[bucket], xys[bucket + 1]);
- }
- Point Thetas::dir(double s) const {
- int bucket = (int)s;
- double frac = s - bucket;
- return lerp(frac, dirs[bucket], dirs[bucket + 1]);
- }
- #define NORM_LEVEL 2
- // L1 angle norm, 2, L2 angle norm, 0.05
- // L1 distance norm, 200
- double dist_factor = .005;
- double angle_factor = 5;
- class MeasureFunctor {
- public:
- MeasureFunctor(const Thetas& curve, double s0, double ss, const ArclenFunctor& af,
- Quad q)
- : curve(curve), s0(s0), ss(ss), af(af), q(q) { }
- void operator()(double dydx[2], double t, const double y[2]) {
- Point dxy(af.deriv(t));
- dydx[0] = std::hypot(dxy.x, dxy.y);
- // distance error
- Point curvexy = curve.xy(s0 + y[0] * ss);
- #if NORM_LEVEL == 1
- double disterr = dist(q.eval(t), curvexy);
- #endif
- #if NORM_LEVEL == 2
- double disterr = dist2(q.eval(t), curvexy);
- #endif
- disterr *= dydx[0];
- // angle error
- Point dir = curve.dir(s0 + y[0] * ss);
- double angleerr = dir.x * dxy.y - dir.y * dxy.x;
- #if NORM_LEVEL == 1
- angleerr = std::abs(angleerr);
- #endif
- #if NORM_LEVEL == 2
- angleerr = (angleerr * angleerr) / dydx[0];
- #endif
- dydx[1] = dist_factor * disterr + angle_factor * angleerr;
- }
- private:
- const Thetas& curve;
- double s0;
- double ss;
- const ArclenFunctor& af;
- Quad q;
- };
- // measure how closely the quad fits the section of curve, using L1 norm
- // of angle mismatch
- double measureQuad(const Thetas& curve, double s0, double s1, const Quad& q) {
- ArclenFunctor derivs(q);
- double ss = 0;
- if (q.arclen() != 0)
- ss = (s1 - s0) / q.arclen();
- MeasureFunctor err(curve, s0, ss, derivs, q);
- const int n = 10;
- double dt = 1./n;
- double t = 0;
- double y[2] = { 0, 0 };
- for (int i = 0; i < n; i++) {
- rk4<2>(y, t, dt, err);
- t += dt;
- }
- return y[1];
- }
- struct Break {
- Break(double s, Point xy, Point dir) : s(s), xy(xy), dir(dir) { }
- double s;
- Point xy;
- Point dir;
- };
- struct Statelet {
- void combine(const Statelet* prev, double score, Quad q, double penalty);
- const Statelet* prev;
- double score;
- Quad q;
- };
- void Statelet::combine(const Statelet* newprev, double newscore, Quad newq, double penalty) {
- prev = newprev;
- double pmul = 2;
- if (newq.isLine()) {
- pmul = 1;
- } else if (newprev != 0 && !newprev->q.isLine()
- && lerp(0.5, newprev->q.p[1], newq.p[1]) == newq.p[0]) {
- pmul = 1;
- }
- score = (newprev == 0 ? 0 : newprev->score) + penalty * pmul + newscore;
- q = newq;
- }
- struct State {
- void combine(const State* prev, double score, Quad q, double penalty);
- vector<Statelet> sts;
- bool init;
- };
- void State::combine(const State* prev, double score, Quad q, double penalty) {
- const Statelet* prevsl = prev->sts.empty() ? 0 : &prev->sts[0];
- if (prevsl == 0 && !prev->init) {
- return;
- }
- Statelet sl;
- sl.combine(prevsl, score, q, penalty);
- if (sts.empty()) {
- sts.push_back(sl);
- } else {
- if (sl.score < sts[0].score) {
- sts[0] = sl;
- }
- }
- }
- bool isInt(double x) {
- return x == (int) x;
- }
- bool okForHalf(const State* prev, Quad q) {
- if (isInt(q.p[0].x) && isInt(q.p[0].y)) {
- return true;
- }
- if (q.isLine()) {
- return false;
- }
- const Statelet* prevsl = prev->sts.empty() ? 0 : &prev->sts[0];
- if (prevsl == 0 || prevsl->q.isLine()) {
- return false;
- }
- return lerp(0.5, prevsl->q.p[1], q.p[1]) == q.p[0];
- }
- void findBreaks(vector<Break>* breaks, const Thetas& curve) {
- breaks->clear();
- double lastd;
- int n = round(10 * curve.arclen);
- for (int i = 0; i <= n; i++) {
- double s = curve.arclen * i / n;
- Point origp = curve.xy(s);
- #if HALF_STEP
- Point p(.5 * std::round(2 * origp.x), .5 * std::round(2 * origp.y));
- #else
- Point p = round(origp);
- #endif
- double d = dist(p, origp);
- if (i == 0 || !(p == (*breaks)[breaks->size() - 1].xy)) {
- Break bk(s, p, curve.dir(s));
- breaks->push_back(bk);
- lastd = d;
- } else if (d < lastd) {
- (*breaks)[breaks->size() - 1] = Break(s, p, curve.dir(s));
- lastd = d;
- }
- }
- }
- bool intersect(Point* result, Point p0, Point dir0, Point p1, Point dir1) {
- double det = dir0.x * dir1.y - dir0.y * dir1.x;
- if (std::abs(det) < 1e-6 || std::isnan(det)) return false;
- det = 1 / det;
- double a = p0.y * dir0.x - p0.x * dir0.y;
- double b = p1.y * dir1.x - p1.x * dir1.y;
- result->x = (a * dir1.x - b * dir0.x) * det;
- result->y = (a * dir1.y - b * dir0.y) * det;
- return true;
- }
- void tryQuad(const State* prev, State* st, const Thetas& curve,
- const Break& bk0, const Break& bk1, const Quad& q, double penalty) {
- double score = measureQuad(curve, bk0.s, bk1.s, q);
- st->combine(prev, score, q, penalty);
- }
- void tryLineQuad(const State* prev, State* st, const Thetas& curve,
- const Break& bk0, const Break& bk1, double penalty) {
- if (isInt(bk0.xy.x) && isInt(bk0.xy.y)) {
- Quad line(bk0.xy, lerp(0.5, bk0.xy, bk1.xy), bk1.xy);
- tryQuad(prev, st, curve, bk0, bk1, line, penalty);
- }
- Point pmid;
- if (intersect(&pmid, bk0.xy, bk0.dir, bk1.xy, bk1.dir)) {
- Quad q(bk0.xy, round(pmid), bk1.xy);
- if (okForHalf(prev, q)) {
- tryQuad(prev, st, curve, bk0, bk1, q, penalty);
- }
- }
- }
- vector<Quad> optimize(const Thetas& curve, double penalty=1) {
- vector<Break> breaks;
- findBreaks(&breaks, curve);
- int n = breaks.size() - 1;
- vector<State> states;
- states.resize(n + 1);
- states[0].init = true;
- tryLineQuad(&states[0], &states[n], curve, breaks[0], breaks[n], penalty);
- if (states[n].sts[0].score <= 3 * penalty) {
- goto done;
- }
- for (int i = 1; i < n; i++) {
- tryLineQuad(&states[0], &states[i], curve, breaks[0], breaks[i], penalty);
- tryLineQuad(&states[i], &states[n], curve, breaks[i], breaks[n], penalty);
- }
- if (states[n].sts[0].score <= 4 * penalty) {
- goto done;
- }
- for (int i = 1; i <= n; i++) {
- for (int j = i - 1; j >= 0; j--) {
- tryLineQuad(&states[j], &states[i], curve, breaks[j], breaks[i], penalty);
- }
- }
- done:
- vector<Quad> result;
- for (const Statelet* sl = &states[n].sts[0]; sl != 0; sl = sl->prev) {
- result.push_back(sl->q);
- }
- std::reverse(result.begin(), result.end());
- return result;
- }
- void readBzs(vector<Quad>* result, std::istream& is) {
- double x0, y0, x1, y1, x2, y2;
- while (is >> x0 >> y0 >> x1 >> y1 >> x2 >> y2) {
- result->push_back(Quad(Point(x0, y0), Point(x1, y1), Point(x2, y2)));
- }
- // Round the endpoints, they must be on integers
- result->front().p[0] = round(result->front().p[0]);
- result->back().p[2] = round(result->back().p[2]);
- }
- int main(int argc, char** argv) {
- if (argc != 3) {
- std::cerr << "usage: quadopt in out\n";
- return 1;
- }
- #if 0
- Quad q(Point(100, 0), Point(0, 0), Point(0, 100));
- std::cout.precision(8);
- std::cout << q.arclen() << "\n";
- #endif
- vector<Quad> bzs;
- std::ifstream is;
- is.open(argv[1]);
- readBzs(&bzs, is);
- Thetas thetas;
- thetas.init(bzs);
- #if 0
- for (int i = 0; i < thetas.arclen; i++) {
- Point xy = thetas.dir(i);
- std::cout << xy.x << " " << xy.y << std::endl;
- }
- #endif
- vector<Quad> optbzs = optimize(thetas);
- std::ofstream os;
- os.open(argv[2]);
- for (size_t i = 0; i < optbzs.size(); i++) {
- optbzs[i].print(os);
- }
- return 0;
- }
|