123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- # Numerical techniques for solving 3rd order polynomial spline systems
- # The standard representation is the vector of derivatives at s=0,
- # with -.5 <= s <= 5.
- #
- # Thus, \kappa(s) = k0 + k1 s + 1/2 k2 s^2 + 1/6 k3 s^3
- from math import *
- def eval_cubic(a, b, c, d, x):
- return ((d * x + c) * x + b) * x + a
- # integrate over s = [0, 1]
- def int_3spiro_poly(ks, n):
- x, y = 0, 0
- th = 0
- ds = 1.0 / n
- th1, th2, th3, th4 = ks[0], .5 * ks[1], (1./6) * ks[2], (1./24) * ks[3]
- k0, k1, k2, k3 = ks[0] * ds, ks[1] * ds, ks[2] * ds, ks[3] * ds
- s = 0
- result = [(x, y)]
- for i in range(n):
- sm = s + 0.5 * ds
- th = sm * eval_cubic(th1, th2, th3, th4, sm)
- cth = cos(th)
- sth = sin(th)
- km0 = ((1./6 * k3 * sm + .5 * k2) * sm + k1) * sm + k0
- km1 = ((.5 * k3 * sm + k2) * sm + k1) * ds
- km2 = (k3 * sm + k2) * ds * ds
- km3 = k3 * ds * ds * ds
- #print km0, km1, km2, km3
- u = 1 - km0 * km0 / 24
- v = km1 / 24
- u = 1 - km0 * km0 / 24 + (km0 ** 4 - 4 * km0 * km2 - 3 * km1 * km1) / 1920
- v = km1 / 24 + (km3 - 6 * km0 * km0 * km1) / 1920
- x += cth * u - sth * v
- y += cth * v + sth * u
- result.append((ds * x, ds * y))
- s += ds
- return result
- def integ_chord(k, n = 64):
- ks = (k[0] * .5, k[1] * .25, k[2] * .125, k[3] * .0625)
- xp, yp = int_3spiro_poly(ks, n)[-1]
- ks = (k[0] * -.5, k[1] * .25, k[2] * -.125, k[3] * .0625)
- xm, ym = int_3spiro_poly(ks, n)[-1]
- dx, dy = .5 * (xp + xm), .5 * (yp + ym)
- return hypot(dx, dy), atan2(dy, dx)
- # Return th0, th1, k0, k1 for given params
- def calc_thk(ks):
- chord, ch_th = integ_chord(ks)
- th0 = ch_th - (-.5 * ks[0] + .125 * ks[1] - 1./48 * ks[2] + 1./384 * ks[3])
- th1 = (.5 * ks[0] + .125 * ks[1] + 1./48 * ks[2] + 1./384 * ks[3]) - ch_th
- k0 = chord * (ks[0] - .5 * ks[1] + .125 * ks[2] - 1./48 * ks[3])
- k1 = chord * (ks[0] + .5 * ks[1] + .125 * ks[2] + 1./48 * ks[3])
- #print '%', (-.5 * ks[0] + .125 * ks[1] - 1./48 * ks[2] + 1./384 * ks[3]), (.5 * ks[0] + .125 * ks[1] + 1./48 * ks[2] + 1./384 * ks[3]), ch_th
- return th0, th1, k0, k1
- def calc_k1k2(ks):
- chord, ch_th = integ_chord(ks)
- k1l = chord * chord * (ks[1] - .5 * ks[2] + .125 * ks[3])
- k1r = chord * chord * (ks[1] + .5 * ks[2] + .125 * ks[3])
- k2l = chord * chord * chord * (ks[2] - .5 * ks[3])
- k2r = chord * chord * chord * (ks[2] + .5 * ks[3])
- return k1l, k1r, k2l, k2r
-
- def plot(ks):
- ksp = (ks[0] * .5, ks[1] * .25, ks[2] * .125, ks[3] * .0625)
- pside = int_3spiro_poly(ksp, 64)
- ksm = (ks[0] * -.5, ks[1] * .25, ks[2] * -.125, ks[3] * .0625)
- mside = int_3spiro_poly(ksm, 64)
- mside.reverse()
- for i in range(len(mside)):
- mside[i] = (-mside[i][0], -mside[i][1])
- pts = mside + pside[1:]
- cmd = "moveto"
- for j in range(len(pts)):
- x, y = pts[j]
- print 306 + 300 * x, 400 + 300 * y, cmd
- cmd = "lineto"
- print "stroke"
- x, y = pts[0]
- print 306 + 300 * x, 400 + 300 * y, "moveto"
- x, y = pts[-1]
- print 306 + 300 * x, 400 + 300 * y, "lineto .5 setlinewidth stroke"
- print "showpage"
- def solve_3spiro(th0, th1, k0, k1):
- ks = [0, 0, 0, 0]
- for i in range(5):
- th0_a, th1_a, k0_a, k1_a = calc_thk(ks)
- dth0 = th0 - th0_a
- dth1 = th1 - th1_a
- dk0 = k0 - k0_a
- dk1 = k1 - k1_a
- ks[0] += (dth0 + dth1) * 1.5 + (dk0 + dk1) * -.25
- ks[1] += (dth1 - dth0) * 15 + (dk0 - dk1) * 1.5
- ks[2] += (dth0 + dth1) * -12 + (dk0 + dk1) * 6
- ks[3] += (dth0 - dth1) * 360 + (dk1 - dk0) * 60
- #print '% ks =', ks
- return ks
- def iter_spline(pts, ths, ks):
- pass
- def solve_vee():
- kss = []
- for i in range(10):
- kss.append([0, 0, 0, 0])
- thl = [0] * len(kss)
- thr = [0] * len(kss)
- k0l = [0] * len(kss)
- k0r = [0] * len(kss)
- k1l = [0] * len(kss)
- k1r = [0] * len(kss)
- k2l = [0] * len(kss)
- k2r = [0] * len(kss)
- for i in range(10):
- for j in range(len(kss)):
- thl[j], thr[j], k0l[j], k0r[j] = calc_thk(kss[j])
- k0l[j], k1r[j], k2l[j], k2r[j] = calc_k1k2(kss[j])
- for j in range(len(kss) - 1):
- dth = thl[j + 1] + thr[j]
- if j == 5: dth += .1
- dk0 = k0l[j + 1] - k0r[j]
- dk1 = k1l[j + 1] - k1r[j]
- dk2 = k2l[j + 1] - k2r[j]
- if __name__ == '__main__':
- k0 = pi * 3
- ks = [0, k0, -2 * k0, 0]
- ks = [0, 0, 0, 0.01]
- #plot(ks)
- thk = calc_thk(ks)
- print '%', thk
-
- ks = solve_3spiro(0, 0, 0, 0.001)
- print '% thk =', calc_thk(ks)
- #plot(ks)
- print '%', ks
- print calc_k1k2(ks)
|