123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- from math import *
- import cornu
- def mod_2pi(th):
- u = th / (2 * pi)
- return 2 * pi * (u - floor(u + 0.5))
- # Given clothoid k(s) = k0 + k1 s, compute th1 - th0 of chord from s = -.5
- # to .5.
- def compute_dth(k0, k1):
- if k1 < 0:
- return -compute_dth(k0, -k1)
- elif k1 == 0:
- return 0
- sqrk1 = sqrt(2 * k1)
- t0 = (k0 - .5 * k1) / sqrk1
- t1 = (k0 + .5 * k1) / sqrk1
- (y0, x0) = cornu.eval_cornu(t0)
- (y1, x1) = cornu.eval_cornu(t1)
- chord_th = atan2(y1 - y0, x1 - x0)
- return mod_2pi(t1 * t1 - chord_th) - mod_2pi(chord_th - t0 * t0)
- def compute_chord(k0, k1):
- if k1 == 0:
- if k0 == 0:
- return 1
- else:
- return sin(k0 * .5) / (k0 * .5)
- sqrk1 = sqrt(2 * abs(k1))
- t0 = (k0 - .5 * k1) / sqrk1
- t1 = (k0 + .5 * k1) / sqrk1
- (y0, x0) = cornu.eval_cornu(t0)
- (y1, x1) = cornu.eval_cornu(t1)
- return hypot(y1 - y0, x1 - x0) / abs(t1 - t0)
- # Given th0 and th1 at endpoints (measured from chord), return k0
- # and k1 such that the clothoid k(s) = k0 + k1 s, evaluated from
- # s = -.5 to .5, has the tangents given
- def solve_clothoid(th0, th1, verbose = False):
- k0 = th0 + th1
- # initial guess
- k1 = 6 * (th1 - th0)
- error = (th1 - th0) - compute_dth(k0, k1)
- if verbose:
- print k0, k1, error
- k1_old, error_old = k1, error
- # second guess based on d(dth)/dk1 ~ 1/6
- k1 += 6 * error
- error = (th1 - th0) - compute_dth(k0, k1)
- if verbose:
- print k0, k1, error
- # secant method
- for i in range(10):
- if abs(error) < 1e-9: break
- k1_old, error_old, k1 = k1, error, k1 + (k1_old - k1) * error / (error - error_old)
- error = (th1 - th0) - compute_dth(k0, k1)
- if verbose:
- print k0, k1, error
- return k0, k1
- if __name__ == '__main__':
- print solve_clothoid(.06, .05, True)
|