vf_rotate.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. /*
  2. * Copyright (c) 2013 Stefano Sabatini
  3. * Copyright (c) 2008 Vitor Sessak
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * rotation filter, partially based on the tests/rotozoom.c program
  24. */
  25. #include "libavutil/avstring.h"
  26. #include "libavutil/eval.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/intreadwrite.h"
  29. #include "libavutil/parseutils.h"
  30. #include "libavutil/pixdesc.h"
  31. #include "avfilter.h"
  32. #include "drawutils.h"
  33. #include "internal.h"
  34. #include "video.h"
  35. #include <float.h>
  36. static const char * const var_names[] = {
  37. "in_w" , "iw", ///< width of the input video
  38. "in_h" , "ih", ///< height of the input video
  39. "out_w", "ow", ///< width of the input video
  40. "out_h", "oh", ///< height of the input video
  41. "hsub", "vsub",
  42. "n", ///< number of frame
  43. "t", ///< timestamp expressed in seconds
  44. NULL
  45. };
  46. enum var_name {
  47. VAR_IN_W , VAR_IW,
  48. VAR_IN_H , VAR_IH,
  49. VAR_OUT_W, VAR_OW,
  50. VAR_OUT_H, VAR_OH,
  51. VAR_HSUB, VAR_VSUB,
  52. VAR_N,
  53. VAR_T,
  54. VAR_VARS_NB
  55. };
  56. typedef struct {
  57. const AVClass *class;
  58. double angle;
  59. char *angle_expr_str; ///< expression for the angle
  60. AVExpr *angle_expr; ///< parsed expression for the angle
  61. char *outw_expr_str, *outh_expr_str;
  62. int outh, outw;
  63. uint8_t fillcolor[4]; ///< color expressed either in YUVA or RGBA colorspace for the padding area
  64. char *fillcolor_str;
  65. int fillcolor_enable;
  66. int hsub, vsub;
  67. int nb_planes;
  68. int use_bilinear;
  69. float sinx, cosx;
  70. double var_values[VAR_VARS_NB];
  71. FFDrawContext draw;
  72. FFDrawColor color;
  73. } RotContext;
  74. typedef struct ThreadData {
  75. AVFrame *in, *out;
  76. int inw, inh;
  77. int outw, outh;
  78. int plane;
  79. int xi, yi;
  80. int xprime, yprime;
  81. int c, s;
  82. } ThreadData;
  83. #define OFFSET(x) offsetof(RotContext, x)
  84. #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
  85. static const AVOption rotate_options[] = {
  86. { "angle", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  87. { "a", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  88. { "out_w", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  89. { "ow", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  90. { "out_h", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  91. { "oh", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  92. { "fillcolor", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  93. { "c", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  94. { "bilinear", "use bilinear interpolation", OFFSET(use_bilinear), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, .flags=FLAGS },
  95. { NULL }
  96. };
  97. AVFILTER_DEFINE_CLASS(rotate);
  98. static av_cold int init(AVFilterContext *ctx)
  99. {
  100. RotContext *rot = ctx->priv;
  101. if (!strcmp(rot->fillcolor_str, "none"))
  102. rot->fillcolor_enable = 0;
  103. else if (av_parse_color(rot->fillcolor, rot->fillcolor_str, -1, ctx) >= 0)
  104. rot->fillcolor_enable = 1;
  105. else
  106. return AVERROR(EINVAL);
  107. return 0;
  108. }
  109. static av_cold void uninit(AVFilterContext *ctx)
  110. {
  111. RotContext *rot = ctx->priv;
  112. av_expr_free(rot->angle_expr);
  113. rot->angle_expr = NULL;
  114. }
  115. static int query_formats(AVFilterContext *ctx)
  116. {
  117. static const enum AVPixelFormat pix_fmts[] = {
  118. AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
  119. AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA,
  120. AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA,
  121. AV_PIX_FMT_0RGB, AV_PIX_FMT_RGB0,
  122. AV_PIX_FMT_0BGR, AV_PIX_FMT_BGR0,
  123. AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
  124. AV_PIX_FMT_GRAY8,
  125. AV_PIX_FMT_YUV410P,
  126. AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
  127. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P,
  128. AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA420P,
  129. AV_PIX_FMT_NONE
  130. };
  131. AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
  132. if (!fmts_list)
  133. return AVERROR(ENOMEM);
  134. return ff_set_common_formats(ctx, fmts_list);
  135. }
  136. static double get_rotated_w(void *opaque, double angle)
  137. {
  138. RotContext *rot = opaque;
  139. double inw = rot->var_values[VAR_IN_W];
  140. double inh = rot->var_values[VAR_IN_H];
  141. float sinx = sin(angle);
  142. float cosx = cos(angle);
  143. return FFMAX(0, inh * sinx) + FFMAX(0, -inw * cosx) +
  144. FFMAX(0, inw * cosx) + FFMAX(0, -inh * sinx);
  145. }
  146. static double get_rotated_h(void *opaque, double angle)
  147. {
  148. RotContext *rot = opaque;
  149. double inw = rot->var_values[VAR_IN_W];
  150. double inh = rot->var_values[VAR_IN_H];
  151. float sinx = sin(angle);
  152. float cosx = cos(angle);
  153. return FFMAX(0, -inh * cosx) + FFMAX(0, -inw * sinx) +
  154. FFMAX(0, inh * cosx) + FFMAX(0, inw * sinx);
  155. }
  156. static double (* const func1[])(void *, double) = {
  157. get_rotated_w,
  158. get_rotated_h,
  159. NULL
  160. };
  161. static const char * const func1_names[] = {
  162. "rotw",
  163. "roth",
  164. NULL
  165. };
  166. static int config_props(AVFilterLink *outlink)
  167. {
  168. AVFilterContext *ctx = outlink->src;
  169. RotContext *rot = ctx->priv;
  170. AVFilterLink *inlink = ctx->inputs[0];
  171. const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(inlink->format);
  172. int ret;
  173. double res;
  174. char *expr;
  175. ff_draw_init(&rot->draw, inlink->format, 0);
  176. ff_draw_color(&rot->draw, &rot->color, rot->fillcolor);
  177. rot->hsub = pixdesc->log2_chroma_w;
  178. rot->vsub = pixdesc->log2_chroma_h;
  179. rot->var_values[VAR_IN_W] = rot->var_values[VAR_IW] = inlink->w;
  180. rot->var_values[VAR_IN_H] = rot->var_values[VAR_IH] = inlink->h;
  181. rot->var_values[VAR_HSUB] = 1<<rot->hsub;
  182. rot->var_values[VAR_VSUB] = 1<<rot->vsub;
  183. rot->var_values[VAR_N] = NAN;
  184. rot->var_values[VAR_T] = NAN;
  185. rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = NAN;
  186. rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = NAN;
  187. av_expr_free(rot->angle_expr);
  188. rot->angle_expr = NULL;
  189. if ((ret = av_expr_parse(&rot->angle_expr, expr = rot->angle_expr_str, var_names,
  190. func1_names, func1, NULL, NULL, 0, ctx)) < 0) {
  191. av_log(ctx, AV_LOG_ERROR,
  192. "Error occurred parsing angle expression '%s'\n", rot->angle_expr_str);
  193. return ret;
  194. }
  195. #define SET_SIZE_EXPR(name, opt_name) do { \
  196. ret = av_expr_parse_and_eval(&res, expr = rot->name##_expr_str, \
  197. var_names, rot->var_values, \
  198. func1_names, func1, NULL, NULL, rot, 0, ctx); \
  199. if (ret < 0 || isnan(res) || isinf(res) || res <= 0) { \
  200. av_log(ctx, AV_LOG_ERROR, \
  201. "Error parsing or evaluating expression for option %s: " \
  202. "invalid expression '%s' or non-positive or indefinite value %f\n", \
  203. opt_name, expr, res); \
  204. return ret; \
  205. } \
  206. } while (0)
  207. /* evaluate width and height */
  208. av_expr_parse_and_eval(&res, expr = rot->outw_expr_str, var_names, rot->var_values,
  209. func1_names, func1, NULL, NULL, rot, 0, ctx);
  210. rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
  211. rot->outw = res + 0.5;
  212. SET_SIZE_EXPR(outh, "out_h");
  213. rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = res;
  214. rot->outh = res + 0.5;
  215. /* evaluate the width again, as it may depend on the evaluated output height */
  216. SET_SIZE_EXPR(outw, "out_w");
  217. rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
  218. rot->outw = res + 0.5;
  219. /* compute number of planes */
  220. rot->nb_planes = av_pix_fmt_count_planes(inlink->format);
  221. outlink->w = rot->outw;
  222. outlink->h = rot->outh;
  223. return 0;
  224. }
  225. #define FIXP (1<<16)
  226. #define FIXP2 (1<<20)
  227. #define INT_PI 3294199 //(M_PI * FIXP2)
  228. /**
  229. * Compute the sin of a using integer values.
  230. * Input is scaled by FIXP2 and output values are scaled by FIXP.
  231. */
  232. static int64_t int_sin(int64_t a)
  233. {
  234. int64_t a2, res = 0;
  235. int i;
  236. if (a < 0) a = INT_PI-a; // 0..inf
  237. a %= 2 * INT_PI; // 0..2PI
  238. if (a >= INT_PI*3/2) a -= 2*INT_PI; // -PI/2 .. 3PI/2
  239. if (a >= INT_PI/2 ) a = INT_PI - a; // -PI/2 .. PI/2
  240. /* compute sin using Taylor series approximated to the fifth term */
  241. a2 = (a*a)/(FIXP2);
  242. for (i = 2; i < 11; i += 2) {
  243. res += a;
  244. a = -a*a2 / (FIXP2*i*(i+1));
  245. }
  246. return (res + 8)>>4;
  247. }
  248. /**
  249. * Interpolate the color in src at position x and y using bilinear
  250. * interpolation.
  251. */
  252. static uint8_t *interpolate_bilinear(uint8_t *dst_color,
  253. const uint8_t *src, int src_linesize, int src_linestep,
  254. int x, int y, int max_x, int max_y)
  255. {
  256. int int_x = av_clip(x>>16, 0, max_x);
  257. int int_y = av_clip(y>>16, 0, max_y);
  258. int frac_x = x&0xFFFF;
  259. int frac_y = y&0xFFFF;
  260. int i;
  261. int int_x1 = FFMIN(int_x+1, max_x);
  262. int int_y1 = FFMIN(int_y+1, max_y);
  263. for (i = 0; i < src_linestep; i++) {
  264. int s00 = src[src_linestep * int_x + i + src_linesize * int_y ];
  265. int s01 = src[src_linestep * int_x1 + i + src_linesize * int_y ];
  266. int s10 = src[src_linestep * int_x + i + src_linesize * int_y1];
  267. int s11 = src[src_linestep * int_x1 + i + src_linesize * int_y1];
  268. int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
  269. int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
  270. dst_color[i] = ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32;
  271. }
  272. return dst_color;
  273. }
  274. static av_always_inline void copy_elem(uint8_t *pout, const uint8_t *pin, int elem_size)
  275. {
  276. int v;
  277. switch (elem_size) {
  278. case 1:
  279. *pout = *pin;
  280. break;
  281. case 2:
  282. *((uint16_t *)pout) = *((uint16_t *)pin);
  283. break;
  284. case 3:
  285. v = AV_RB24(pin);
  286. AV_WB24(pout, v);
  287. break;
  288. case 4:
  289. *((uint32_t *)pout) = *((uint32_t *)pin);
  290. break;
  291. default:
  292. memcpy(pout, pin, elem_size);
  293. break;
  294. }
  295. }
  296. static av_always_inline void simple_rotate_internal(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
  297. {
  298. int i;
  299. switch(angle) {
  300. case 0:
  301. memcpy(dst, src, elem_size * len);
  302. break;
  303. case 1:
  304. for (i = 0; i<len; i++)
  305. copy_elem(dst + i*elem_size, src + (len-i-1)*src_linesize, elem_size);
  306. break;
  307. case 2:
  308. for (i = 0; i<len; i++)
  309. copy_elem(dst + i*elem_size, src + (len-i-1)*elem_size, elem_size);
  310. break;
  311. case 3:
  312. for (i = 0; i<len; i++)
  313. copy_elem(dst + i*elem_size, src + i*src_linesize, elem_size);
  314. break;
  315. }
  316. }
  317. static av_always_inline void simple_rotate(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
  318. {
  319. switch(elem_size) {
  320. case 1 : simple_rotate_internal(dst, src, src_linesize, angle, 1, len); break;
  321. case 2 : simple_rotate_internal(dst, src, src_linesize, angle, 2, len); break;
  322. case 3 : simple_rotate_internal(dst, src, src_linesize, angle, 3, len); break;
  323. case 4 : simple_rotate_internal(dst, src, src_linesize, angle, 4, len); break;
  324. default: simple_rotate_internal(dst, src, src_linesize, angle, elem_size, len); break;
  325. }
  326. }
  327. #define TS2T(ts, tb) ((ts) == AV_NOPTS_VALUE ? NAN : (double)(ts)*av_q2d(tb))
  328. static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
  329. {
  330. ThreadData *td = arg;
  331. AVFrame *in = td->in;
  332. AVFrame *out = td->out;
  333. RotContext *rot = ctx->priv;
  334. const int outw = td->outw, outh = td->outh;
  335. const int inw = td->inw, inh = td->inh;
  336. const int plane = td->plane;
  337. const int xi = td->xi, yi = td->yi;
  338. const int c = td->c, s = td->s;
  339. const int start = (outh * job ) / nb_jobs;
  340. const int end = (outh * (job+1)) / nb_jobs;
  341. int xprime = td->xprime + start * s;
  342. int yprime = td->yprime + start * c;
  343. int i, j, x, y;
  344. for (j = start; j < end; j++) {
  345. x = xprime + xi + FIXP*(inw-1)/2;
  346. y = yprime + yi + FIXP*(inh-1)/2;
  347. if (fabs(rot->angle - 0) < FLT_EPSILON && outw == inw && outh == inh) {
  348. simple_rotate(out->data[plane] + j * out->linesize[plane],
  349. in->data[plane] + j * in->linesize[plane],
  350. in->linesize[plane], 0, rot->draw.pixelstep[plane], outw);
  351. } else if (fabs(rot->angle - M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
  352. simple_rotate(out->data[plane] + j * out->linesize[plane],
  353. in->data[plane] + j * rot->draw.pixelstep[plane],
  354. in->linesize[plane], 1, rot->draw.pixelstep[plane], outw);
  355. } else if (fabs(rot->angle - M_PI) < FLT_EPSILON && outw == inw && outh == inh) {
  356. simple_rotate(out->data[plane] + j * out->linesize[plane],
  357. in->data[plane] + (outh-j-1) * in->linesize[plane],
  358. in->linesize[plane], 2, rot->draw.pixelstep[plane], outw);
  359. } else if (fabs(rot->angle - 3*M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
  360. simple_rotate(out->data[plane] + j * out->linesize[plane],
  361. in->data[plane] + (outh-j-1) * rot->draw.pixelstep[plane],
  362. in->linesize[plane], 3, rot->draw.pixelstep[plane], outw);
  363. } else {
  364. for (i = 0; i < outw; i++) {
  365. int32_t v;
  366. int x1, y1;
  367. uint8_t *pin, *pout;
  368. x1 = x>>16;
  369. y1 = y>>16;
  370. /* the out-of-range values avoid border artifacts */
  371. if (x1 >= -1 && x1 <= inw && y1 >= -1 && y1 <= inh) {
  372. uint8_t inp_inv[4]; /* interpolated input value */
  373. pout = out->data[plane] + j * out->linesize[plane] + i * rot->draw.pixelstep[plane];
  374. if (rot->use_bilinear) {
  375. pin = interpolate_bilinear(inp_inv,
  376. in->data[plane], in->linesize[plane], rot->draw.pixelstep[plane],
  377. x, y, inw-1, inh-1);
  378. } else {
  379. int x2 = av_clip(x1, 0, inw-1);
  380. int y2 = av_clip(y1, 0, inh-1);
  381. pin = in->data[plane] + y2 * in->linesize[plane] + x2 * rot->draw.pixelstep[plane];
  382. }
  383. switch (rot->draw.pixelstep[plane]) {
  384. case 1:
  385. *pout = *pin;
  386. break;
  387. case 2:
  388. *((uint16_t *)pout) = *((uint16_t *)pin);
  389. break;
  390. case 3:
  391. v = AV_RB24(pin);
  392. AV_WB24(pout, v);
  393. break;
  394. case 4:
  395. *((uint32_t *)pout) = *((uint32_t *)pin);
  396. break;
  397. default:
  398. memcpy(pout, pin, rot->draw.pixelstep[plane]);
  399. break;
  400. }
  401. }
  402. x += c;
  403. y -= s;
  404. }
  405. }
  406. xprime += s;
  407. yprime += c;
  408. }
  409. return 0;
  410. }
  411. static int filter_frame(AVFilterLink *inlink, AVFrame *in)
  412. {
  413. AVFilterContext *ctx = inlink->dst;
  414. AVFilterLink *outlink = ctx->outputs[0];
  415. AVFrame *out;
  416. RotContext *rot = ctx->priv;
  417. int angle_int, s, c, plane;
  418. double res;
  419. out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  420. if (!out) {
  421. av_frame_free(&in);
  422. return AVERROR(ENOMEM);
  423. }
  424. av_frame_copy_props(out, in);
  425. rot->var_values[VAR_N] = inlink->frame_count;
  426. rot->var_values[VAR_T] = TS2T(in->pts, inlink->time_base);
  427. rot->angle = res = av_expr_eval(rot->angle_expr, rot->var_values, rot);
  428. av_log(ctx, AV_LOG_DEBUG, "n:%f time:%f angle:%f/PI\n",
  429. rot->var_values[VAR_N], rot->var_values[VAR_T], rot->angle/M_PI);
  430. angle_int = res * FIXP * 16;
  431. s = int_sin(angle_int);
  432. c = int_sin(angle_int + INT_PI/2);
  433. /* fill background */
  434. if (rot->fillcolor_enable)
  435. ff_fill_rectangle(&rot->draw, &rot->color, out->data, out->linesize,
  436. 0, 0, outlink->w, outlink->h);
  437. for (plane = 0; plane < rot->nb_planes; plane++) {
  438. int hsub = plane == 1 || plane == 2 ? rot->hsub : 0;
  439. int vsub = plane == 1 || plane == 2 ? rot->vsub : 0;
  440. const int outw = AV_CEIL_RSHIFT(outlink->w, hsub);
  441. const int outh = AV_CEIL_RSHIFT(outlink->h, vsub);
  442. ThreadData td = { .in = in, .out = out,
  443. .inw = AV_CEIL_RSHIFT(inlink->w, hsub),
  444. .inh = AV_CEIL_RSHIFT(inlink->h, vsub),
  445. .outh = outh, .outw = outw,
  446. .xi = -(outw-1) * c / 2, .yi = (outw-1) * s / 2,
  447. .xprime = -(outh-1) * s / 2,
  448. .yprime = -(outh-1) * c / 2,
  449. .plane = plane, .c = c, .s = s };
  450. ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(outh, ctx->graph->nb_threads));
  451. }
  452. av_frame_free(&in);
  453. return ff_filter_frame(outlink, out);
  454. }
  455. static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
  456. char *res, int res_len, int flags)
  457. {
  458. RotContext *rot = ctx->priv;
  459. int ret;
  460. if (!strcmp(cmd, "angle") || !strcmp(cmd, "a")) {
  461. AVExpr *old = rot->angle_expr;
  462. ret = av_expr_parse(&rot->angle_expr, args, var_names,
  463. NULL, NULL, NULL, NULL, 0, ctx);
  464. if (ret < 0) {
  465. av_log(ctx, AV_LOG_ERROR,
  466. "Error when parsing the expression '%s' for angle command\n", args);
  467. rot->angle_expr = old;
  468. return ret;
  469. }
  470. av_expr_free(old);
  471. } else
  472. ret = AVERROR(ENOSYS);
  473. return ret;
  474. }
  475. static const AVFilterPad rotate_inputs[] = {
  476. {
  477. .name = "default",
  478. .type = AVMEDIA_TYPE_VIDEO,
  479. .filter_frame = filter_frame,
  480. },
  481. { NULL }
  482. };
  483. static const AVFilterPad rotate_outputs[] = {
  484. {
  485. .name = "default",
  486. .type = AVMEDIA_TYPE_VIDEO,
  487. .config_props = config_props,
  488. },
  489. { NULL }
  490. };
  491. AVFilter ff_vf_rotate = {
  492. .name = "rotate",
  493. .description = NULL_IF_CONFIG_SMALL("Rotate the input image."),
  494. .priv_size = sizeof(RotContext),
  495. .init = init,
  496. .uninit = uninit,
  497. .query_formats = query_formats,
  498. .process_command = process_command,
  499. .inputs = rotate_inputs,
  500. .outputs = rotate_outputs,
  501. .priv_class = &rotate_class,
  502. .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
  503. };