af_anequalizer.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /*
  2. * Copyright (c) 2001-2010 Krzysztof Foltman, Markus Schmidt, Thor Harald Johansen and others
  3. * Copyright (c) 2015 Paul B Mahol
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/intreadwrite.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/ffmath.h"
  24. #include "libavutil/opt.h"
  25. #include "libavutil/parseutils.h"
  26. #include "avfilter.h"
  27. #include "internal.h"
  28. #include "audio.h"
  29. #define FILTER_ORDER 4
  30. enum FilterType {
  31. BUTTERWORTH,
  32. CHEBYSHEV1,
  33. CHEBYSHEV2,
  34. NB_TYPES
  35. };
  36. typedef struct FoSection {
  37. double a0, a1, a2, a3, a4;
  38. double b0, b1, b2, b3, b4;
  39. double num[4];
  40. double denum[4];
  41. } FoSection;
  42. typedef struct EqualizatorFilter {
  43. int ignore;
  44. int channel;
  45. int type;
  46. double freq;
  47. double gain;
  48. double width;
  49. FoSection section[2];
  50. } EqualizatorFilter;
  51. typedef struct AudioNEqualizerContext {
  52. const AVClass *class;
  53. char *args;
  54. char *colors;
  55. int draw_curves;
  56. int w, h;
  57. double mag;
  58. int fscale;
  59. int nb_filters;
  60. int nb_allocated;
  61. EqualizatorFilter *filters;
  62. AVFrame *video;
  63. } AudioNEqualizerContext;
  64. #define OFFSET(x) offsetof(AudioNEqualizerContext, x)
  65. #define A AV_OPT_FLAG_AUDIO_PARAM
  66. #define V AV_OPT_FLAG_VIDEO_PARAM
  67. #define F AV_OPT_FLAG_FILTERING_PARAM
  68. static const AVOption anequalizer_options[] = {
  69. { "params", NULL, OFFSET(args), AV_OPT_TYPE_STRING, {.str=""}, 0, 0, A|F },
  70. { "curves", "draw frequency response curves", OFFSET(draw_curves), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, V|F },
  71. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, V|F },
  72. { "mgain", "set max gain", OFFSET(mag), AV_OPT_TYPE_DOUBLE, {.dbl=60}, -900, 900, V|F },
  73. { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, V|F, "fscale" },
  74. { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, V|F, "fscale" },
  75. { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, V|F, "fscale" },
  76. { "colors", "set channels curves colors", OFFSET(colors), AV_OPT_TYPE_STRING, {.str = "red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0, V|F },
  77. { NULL }
  78. };
  79. AVFILTER_DEFINE_CLASS(anequalizer);
  80. static void draw_curves(AVFilterContext *ctx, AVFilterLink *inlink, AVFrame *out)
  81. {
  82. AudioNEqualizerContext *s = ctx->priv;
  83. char *colors, *color, *saveptr = NULL;
  84. int ch, i, n;
  85. colors = av_strdup(s->colors);
  86. if (!colors)
  87. return;
  88. memset(out->data[0], 0, s->h * out->linesize[0]);
  89. for (ch = 0; ch < inlink->channels; ch++) {
  90. uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff };
  91. int prev_v = -1;
  92. double f;
  93. color = av_strtok(ch == 0 ? colors : NULL, " |", &saveptr);
  94. if (color)
  95. av_parse_color(fg, color, -1, ctx);
  96. for (f = 0; f < s->w; f++) {
  97. double zr, zi, zr2, zi2;
  98. double Hr, Hi;
  99. double Hmag = 1;
  100. double w;
  101. int v, y, x;
  102. w = M_PI * (s->fscale ? pow(s->w - 1, f / s->w) : f) / (s->w - 1);
  103. zr = cos(w);
  104. zr2 = zr * zr;
  105. zi = -sin(w);
  106. zi2 = zi * zi;
  107. for (n = 0; n < s->nb_filters; n++) {
  108. if (s->filters[n].channel != ch ||
  109. s->filters[n].ignore)
  110. continue;
  111. for (i = 0; i < FILTER_ORDER / 2; i++) {
  112. FoSection *S = &s->filters[n].section[i];
  113. /* H *= (((((S->b4 * z + S->b3) * z + S->b2) * z + S->b1) * z + S->b0) /
  114. ((((S->a4 * z + S->a3) * z + S->a2) * z + S->a1) * z + S->a0)); */
  115. Hr = S->b4*(1-8*zr2*zi2) + S->b2*(zr2-zi2) + zr*(S->b1+S->b3*(zr2-3*zi2))+ S->b0;
  116. Hi = zi*(S->b3*(3*zr2-zi2) + S->b1 + 2*zr*(2*S->b4*(zr2-zi2) + S->b2));
  117. Hmag *= hypot(Hr, Hi);
  118. Hr = S->a4*(1-8*zr2*zi2) + S->a2*(zr2-zi2) + zr*(S->a1+S->a3*(zr2-3*zi2))+ S->a0;
  119. Hi = zi*(S->a3*(3*zr2-zi2) + S->a1 + 2*zr*(2*S->a4*(zr2-zi2) + S->a2));
  120. Hmag /= hypot(Hr, Hi);
  121. }
  122. }
  123. v = av_clip((1. + -20 * log10(Hmag) / s->mag) * s->h / 2, 0, s->h - 1);
  124. x = lrint(f);
  125. if (prev_v == -1)
  126. prev_v = v;
  127. if (v <= prev_v) {
  128. for (y = v; y <= prev_v; y++)
  129. AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg));
  130. } else {
  131. for (y = prev_v; y <= v; y++)
  132. AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg));
  133. }
  134. prev_v = v;
  135. }
  136. }
  137. av_free(colors);
  138. }
  139. static int config_video(AVFilterLink *outlink)
  140. {
  141. AVFilterContext *ctx = outlink->src;
  142. AudioNEqualizerContext *s = ctx->priv;
  143. AVFilterLink *inlink = ctx->inputs[0];
  144. AVFrame *out;
  145. outlink->w = s->w;
  146. outlink->h = s->h;
  147. av_frame_free(&s->video);
  148. s->video = out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  149. if (!out)
  150. return AVERROR(ENOMEM);
  151. outlink->sample_aspect_ratio = (AVRational){1,1};
  152. draw_curves(ctx, inlink, out);
  153. return 0;
  154. }
  155. static av_cold int init(AVFilterContext *ctx)
  156. {
  157. AudioNEqualizerContext *s = ctx->priv;
  158. AVFilterPad pad, vpad;
  159. pad = (AVFilterPad){
  160. .name = av_strdup("out0"),
  161. .type = AVMEDIA_TYPE_AUDIO,
  162. };
  163. if (!pad.name)
  164. return AVERROR(ENOMEM);
  165. if (s->draw_curves) {
  166. vpad = (AVFilterPad){
  167. .name = av_strdup("out1"),
  168. .type = AVMEDIA_TYPE_VIDEO,
  169. .config_props = config_video,
  170. };
  171. if (!vpad.name)
  172. return AVERROR(ENOMEM);
  173. }
  174. ff_insert_outpad(ctx, 0, &pad);
  175. if (s->draw_curves)
  176. ff_insert_outpad(ctx, 1, &vpad);
  177. return 0;
  178. }
  179. static int query_formats(AVFilterContext *ctx)
  180. {
  181. AVFilterLink *inlink = ctx->inputs[0];
  182. AVFilterLink *outlink = ctx->outputs[0];
  183. AudioNEqualizerContext *s = ctx->priv;
  184. AVFilterFormats *formats;
  185. AVFilterChannelLayouts *layouts;
  186. static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGBA, AV_PIX_FMT_NONE };
  187. static const enum AVSampleFormat sample_fmts[] = {
  188. AV_SAMPLE_FMT_DBLP,
  189. AV_SAMPLE_FMT_NONE
  190. };
  191. int ret;
  192. if (s->draw_curves) {
  193. AVFilterLink *videolink = ctx->outputs[1];
  194. formats = ff_make_format_list(pix_fmts);
  195. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  196. return ret;
  197. }
  198. formats = ff_make_format_list(sample_fmts);
  199. if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0 ||
  200. (ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
  201. return ret;
  202. layouts = ff_all_channel_counts();
  203. if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0 ||
  204. (ret = ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts)) < 0)
  205. return ret;
  206. formats = ff_all_samplerates();
  207. if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0 ||
  208. (ret = ff_formats_ref(formats, &outlink->in_samplerates)) < 0)
  209. return ret;
  210. return 0;
  211. }
  212. static av_cold void uninit(AVFilterContext *ctx)
  213. {
  214. AudioNEqualizerContext *s = ctx->priv;
  215. av_freep(&ctx->output_pads[0].name);
  216. if (s->draw_curves)
  217. av_freep(&ctx->output_pads[1].name);
  218. av_frame_free(&s->video);
  219. av_freep(&s->filters);
  220. s->nb_filters = 0;
  221. s->nb_allocated = 0;
  222. }
  223. static void butterworth_fo_section(FoSection *S, double beta,
  224. double si, double g, double g0,
  225. double D, double c0)
  226. {
  227. if (c0 == 1 || c0 == -1) {
  228. S->b0 = (g*g*beta*beta + 2*g*g0*si*beta + g0*g0)/D;
  229. S->b1 = 2*c0*(g*g*beta*beta - g0*g0)/D;
  230. S->b2 = (g*g*beta*beta - 2*g0*g*beta*si + g0*g0)/D;
  231. S->b3 = 0;
  232. S->b4 = 0;
  233. S->a0 = 1;
  234. S->a1 = 2*c0*(beta*beta - 1)/D;
  235. S->a2 = (beta*beta - 2*beta*si + 1)/D;
  236. S->a3 = 0;
  237. S->a4 = 0;
  238. } else {
  239. S->b0 = (g*g*beta*beta + 2*g*g0*si*beta + g0*g0)/D;
  240. S->b1 = -4*c0*(g0*g0 + g*g0*si*beta)/D;
  241. S->b2 = 2*(g0*g0*(1 + 2*c0*c0) - g*g*beta*beta)/D;
  242. S->b3 = -4*c0*(g0*g0 - g*g0*si*beta)/D;
  243. S->b4 = (g*g*beta*beta - 2*g*g0*si*beta + g0*g0)/D;
  244. S->a0 = 1;
  245. S->a1 = -4*c0*(1 + si*beta)/D;
  246. S->a2 = 2*(1 + 2*c0*c0 - beta*beta)/D;
  247. S->a3 = -4*c0*(1 - si*beta)/D;
  248. S->a4 = (beta*beta - 2*si*beta + 1)/D;
  249. }
  250. }
  251. static void butterworth_bp_filter(EqualizatorFilter *f,
  252. int N, double w0, double wb,
  253. double G, double Gb, double G0)
  254. {
  255. double g, c0, g0, beta;
  256. double epsilon;
  257. int r = N % 2;
  258. int L = (N - r) / 2;
  259. int i;
  260. if (G == 0 && G0 == 0) {
  261. f->section[0].a0 = 1;
  262. f->section[0].b0 = 1;
  263. f->section[1].a0 = 1;
  264. f->section[1].b0 = 1;
  265. return;
  266. }
  267. G = ff_exp10(G/20);
  268. Gb = ff_exp10(Gb/20);
  269. G0 = ff_exp10(G0/20);
  270. epsilon = sqrt((G * G - Gb * Gb) / (Gb * Gb - G0 * G0));
  271. g = pow(G, 1.0 / N);
  272. g0 = pow(G0, 1.0 / N);
  273. beta = pow(epsilon, -1.0 / N) * tan(wb/2);
  274. c0 = cos(w0);
  275. for (i = 1; i <= L; i++) {
  276. double ui = (2.0 * i - 1) / N;
  277. double si = sin(M_PI * ui / 2.0);
  278. double Di = beta * beta + 2 * si * beta + 1;
  279. butterworth_fo_section(&f->section[i - 1], beta, si, g, g0, Di, c0);
  280. }
  281. }
  282. static void chebyshev1_fo_section(FoSection *S, double a,
  283. double c, double tetta_b,
  284. double g0, double si, double b,
  285. double D, double c0)
  286. {
  287. if (c0 == 1 || c0 == -1) {
  288. S->b0 = (tetta_b*tetta_b*(b*b+g0*g0*c*c) + 2*g0*b*si*tetta_b*tetta_b + g0*g0)/D;
  289. S->b1 = 2*c0*(tetta_b*tetta_b*(b*b+g0*g0*c*c) - g0*g0)/D;
  290. S->b2 = (tetta_b*tetta_b*(b*b+g0*g0*c*c) - 2*g0*b*si*tetta_b + g0*g0)/D;
  291. S->b3 = 0;
  292. S->b4 = 0;
  293. S->a0 = 1;
  294. S->a1 = 2*c0*(tetta_b*tetta_b*(a*a+c*c) - 1)/D;
  295. S->a2 = (tetta_b*tetta_b*(a*a+c*c) - 2*a*si*tetta_b + 1)/D;
  296. S->a3 = 0;
  297. S->a4 = 0;
  298. } else {
  299. S->b0 = ((b*b + g0*g0*c*c)*tetta_b*tetta_b + 2*g0*b*si*tetta_b + g0*g0)/D;
  300. S->b1 = -4*c0*(g0*g0 + g0*b*si*tetta_b)/D;
  301. S->b2 = 2*(g0*g0*(1 + 2*c0*c0) - (b*b + g0*g0*c*c)*tetta_b*tetta_b)/D;
  302. S->b3 = -4*c0*(g0*g0 - g0*b*si*tetta_b)/D;
  303. S->b4 = ((b*b + g0*g0*c*c)*tetta_b*tetta_b - 2*g0*b*si*tetta_b + g0*g0)/D;
  304. S->a0 = 1;
  305. S->a1 = -4*c0*(1 + a*si*tetta_b)/D;
  306. S->a2 = 2*(1 + 2*c0*c0 - (a*a + c*c)*tetta_b*tetta_b)/D;
  307. S->a3 = -4*c0*(1 - a*si*tetta_b)/D;
  308. S->a4 = ((a*a + c*c)*tetta_b*tetta_b - 2*a*si*tetta_b + 1)/D;
  309. }
  310. }
  311. static void chebyshev1_bp_filter(EqualizatorFilter *f,
  312. int N, double w0, double wb,
  313. double G, double Gb, double G0)
  314. {
  315. double a, b, c0, g0, alfa, beta, tetta_b;
  316. double epsilon;
  317. int r = N % 2;
  318. int L = (N - r) / 2;
  319. int i;
  320. if (G == 0 && G0 == 0) {
  321. f->section[0].a0 = 1;
  322. f->section[0].b0 = 1;
  323. f->section[1].a0 = 1;
  324. f->section[1].b0 = 1;
  325. return;
  326. }
  327. G = ff_exp10(G/20);
  328. Gb = ff_exp10(Gb/20);
  329. G0 = ff_exp10(G0/20);
  330. epsilon = sqrt((G*G - Gb*Gb) / (Gb*Gb - G0*G0));
  331. g0 = pow(G0,1.0/N);
  332. alfa = pow(1.0/epsilon + sqrt(1 + 1/(epsilon*epsilon)), 1.0/N);
  333. beta = pow(G/epsilon + Gb * sqrt(1 + 1/(epsilon*epsilon)), 1.0/N);
  334. a = 0.5 * (alfa - 1.0/alfa);
  335. b = 0.5 * (beta - g0*g0*(1/beta));
  336. tetta_b = tan(wb/2);
  337. c0 = cos(w0);
  338. for (i = 1; i <= L; i++) {
  339. double ui = (2.0*i-1.0)/N;
  340. double ci = cos(M_PI*ui/2.0);
  341. double si = sin(M_PI*ui/2.0);
  342. double Di = (a*a + ci*ci)*tetta_b*tetta_b + 2.0*a*si*tetta_b + 1;
  343. chebyshev1_fo_section(&f->section[i - 1], a, ci, tetta_b, g0, si, b, Di, c0);
  344. }
  345. }
  346. static void chebyshev2_fo_section(FoSection *S, double a,
  347. double c, double tetta_b,
  348. double g, double si, double b,
  349. double D, double c0)
  350. {
  351. if (c0 == 1 || c0 == -1) {
  352. S->b0 = (g*g*tetta_b*tetta_b + 2*tetta_b*g*b*si + b*b + g*g*c*c)/D;
  353. S->b1 = 2*c0*(g*g*tetta_b*tetta_b - b*b - g*g*c*c)/D;
  354. S->b2 = (g*g*tetta_b*tetta_b - 2*tetta_b*g*b*si + b*b + g*g*c*c)/D;
  355. S->b3 = 0;
  356. S->b4 = 0;
  357. S->a0 = 1;
  358. S->a1 = 2*c0*(tetta_b*tetta_b - a*a - c*c)/D;
  359. S->a2 = (tetta_b*tetta_b - 2*tetta_b*a*si + a*a + c*c)/D;
  360. S->a3 = 0;
  361. S->a4 = 0;
  362. } else {
  363. S->b0 = (g*g*tetta_b*tetta_b + 2*g*b*si*tetta_b + b*b + g*g*c*c)/D;
  364. S->b1 = -4*c0*(b*b + g*g*c*c + g*b*si*tetta_b)/D;
  365. S->b2 = 2*((b*b + g*g*c*c)*(1 + 2*c0*c0) - g*g*tetta_b*tetta_b)/D;
  366. S->b3 = -4*c0*(b*b + g*g*c*c - g*b*si*tetta_b)/D;
  367. S->b4 = (g*g*tetta_b*tetta_b - 2*g*b*si*tetta_b + b*b + g*g*c*c)/D;
  368. S->a0 = 1;
  369. S->a1 = -4*c0*(a*a + c*c + a*si*tetta_b)/D;
  370. S->a2 = 2*((a*a + c*c)*(1 + 2*c0*c0) - tetta_b*tetta_b)/D;
  371. S->a3 = -4*c0*(a*a + c*c - a*si*tetta_b)/D;
  372. S->a4 = (tetta_b*tetta_b - 2*a*si*tetta_b + a*a + c*c)/D;
  373. }
  374. }
  375. static void chebyshev2_bp_filter(EqualizatorFilter *f,
  376. int N, double w0, double wb,
  377. double G, double Gb, double G0)
  378. {
  379. double a, b, c0, tetta_b;
  380. double epsilon, g, eu, ew;
  381. int r = N % 2;
  382. int L = (N - r) / 2;
  383. int i;
  384. if (G == 0 && G0 == 0) {
  385. f->section[0].a0 = 1;
  386. f->section[0].b0 = 1;
  387. f->section[1].a0 = 1;
  388. f->section[1].b0 = 1;
  389. return;
  390. }
  391. G = ff_exp10(G/20);
  392. Gb = ff_exp10(Gb/20);
  393. G0 = ff_exp10(G0/20);
  394. epsilon = sqrt((G*G - Gb*Gb) / (Gb*Gb - G0*G0));
  395. g = pow(G, 1.0 / N);
  396. eu = pow(epsilon + sqrt(1 + epsilon*epsilon), 1.0/N);
  397. ew = pow(G0*epsilon + Gb*sqrt(1 + epsilon*epsilon), 1.0/N);
  398. a = (eu - 1.0/eu)/2.0;
  399. b = (ew - g*g/ew)/2.0;
  400. tetta_b = tan(wb/2);
  401. c0 = cos(w0);
  402. for (i = 1; i <= L; i++) {
  403. double ui = (2.0 * i - 1.0)/N;
  404. double ci = cos(M_PI * ui / 2.0);
  405. double si = sin(M_PI * ui / 2.0);
  406. double Di = tetta_b*tetta_b + 2*a*si*tetta_b + a*a + ci*ci;
  407. chebyshev2_fo_section(&f->section[i - 1], a, ci, tetta_b, g, si, b, Di, c0);
  408. }
  409. }
  410. static double butterworth_compute_bw_gain_db(double gain)
  411. {
  412. double bw_gain = 0;
  413. if (gain <= -6)
  414. bw_gain = gain + 3;
  415. else if(gain > -6 && gain < 6)
  416. bw_gain = gain * 0.5;
  417. else if(gain >= 6)
  418. bw_gain = gain - 3;
  419. return bw_gain;
  420. }
  421. static double chebyshev1_compute_bw_gain_db(double gain)
  422. {
  423. double bw_gain = 0;
  424. if (gain <= -6)
  425. bw_gain = gain + 1;
  426. else if(gain > -6 && gain < 6)
  427. bw_gain = gain * 0.9;
  428. else if(gain >= 6)
  429. bw_gain = gain - 1;
  430. return bw_gain;
  431. }
  432. static double chebyshev2_compute_bw_gain_db(double gain)
  433. {
  434. double bw_gain = 0;
  435. if (gain <= -6)
  436. bw_gain = -3;
  437. else if(gain > -6 && gain < 6)
  438. bw_gain = gain * 0.3;
  439. else if(gain >= 6)
  440. bw_gain = 3;
  441. return bw_gain;
  442. }
  443. static inline double hz_2_rad(double x, double fs)
  444. {
  445. return 2 * M_PI * x / fs;
  446. }
  447. static void equalizer(EqualizatorFilter *f, double sample_rate)
  448. {
  449. double w0 = hz_2_rad(f->freq, sample_rate);
  450. double wb = hz_2_rad(f->width, sample_rate);
  451. double bw_gain;
  452. switch (f->type) {
  453. case BUTTERWORTH:
  454. bw_gain = butterworth_compute_bw_gain_db(f->gain);
  455. butterworth_bp_filter(f, FILTER_ORDER, w0, wb, f->gain, bw_gain, 0);
  456. break;
  457. case CHEBYSHEV1:
  458. bw_gain = chebyshev1_compute_bw_gain_db(f->gain);
  459. chebyshev1_bp_filter(f, FILTER_ORDER, w0, wb, f->gain, bw_gain, 0);
  460. break;
  461. case CHEBYSHEV2:
  462. bw_gain = chebyshev2_compute_bw_gain_db(f->gain);
  463. chebyshev2_bp_filter(f, FILTER_ORDER, w0, wb, f->gain, bw_gain, 0);
  464. break;
  465. }
  466. }
  467. static int add_filter(AudioNEqualizerContext *s, AVFilterLink *inlink)
  468. {
  469. equalizer(&s->filters[s->nb_filters], inlink->sample_rate);
  470. if (s->nb_filters >= s->nb_allocated) {
  471. EqualizatorFilter *filters;
  472. filters = av_calloc(s->nb_allocated, 2 * sizeof(*s->filters));
  473. if (!filters)
  474. return AVERROR(ENOMEM);
  475. memcpy(filters, s->filters, sizeof(*s->filters) * s->nb_allocated);
  476. av_free(s->filters);
  477. s->filters = filters;
  478. s->nb_allocated *= 2;
  479. }
  480. s->nb_filters++;
  481. return 0;
  482. }
  483. static int config_input(AVFilterLink *inlink)
  484. {
  485. AVFilterContext *ctx = inlink->dst;
  486. AudioNEqualizerContext *s = ctx->priv;
  487. char *args = av_strdup(s->args);
  488. char *saveptr = NULL;
  489. int ret = 0;
  490. if (!args)
  491. return AVERROR(ENOMEM);
  492. s->nb_allocated = 32 * inlink->channels;
  493. s->filters = av_calloc(inlink->channels, 32 * sizeof(*s->filters));
  494. if (!s->filters) {
  495. s->nb_allocated = 0;
  496. av_free(args);
  497. return AVERROR(ENOMEM);
  498. }
  499. while (1) {
  500. char *arg = av_strtok(s->nb_filters == 0 ? args : NULL, "|", &saveptr);
  501. if (!arg)
  502. break;
  503. s->filters[s->nb_filters].type = 0;
  504. if (sscanf(arg, "c%d f=%lf w=%lf g=%lf t=%d", &s->filters[s->nb_filters].channel,
  505. &s->filters[s->nb_filters].freq,
  506. &s->filters[s->nb_filters].width,
  507. &s->filters[s->nb_filters].gain,
  508. &s->filters[s->nb_filters].type) != 5 &&
  509. sscanf(arg, "c%d f=%lf w=%lf g=%lf", &s->filters[s->nb_filters].channel,
  510. &s->filters[s->nb_filters].freq,
  511. &s->filters[s->nb_filters].width,
  512. &s->filters[s->nb_filters].gain) != 4 ) {
  513. av_free(args);
  514. return AVERROR(EINVAL);
  515. }
  516. if (s->filters[s->nb_filters].freq < 0 ||
  517. s->filters[s->nb_filters].freq > inlink->sample_rate / 2.0)
  518. s->filters[s->nb_filters].ignore = 1;
  519. if (s->filters[s->nb_filters].channel < 0 ||
  520. s->filters[s->nb_filters].channel >= inlink->channels)
  521. s->filters[s->nb_filters].ignore = 1;
  522. s->filters[s->nb_filters].type = av_clip(s->filters[s->nb_filters].type, 0, NB_TYPES - 1);
  523. ret = add_filter(s, inlink);
  524. if (ret < 0)
  525. break;
  526. }
  527. av_free(args);
  528. return ret;
  529. }
  530. static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
  531. char *res, int res_len, int flags)
  532. {
  533. AudioNEqualizerContext *s = ctx->priv;
  534. AVFilterLink *inlink = ctx->inputs[0];
  535. int ret = AVERROR(ENOSYS);
  536. if (!strcmp(cmd, "change")) {
  537. double freq, width, gain;
  538. int filter;
  539. if (sscanf(args, "%d|f=%lf|w=%lf|g=%lf", &filter, &freq, &width, &gain) != 4)
  540. return AVERROR(EINVAL);
  541. if (filter < 0 || filter >= s->nb_filters)
  542. return AVERROR(EINVAL);
  543. if (freq < 0 || freq > inlink->sample_rate / 2.0)
  544. return AVERROR(EINVAL);
  545. s->filters[filter].freq = freq;
  546. s->filters[filter].width = width;
  547. s->filters[filter].gain = gain;
  548. equalizer(&s->filters[filter], inlink->sample_rate);
  549. if (s->draw_curves)
  550. draw_curves(ctx, inlink, s->video);
  551. ret = 0;
  552. }
  553. return ret;
  554. }
  555. static inline double section_process(FoSection *S, double in)
  556. {
  557. double out;
  558. out = S->b0 * in;
  559. out+= S->b1 * S->num[0] - S->denum[0] * S->a1;
  560. out+= S->b2 * S->num[1] - S->denum[1] * S->a2;
  561. out+= S->b3 * S->num[2] - S->denum[2] * S->a3;
  562. out+= S->b4 * S->num[3] - S->denum[3] * S->a4;
  563. S->num[3] = S->num[2];
  564. S->num[2] = S->num[1];
  565. S->num[1] = S->num[0];
  566. S->num[0] = in;
  567. S->denum[3] = S->denum[2];
  568. S->denum[2] = S->denum[1];
  569. S->denum[1] = S->denum[0];
  570. S->denum[0] = out;
  571. return out;
  572. }
  573. static double process_sample(FoSection *s1, double in)
  574. {
  575. double p0 = in, p1;
  576. int i;
  577. for (i = 0; i < FILTER_ORDER / 2; i++) {
  578. p1 = section_process(&s1[i], p0);
  579. p0 = p1;
  580. }
  581. return p1;
  582. }
  583. static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
  584. {
  585. AVFilterContext *ctx = inlink->dst;
  586. AudioNEqualizerContext *s = ctx->priv;
  587. AVFilterLink *outlink = ctx->outputs[0];
  588. double *bptr;
  589. int i, n;
  590. for (i = 0; i < s->nb_filters; i++) {
  591. EqualizatorFilter *f = &s->filters[i];
  592. if (f->gain == 0. || f->ignore)
  593. continue;
  594. bptr = (double *)buf->extended_data[f->channel];
  595. for (n = 0; n < buf->nb_samples; n++) {
  596. double sample = bptr[n];
  597. sample = process_sample(f->section, sample);
  598. bptr[n] = sample;
  599. }
  600. }
  601. if (s->draw_curves) {
  602. const int64_t pts = buf->pts +
  603. av_rescale_q(buf->nb_samples, (AVRational){ 1, inlink->sample_rate },
  604. outlink->time_base);
  605. int ret;
  606. s->video->pts = pts;
  607. ret = ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
  608. if (ret < 0)
  609. return ret;
  610. }
  611. return ff_filter_frame(outlink, buf);
  612. }
  613. static const AVFilterPad inputs[] = {
  614. {
  615. .name = "default",
  616. .type = AVMEDIA_TYPE_AUDIO,
  617. .config_props = config_input,
  618. .filter_frame = filter_frame,
  619. .needs_writable = 1,
  620. },
  621. { NULL }
  622. };
  623. AVFilter ff_af_anequalizer = {
  624. .name = "anequalizer",
  625. .description = NULL_IF_CONFIG_SMALL("Apply high-order audio parametric multi band equalizer."),
  626. .priv_size = sizeof(AudioNEqualizerContext),
  627. .priv_class = &anequalizer_class,
  628. .init = init,
  629. .uninit = uninit,
  630. .query_formats = query_formats,
  631. .inputs = inputs,
  632. .outputs = NULL,
  633. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
  634. .process_command = process_command,
  635. };