resample.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. /*
  2. * audio resampling
  3. * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * audio resampling
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/avassert.h"
  27. #include "resample.h"
  28. /**
  29. * 0th order modified bessel function of the first kind.
  30. */
  31. static double bessel(double x){
  32. double v=1;
  33. double lastv=0;
  34. double t=1;
  35. int i;
  36. static const double inv[100]={
  37. 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
  38. 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
  39. 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
  40. 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
  41. 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
  42. 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
  43. 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
  44. 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
  45. 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
  46. 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
  47. };
  48. x= x*x/4;
  49. for(i=0; v != lastv; i++){
  50. lastv=v;
  51. t *= x*inv[i];
  52. v += t;
  53. av_assert2(i<99);
  54. }
  55. return v;
  56. }
  57. /**
  58. * builds a polyphase filterbank.
  59. * @param factor resampling factor
  60. * @param scale wanted sum of coefficients for each filter
  61. * @param filter_type filter type
  62. * @param kaiser_beta kaiser window beta
  63. * @return 0 on success, negative on error
  64. */
  65. static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
  66. int filter_type, int kaiser_beta){
  67. int ph, i;
  68. double x, y, w;
  69. double *tab = av_malloc_array(tap_count, sizeof(*tab));
  70. const int center= (tap_count-1)/2;
  71. if (!tab)
  72. return AVERROR(ENOMEM);
  73. /* if upsampling, only need to interpolate, no filter */
  74. if (factor > 1.0)
  75. factor = 1.0;
  76. for(ph=0;ph<phase_count;ph++) {
  77. double norm = 0;
  78. for(i=0;i<tap_count;i++) {
  79. x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  80. if (x == 0) y = 1.0;
  81. else y = sin(x) / x;
  82. switch(filter_type){
  83. case SWR_FILTER_TYPE_CUBIC:{
  84. const float d= -0.5; //first order derivative = -0.5
  85. x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  86. if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
  87. else y= d*(-4 + 8*x - 5*x*x + x*x*x);
  88. break;}
  89. case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
  90. w = 2.0*x / (factor*tap_count) + M_PI;
  91. y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
  92. break;
  93. case SWR_FILTER_TYPE_KAISER:
  94. w = 2.0*x / (factor*tap_count*M_PI);
  95. y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
  96. break;
  97. default:
  98. av_assert0(0);
  99. }
  100. tab[i] = y;
  101. norm += y;
  102. }
  103. /* normalize so that an uniform color remains the same */
  104. switch(c->format){
  105. case AV_SAMPLE_FMT_S16P:
  106. for(i=0;i<tap_count;i++)
  107. ((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
  108. break;
  109. case AV_SAMPLE_FMT_S32P:
  110. for(i=0;i<tap_count;i++)
  111. ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
  112. break;
  113. case AV_SAMPLE_FMT_FLTP:
  114. for(i=0;i<tap_count;i++)
  115. ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
  116. break;
  117. case AV_SAMPLE_FMT_DBLP:
  118. for(i=0;i<tap_count;i++)
  119. ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
  120. break;
  121. }
  122. }
  123. #if 0
  124. {
  125. #define LEN 1024
  126. int j,k;
  127. double sine[LEN + tap_count];
  128. double filtered[LEN];
  129. double maxff=-2, minff=2, maxsf=-2, minsf=2;
  130. for(i=0; i<LEN; i++){
  131. double ss=0, sf=0, ff=0;
  132. for(j=0; j<LEN+tap_count; j++)
  133. sine[j]= cos(i*j*M_PI/LEN);
  134. for(j=0; j<LEN; j++){
  135. double sum=0;
  136. ph=0;
  137. for(k=0; k<tap_count; k++)
  138. sum += filter[ph * tap_count + k] * sine[k+j];
  139. filtered[j]= sum / (1<<FILTER_SHIFT);
  140. ss+= sine[j + center] * sine[j + center];
  141. ff+= filtered[j] * filtered[j];
  142. sf+= sine[j + center] * filtered[j];
  143. }
  144. ss= sqrt(2*ss/LEN);
  145. ff= sqrt(2*ff/LEN);
  146. sf= 2*sf/LEN;
  147. maxff= FFMAX(maxff, ff);
  148. minff= FFMIN(minff, ff);
  149. maxsf= FFMAX(maxsf, sf);
  150. minsf= FFMIN(minsf, sf);
  151. if(i%11==0){
  152. av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
  153. minff=minsf= 2;
  154. maxff=maxsf= -2;
  155. }
  156. }
  157. }
  158. #endif
  159. av_free(tab);
  160. return 0;
  161. }
  162. static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
  163. double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta,
  164. double precision, int cheby)
  165. {
  166. double cutoff = cutoff0? cutoff0 : 0.97;
  167. double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
  168. int phase_count= 1<<phase_shift;
  169. if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
  170. || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
  171. || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
  172. c = av_mallocz(sizeof(*c));
  173. if (!c)
  174. return NULL;
  175. c->format= format;
  176. c->felem_size= av_get_bytes_per_sample(c->format);
  177. switch(c->format){
  178. case AV_SAMPLE_FMT_S16P:
  179. c->filter_shift = 15;
  180. break;
  181. case AV_SAMPLE_FMT_S32P:
  182. c->filter_shift = 30;
  183. break;
  184. case AV_SAMPLE_FMT_FLTP:
  185. case AV_SAMPLE_FMT_DBLP:
  186. c->filter_shift = 0;
  187. break;
  188. default:
  189. av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
  190. av_assert0(0);
  191. }
  192. if (filter_size/factor > INT32_MAX/256) {
  193. av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
  194. goto error;
  195. }
  196. c->phase_shift = phase_shift;
  197. c->phase_mask = phase_count - 1;
  198. c->linear = linear;
  199. c->factor = factor;
  200. c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
  201. c->filter_alloc = FFALIGN(c->filter_length, 8);
  202. c->filter_bank = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
  203. c->filter_type = filter_type;
  204. c->kaiser_beta = kaiser_beta;
  205. if (!c->filter_bank)
  206. goto error;
  207. if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
  208. goto error;
  209. memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
  210. memcpy(c->filter_bank + (c->filter_alloc*phase_count )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
  211. }
  212. c->compensation_distance= 0;
  213. if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
  214. goto error;
  215. c->ideal_dst_incr = c->dst_incr;
  216. c->dst_incr_div = c->dst_incr / c->src_incr;
  217. c->dst_incr_mod = c->dst_incr % c->src_incr;
  218. c->index= -phase_count*((c->filter_length-1)/2);
  219. c->frac= 0;
  220. swri_resample_dsp_init(c);
  221. return c;
  222. error:
  223. av_freep(&c->filter_bank);
  224. av_free(c);
  225. return NULL;
  226. }
  227. static void resample_free(ResampleContext **c){
  228. if(!*c)
  229. return;
  230. av_freep(&(*c)->filter_bank);
  231. av_freep(c);
  232. }
  233. static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
  234. c->compensation_distance= compensation_distance;
  235. if (compensation_distance)
  236. c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
  237. else
  238. c->dst_incr = c->ideal_dst_incr;
  239. c->dst_incr_div = c->dst_incr / c->src_incr;
  240. c->dst_incr_mod = c->dst_incr % c->src_incr;
  241. return 0;
  242. }
  243. static int swri_resample(ResampleContext *c,
  244. uint8_t *dst, const uint8_t *src, int *consumed,
  245. int src_size, int dst_size, int update_ctx)
  246. {
  247. if (c->filter_length == 1 && c->phase_shift == 0) {
  248. int index= c->index;
  249. int frac= c->frac;
  250. int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*index;
  251. int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
  252. int new_size = (src_size * (int64_t)c->src_incr - frac + c->dst_incr - 1) / c->dst_incr;
  253. dst_size= FFMIN(dst_size, new_size);
  254. c->dsp.resample_one(dst, src, dst_size, index2, incr);
  255. index += dst_size * c->dst_incr_div;
  256. index += (frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
  257. av_assert2(index >= 0);
  258. *consumed= index;
  259. if (update_ctx) {
  260. c->frac = (frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
  261. c->index = 0;
  262. }
  263. } else {
  264. int64_t end_index = (1LL + src_size - c->filter_length) << c->phase_shift;
  265. int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
  266. int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
  267. dst_size = FFMIN(dst_size, delta_n);
  268. if (dst_size > 0) {
  269. *consumed = c->dsp.resample(c, dst, src, dst_size, update_ctx);
  270. } else {
  271. *consumed = 0;
  272. }
  273. }
  274. return dst_size;
  275. }
  276. static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
  277. int i, ret= -1;
  278. int av_unused mm_flags = av_get_cpu_flags();
  279. int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
  280. (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
  281. int64_t max_src_size = (INT64_MAX >> (c->phase_shift+1)) / c->src_incr;
  282. if (c->compensation_distance)
  283. dst_size = FFMIN(dst_size, c->compensation_distance);
  284. src_size = FFMIN(src_size, max_src_size);
  285. for(i=0; i<dst->ch_count; i++){
  286. ret= swri_resample(c, dst->ch[i], src->ch[i],
  287. consumed, src_size, dst_size, i+1==dst->ch_count);
  288. }
  289. if(need_emms)
  290. emms_c();
  291. if (c->compensation_distance) {
  292. c->compensation_distance -= ret;
  293. if (!c->compensation_distance) {
  294. c->dst_incr = c->ideal_dst_incr;
  295. c->dst_incr_div = c->dst_incr / c->src_incr;
  296. c->dst_incr_mod = c->dst_incr % c->src_incr;
  297. }
  298. }
  299. return ret;
  300. }
  301. static int64_t get_delay(struct SwrContext *s, int64_t base){
  302. ResampleContext *c = s->resample;
  303. int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
  304. num <<= c->phase_shift;
  305. num -= c->index;
  306. num *= c->src_incr;
  307. num -= c->frac;
  308. return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
  309. }
  310. static int resample_flush(struct SwrContext *s) {
  311. AudioData *a= &s->in_buffer;
  312. int i, j, ret;
  313. if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
  314. return ret;
  315. av_assert0(a->planar);
  316. for(i=0; i<a->ch_count; i++){
  317. for(j=0; j<s->in_buffer_count; j++){
  318. memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
  319. a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
  320. }
  321. }
  322. s->in_buffer_count += (s->in_buffer_count+1)/2;
  323. return 0;
  324. }
  325. // in fact the whole handle multiple ridiculously small buffers might need more thinking...
  326. static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
  327. int in_count, int *out_idx, int *out_sz)
  328. {
  329. int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
  330. if (c->index >= 0)
  331. return 0;
  332. if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
  333. return res;
  334. // copy
  335. for (n = *out_sz; n < num; n++) {
  336. for (ch = 0; ch < src->ch_count; ch++) {
  337. memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
  338. src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
  339. }
  340. }
  341. // if not enough data is in, return and wait for more
  342. if (num < c->filter_length + 1) {
  343. *out_sz = num;
  344. *out_idx = c->filter_length;
  345. return INT_MAX;
  346. }
  347. // else invert
  348. for (n = 1; n <= c->filter_length; n++) {
  349. for (ch = 0; ch < src->ch_count; ch++) {
  350. memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
  351. dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
  352. c->felem_size);
  353. }
  354. }
  355. res = num - *out_sz;
  356. *out_idx = c->filter_length + (c->index >> c->phase_shift);
  357. *out_sz = FFMAX(*out_sz + c->filter_length,
  358. 1 + c->filter_length * 2) - *out_idx;
  359. c->index &= c->phase_mask;
  360. return FFMAX(res, 0);
  361. }
  362. struct Resampler const swri_resampler={
  363. resample_init,
  364. resample_free,
  365. multiple_resample,
  366. resample_flush,
  367. set_compensation,
  368. get_delay,
  369. invert_initial_buffer,
  370. };