vf_rotate.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. /*
  2. * Copyright (c) 2013 Stefano Sabatini
  3. * Copyright (c) 2008 Vitor Sessak
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * rotation filter, partially based on the tests/rotozoom.c program
  24. */
  25. #include "libavutil/avstring.h"
  26. #include "libavutil/eval.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/intreadwrite.h"
  29. #include "libavutil/parseutils.h"
  30. #include "libavutil/pixdesc.h"
  31. #include "avfilter.h"
  32. #include "drawutils.h"
  33. #include "internal.h"
  34. #include "video.h"
  35. #include <float.h>
  36. static const char * const var_names[] = {
  37. "in_w" , "iw", ///< width of the input video
  38. "in_h" , "ih", ///< height of the input video
  39. "out_w", "ow", ///< width of the input video
  40. "out_h", "oh", ///< height of the input video
  41. "hsub", "vsub",
  42. "n", ///< number of frame
  43. "t", ///< timestamp expressed in seconds
  44. NULL
  45. };
  46. enum var_name {
  47. VAR_IN_W , VAR_IW,
  48. VAR_IN_H , VAR_IH,
  49. VAR_OUT_W, VAR_OW,
  50. VAR_OUT_H, VAR_OH,
  51. VAR_HSUB, VAR_VSUB,
  52. VAR_N,
  53. VAR_T,
  54. VAR_VARS_NB
  55. };
  56. typedef struct {
  57. const AVClass *class;
  58. double angle;
  59. char *angle_expr_str; ///< expression for the angle
  60. AVExpr *angle_expr; ///< parsed expression for the angle
  61. char *outw_expr_str, *outh_expr_str;
  62. int outh, outw;
  63. uint8_t fillcolor[4]; ///< color expressed either in YUVA or RGBA colorspace for the padding area
  64. char *fillcolor_str;
  65. int fillcolor_enable;
  66. int hsub, vsub;
  67. int nb_planes;
  68. int use_bilinear;
  69. float sinx, cosx;
  70. double var_values[VAR_VARS_NB];
  71. FFDrawContext draw;
  72. FFDrawColor color;
  73. } RotContext;
  74. typedef struct ThreadData {
  75. AVFrame *in, *out;
  76. int inw, inh;
  77. int outw, outh;
  78. int plane;
  79. int xi, yi;
  80. int xprime, yprime;
  81. int c, s;
  82. } ThreadData;
  83. #define OFFSET(x) offsetof(RotContext, x)
  84. #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
  85. static const AVOption rotate_options[] = {
  86. { "angle", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  87. { "a", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  88. { "out_w", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  89. { "ow", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  90. { "out_h", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  91. { "oh", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  92. { "fillcolor", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  93. { "c", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
  94. { "bilinear", "use bilinear interpolation", OFFSET(use_bilinear), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags=FLAGS },
  95. { NULL }
  96. };
  97. AVFILTER_DEFINE_CLASS(rotate);
  98. static av_cold int init(AVFilterContext *ctx)
  99. {
  100. RotContext *rot = ctx->priv;
  101. if (!strcmp(rot->fillcolor_str, "none"))
  102. rot->fillcolor_enable = 0;
  103. else if (av_parse_color(rot->fillcolor, rot->fillcolor_str, -1, ctx) >= 0)
  104. rot->fillcolor_enable = 1;
  105. else
  106. return AVERROR(EINVAL);
  107. return 0;
  108. }
  109. static av_cold void uninit(AVFilterContext *ctx)
  110. {
  111. RotContext *rot = ctx->priv;
  112. av_expr_free(rot->angle_expr);
  113. rot->angle_expr = NULL;
  114. }
  115. static int query_formats(AVFilterContext *ctx)
  116. {
  117. static const enum PixelFormat pix_fmts[] = {
  118. AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
  119. AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA,
  120. AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA,
  121. AV_PIX_FMT_0RGB, AV_PIX_FMT_RGB0,
  122. AV_PIX_FMT_0BGR, AV_PIX_FMT_BGR0,
  123. AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
  124. AV_PIX_FMT_GRAY8,
  125. AV_PIX_FMT_YUV410P,
  126. AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
  127. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P,
  128. AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA420P,
  129. AV_PIX_FMT_NONE
  130. };
  131. ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
  132. return 0;
  133. }
  134. static double get_rotated_w(void *opaque, double angle)
  135. {
  136. RotContext *rot = opaque;
  137. double inw = rot->var_values[VAR_IN_W];
  138. double inh = rot->var_values[VAR_IN_H];
  139. float sinx = sin(angle);
  140. float cosx = cos(angle);
  141. return FFMAX(0, inh * sinx) + FFMAX(0, -inw * cosx) +
  142. FFMAX(0, inw * cosx) + FFMAX(0, -inh * sinx);
  143. }
  144. static double get_rotated_h(void *opaque, double angle)
  145. {
  146. RotContext *rot = opaque;
  147. double inw = rot->var_values[VAR_IN_W];
  148. double inh = rot->var_values[VAR_IN_H];
  149. float sinx = sin(angle);
  150. float cosx = cos(angle);
  151. return FFMAX(0, -inh * cosx) + FFMAX(0, -inw * sinx) +
  152. FFMAX(0, inh * cosx) + FFMAX(0, inw * sinx);
  153. }
  154. static double (* const func1[])(void *, double) = {
  155. get_rotated_w,
  156. get_rotated_h,
  157. NULL
  158. };
  159. static const char * const func1_names[] = {
  160. "rotw",
  161. "roth",
  162. NULL
  163. };
  164. static int config_props(AVFilterLink *outlink)
  165. {
  166. AVFilterContext *ctx = outlink->src;
  167. RotContext *rot = ctx->priv;
  168. AVFilterLink *inlink = ctx->inputs[0];
  169. const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(inlink->format);
  170. int ret;
  171. double res;
  172. char *expr;
  173. ff_draw_init(&rot->draw, inlink->format, 0);
  174. ff_draw_color(&rot->draw, &rot->color, rot->fillcolor);
  175. rot->hsub = pixdesc->log2_chroma_w;
  176. rot->vsub = pixdesc->log2_chroma_h;
  177. rot->var_values[VAR_IN_W] = rot->var_values[VAR_IW] = inlink->w;
  178. rot->var_values[VAR_IN_H] = rot->var_values[VAR_IH] = inlink->h;
  179. rot->var_values[VAR_HSUB] = 1<<rot->hsub;
  180. rot->var_values[VAR_VSUB] = 1<<rot->vsub;
  181. rot->var_values[VAR_N] = NAN;
  182. rot->var_values[VAR_T] = NAN;
  183. rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = NAN;
  184. rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = NAN;
  185. av_expr_free(rot->angle_expr);
  186. rot->angle_expr = NULL;
  187. if ((ret = av_expr_parse(&rot->angle_expr, expr = rot->angle_expr_str, var_names,
  188. func1_names, func1, NULL, NULL, 0, ctx)) < 0) {
  189. av_log(ctx, AV_LOG_ERROR,
  190. "Error occurred parsing angle expression '%s'\n", rot->angle_expr_str);
  191. return ret;
  192. }
  193. #define SET_SIZE_EXPR(name, opt_name) do { \
  194. ret = av_expr_parse_and_eval(&res, expr = rot->name##_expr_str, \
  195. var_names, rot->var_values, \
  196. func1_names, func1, NULL, NULL, rot, 0, ctx); \
  197. if (ret < 0 || isnan(res) || isinf(res) || res <= 0) { \
  198. av_log(ctx, AV_LOG_ERROR, \
  199. "Error parsing or evaluating expression for option %s: " \
  200. "invalid expression '%s' or non-positive or indefinite value %f\n", \
  201. opt_name, expr, res); \
  202. return ret; \
  203. } \
  204. } while (0)
  205. /* evaluate width and height */
  206. av_expr_parse_and_eval(&res, expr = rot->outw_expr_str, var_names, rot->var_values,
  207. func1_names, func1, NULL, NULL, rot, 0, ctx);
  208. rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
  209. rot->outw = res + 0.5;
  210. SET_SIZE_EXPR(outh, "out_w");
  211. rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = res;
  212. rot->outh = res + 0.5;
  213. /* evaluate the width again, as it may depend on the evaluated output height */
  214. SET_SIZE_EXPR(outw, "out_h");
  215. rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
  216. rot->outw = res + 0.5;
  217. /* compute number of planes */
  218. rot->nb_planes = av_pix_fmt_count_planes(inlink->format);
  219. outlink->w = rot->outw;
  220. outlink->h = rot->outh;
  221. return 0;
  222. }
  223. #define FIXP (1<<16)
  224. #define FIXP2 (1<<20)
  225. #define INT_PI 3294199 //(M_PI * FIXP2)
  226. /**
  227. * Compute the sin of a using integer values.
  228. * Input is scaled by FIXP2 and output values are scaled by FIXP.
  229. */
  230. static int64_t int_sin(int64_t a)
  231. {
  232. int64_t a2, res = 0;
  233. int i;
  234. if (a < 0) a = INT_PI-a; // 0..inf
  235. a %= 2 * INT_PI; // 0..2PI
  236. if (a >= INT_PI*3/2) a -= 2*INT_PI; // -PI/2 .. 3PI/2
  237. if (a >= INT_PI/2 ) a = INT_PI - a; // -PI/2 .. PI/2
  238. /* compute sin using Taylor series approximated to the fifth term */
  239. a2 = (a*a)/(FIXP2);
  240. for (i = 2; i < 11; i += 2) {
  241. res += a;
  242. a = -a*a2 / (FIXP2*i*(i+1));
  243. }
  244. return (res + 8)>>4;
  245. }
  246. /**
  247. * Interpolate the color in src at position x and y using bilinear
  248. * interpolation.
  249. */
  250. static uint8_t *interpolate_bilinear(uint8_t *dst_color,
  251. const uint8_t *src, int src_linesize, int src_linestep,
  252. int x, int y, int max_x, int max_y)
  253. {
  254. int int_x = av_clip(x>>16, 0, max_x);
  255. int int_y = av_clip(y>>16, 0, max_y);
  256. int frac_x = x&0xFFFF;
  257. int frac_y = y&0xFFFF;
  258. int i;
  259. int int_x1 = FFMIN(int_x+1, max_x);
  260. int int_y1 = FFMIN(int_y+1, max_y);
  261. for (i = 0; i < src_linestep; i++) {
  262. int s00 = src[src_linestep * int_x + i + src_linesize * int_y ];
  263. int s01 = src[src_linestep * int_x1 + i + src_linesize * int_y ];
  264. int s10 = src[src_linestep * int_x + i + src_linesize * int_y1];
  265. int s11 = src[src_linestep * int_x1 + i + src_linesize * int_y1];
  266. int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
  267. int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
  268. dst_color[i] = ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32;
  269. }
  270. return dst_color;
  271. }
  272. static av_always_inline void copy_elem(uint8_t *pout, const uint8_t *pin, int elem_size)
  273. {
  274. int v;
  275. switch (elem_size) {
  276. case 1:
  277. *pout = *pin;
  278. break;
  279. case 2:
  280. *((uint16_t *)pout) = *((uint16_t *)pin);
  281. break;
  282. case 3:
  283. v = AV_RB24(pin);
  284. AV_WB24(pout, v);
  285. break;
  286. case 4:
  287. *((uint32_t *)pout) = *((uint32_t *)pin);
  288. break;
  289. default:
  290. memcpy(pout, pin, elem_size);
  291. break;
  292. }
  293. }
  294. static av_always_inline void simple_rotate_internal(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
  295. {
  296. int i;
  297. switch(angle) {
  298. case 0:
  299. memcpy(dst, src, elem_size * len);
  300. break;
  301. case 1:
  302. for (i = 0; i<len; i++)
  303. copy_elem(dst + i*elem_size, src + (len-i-1)*src_linesize, elem_size);
  304. break;
  305. case 2:
  306. for (i = 0; i<len; i++)
  307. copy_elem(dst + i*elem_size, src + (len-i-1)*elem_size, elem_size);
  308. break;
  309. case 3:
  310. for (i = 0; i<len; i++)
  311. copy_elem(dst + i*elem_size, src + i*src_linesize, elem_size);
  312. break;
  313. }
  314. }
  315. static av_always_inline void simple_rotate(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
  316. {
  317. switch(elem_size) {
  318. case 1 : simple_rotate_internal(dst, src, src_linesize, angle, 1, len); break;
  319. case 2 : simple_rotate_internal(dst, src, src_linesize, angle, 2, len); break;
  320. case 3 : simple_rotate_internal(dst, src, src_linesize, angle, 3, len); break;
  321. case 4 : simple_rotate_internal(dst, src, src_linesize, angle, 4, len); break;
  322. default: simple_rotate_internal(dst, src, src_linesize, angle, elem_size, len); break;
  323. }
  324. }
  325. #define TS2T(ts, tb) ((ts) == AV_NOPTS_VALUE ? NAN : (double)(ts)*av_q2d(tb))
  326. static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
  327. {
  328. ThreadData *td = arg;
  329. AVFrame *in = td->in;
  330. AVFrame *out = td->out;
  331. RotContext *rot = ctx->priv;
  332. const int outw = td->outw, outh = td->outh;
  333. const int inw = td->inw, inh = td->inh;
  334. const int plane = td->plane;
  335. const int xi = td->xi, yi = td->yi;
  336. const int c = td->c, s = td->s;
  337. const int start = (outh * job ) / nb_jobs;
  338. const int end = (outh * (job+1)) / nb_jobs;
  339. int xprime = td->xprime + start * s;
  340. int yprime = td->yprime + start * c;
  341. int i, j, x, y;
  342. for (j = start; j < end; j++) {
  343. x = xprime + xi + FIXP*(inw-1)/2;
  344. y = yprime + yi + FIXP*(inh-1)/2;
  345. if (fabs(rot->angle - 0) < FLT_EPSILON && outw == inw && outh == inh) {
  346. simple_rotate(out->data[plane] + j * out->linesize[plane],
  347. in->data[plane] + j * in->linesize[plane],
  348. in->linesize[plane], 0, rot->draw.pixelstep[plane], outw);
  349. } else if (fabs(rot->angle - M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
  350. simple_rotate(out->data[plane] + j * out->linesize[plane],
  351. in->data[plane] + j * rot->draw.pixelstep[plane],
  352. in->linesize[plane], 1, rot->draw.pixelstep[plane], outw);
  353. } else if (fabs(rot->angle - M_PI) < FLT_EPSILON && outw == inw && outh == inh) {
  354. simple_rotate(out->data[plane] + j * out->linesize[plane],
  355. in->data[plane] + (outh-j-1) * in->linesize[plane],
  356. in->linesize[plane], 2, rot->draw.pixelstep[plane], outw);
  357. } else if (fabs(rot->angle - 3*M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
  358. simple_rotate(out->data[plane] + j * out->linesize[plane],
  359. in->data[plane] + (outh-j-1) * rot->draw.pixelstep[plane],
  360. in->linesize[plane], 3, rot->draw.pixelstep[plane], outw);
  361. } else {
  362. for (i = 0; i < outw; i++) {
  363. int32_t v;
  364. int x1, y1;
  365. uint8_t *pin, *pout;
  366. x1 = x>>16;
  367. y1 = y>>16;
  368. /* the out-of-range values avoid border artifacts */
  369. if (x1 >= -1 && x1 <= inw && y1 >= -1 && y1 <= inh) {
  370. uint8_t inp_inv[4]; /* interpolated input value */
  371. pout = out->data[plane] + j * out->linesize[plane] + i * rot->draw.pixelstep[plane];
  372. if (rot->use_bilinear) {
  373. pin = interpolate_bilinear(inp_inv,
  374. in->data[plane], in->linesize[plane], rot->draw.pixelstep[plane],
  375. x, y, inw-1, inh-1);
  376. } else {
  377. int x2 = av_clip(x1, 0, inw-1);
  378. int y2 = av_clip(y1, 0, inh-1);
  379. pin = in->data[plane] + y2 * in->linesize[plane] + x2 * rot->draw.pixelstep[plane];
  380. }
  381. switch (rot->draw.pixelstep[plane]) {
  382. case 1:
  383. *pout = *pin;
  384. break;
  385. case 2:
  386. *((uint16_t *)pout) = *((uint16_t *)pin);
  387. break;
  388. case 3:
  389. v = AV_RB24(pin);
  390. AV_WB24(pout, v);
  391. break;
  392. case 4:
  393. *((uint32_t *)pout) = *((uint32_t *)pin);
  394. break;
  395. default:
  396. memcpy(pout, pin, rot->draw.pixelstep[plane]);
  397. break;
  398. }
  399. }
  400. x += c;
  401. y -= s;
  402. }
  403. }
  404. xprime += s;
  405. yprime += c;
  406. }
  407. return 0;
  408. }
  409. static int filter_frame(AVFilterLink *inlink, AVFrame *in)
  410. {
  411. AVFilterContext *ctx = inlink->dst;
  412. AVFilterLink *outlink = ctx->outputs[0];
  413. AVFrame *out;
  414. RotContext *rot = ctx->priv;
  415. int angle_int, s, c, plane;
  416. double res;
  417. out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  418. if (!out) {
  419. av_frame_free(&in);
  420. return AVERROR(ENOMEM);
  421. }
  422. av_frame_copy_props(out, in);
  423. rot->var_values[VAR_N] = inlink->frame_count;
  424. rot->var_values[VAR_T] = TS2T(in->pts, inlink->time_base);
  425. rot->angle = res = av_expr_eval(rot->angle_expr, rot->var_values, rot);
  426. av_log(ctx, AV_LOG_DEBUG, "n:%f time:%f angle:%f/PI\n",
  427. rot->var_values[VAR_N], rot->var_values[VAR_T], rot->angle/M_PI);
  428. angle_int = res * FIXP * 16;
  429. s = int_sin(angle_int);
  430. c = int_sin(angle_int + INT_PI/2);
  431. /* fill background */
  432. if (rot->fillcolor_enable)
  433. ff_fill_rectangle(&rot->draw, &rot->color, out->data, out->linesize,
  434. 0, 0, outlink->w, outlink->h);
  435. for (plane = 0; plane < rot->nb_planes; plane++) {
  436. int hsub = plane == 1 || plane == 2 ? rot->hsub : 0;
  437. int vsub = plane == 1 || plane == 2 ? rot->vsub : 0;
  438. const int outw = FF_CEIL_RSHIFT(outlink->w, hsub);
  439. const int outh = FF_CEIL_RSHIFT(outlink->h, vsub);
  440. ThreadData td = { .in = in, .out = out,
  441. .inw = FF_CEIL_RSHIFT(inlink->w, hsub),
  442. .inh = FF_CEIL_RSHIFT(inlink->h, vsub),
  443. .outh = outh, .outw = outw,
  444. .xi = -(outw-1) * c / 2, .yi = (outw-1) * s / 2,
  445. .xprime = -(outh-1) * s / 2,
  446. .yprime = -(outh-1) * c / 2,
  447. .plane = plane, .c = c, .s = s };
  448. ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(outh, ctx->graph->nb_threads));
  449. }
  450. av_frame_free(&in);
  451. return ff_filter_frame(outlink, out);
  452. }
  453. static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
  454. char *res, int res_len, int flags)
  455. {
  456. RotContext *rot = ctx->priv;
  457. int ret;
  458. if (!strcmp(cmd, "angle") || !strcmp(cmd, "a")) {
  459. AVExpr *old = rot->angle_expr;
  460. ret = av_expr_parse(&rot->angle_expr, args, var_names,
  461. NULL, NULL, NULL, NULL, 0, ctx);
  462. if (ret < 0) {
  463. av_log(ctx, AV_LOG_ERROR,
  464. "Error when parsing the expression '%s' for angle command\n", args);
  465. rot->angle_expr = old;
  466. return ret;
  467. }
  468. av_expr_free(old);
  469. } else
  470. ret = AVERROR(ENOSYS);
  471. return ret;
  472. }
  473. static const AVFilterPad rotate_inputs[] = {
  474. {
  475. .name = "default",
  476. .type = AVMEDIA_TYPE_VIDEO,
  477. .filter_frame = filter_frame,
  478. },
  479. { NULL }
  480. };
  481. static const AVFilterPad rotate_outputs[] = {
  482. {
  483. .name = "default",
  484. .type = AVMEDIA_TYPE_VIDEO,
  485. .config_props = config_props,
  486. },
  487. { NULL }
  488. };
  489. AVFilter ff_vf_rotate = {
  490. .name = "rotate",
  491. .description = NULL_IF_CONFIG_SMALL("Rotate the input image."),
  492. .priv_size = sizeof(RotContext),
  493. .init = init,
  494. .uninit = uninit,
  495. .query_formats = query_formats,
  496. .process_command = process_command,
  497. .inputs = rotate_inputs,
  498. .outputs = rotate_outputs,
  499. .priv_class = &rotate_class,
  500. .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
  501. };