swscale_internal.h 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. /*
  2. * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef SWSCALE_SWSCALE_INTERNAL_H
  21. #define SWSCALE_SWSCALE_INTERNAL_H
  22. #include "config.h"
  23. #if HAVE_ALTIVEC_H
  24. #include <altivec.h>
  25. #endif
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/avutil.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/log.h"
  31. #include "libavutil/pixfmt.h"
  32. #include "libavutil/pixdesc.h"
  33. #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
  34. #define YUVRGB_TABLE_HEADROOM 256
  35. #define MAX_FILTER_SIZE 256
  36. #define DITHER1XBPP
  37. #if HAVE_BIGENDIAN
  38. #define ALT32_CORR (-1)
  39. #else
  40. #define ALT32_CORR 1
  41. #endif
  42. #if ARCH_X86_64
  43. # define APCK_PTR2 8
  44. # define APCK_COEF 16
  45. # define APCK_SIZE 24
  46. #else
  47. # define APCK_PTR2 4
  48. # define APCK_COEF 8
  49. # define APCK_SIZE 16
  50. #endif
  51. struct SwsContext;
  52. typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
  53. int srcStride[], int srcSliceY, int srcSliceH,
  54. uint8_t *dst[], int dstStride[]);
  55. /**
  56. * Write one line of horizontally scaled data to planar output
  57. * without any additional vertical scaling (or point-scaling).
  58. *
  59. * @param src scaled source data, 15bit for 8-10bit output,
  60. * 19-bit for 16bit output (in int32_t)
  61. * @param dest pointer to the output plane. For >8bit
  62. * output, this is in uint16_t
  63. * @param dstW width of destination in pixels
  64. * @param dither ordered dither array of type int16_t and size 8
  65. * @param offset Dither offset
  66. */
  67. typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
  68. const uint8_t *dither, int offset);
  69. /**
  70. * Write one line of horizontally scaled data to planar output
  71. * with multi-point vertical scaling between input pixels.
  72. *
  73. * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  74. * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
  75. * 19-bit for 16bit output (in int32_t)
  76. * @param filterSize number of vertical input lines to scale
  77. * @param dest pointer to output plane. For >8bit
  78. * output, this is in uint16_t
  79. * @param dstW width of destination pixels
  80. * @param offset Dither offset
  81. */
  82. typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
  83. const int16_t **src, uint8_t *dest, int dstW,
  84. const uint8_t *dither, int offset);
  85. /**
  86. * Write one line of horizontally scaled chroma to interleaved output
  87. * with multi-point vertical scaling between input pixels.
  88. *
  89. * @param c SWS scaling context
  90. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  91. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  92. * 19-bit for 16bit output (in int32_t)
  93. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  94. * 19-bit for 16bit output (in int32_t)
  95. * @param chrFilterSize number of vertical chroma input lines to scale
  96. * @param dest pointer to the output plane. For >8bit
  97. * output, this is in uint16_t
  98. * @param dstW width of chroma planes
  99. */
  100. typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
  101. const int16_t *chrFilter,
  102. int chrFilterSize,
  103. const int16_t **chrUSrc,
  104. const int16_t **chrVSrc,
  105. uint8_t *dest, int dstW);
  106. /**
  107. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  108. * output without any additional vertical scaling (or point-scaling). Note
  109. * that this function may do chroma scaling, see the "uvalpha" argument.
  110. *
  111. * @param c SWS scaling context
  112. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  113. * 19-bit for 16bit output (in int32_t)
  114. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  115. * 19-bit for 16bit output (in int32_t)
  116. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  117. * 19-bit for 16bit output (in int32_t)
  118. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  119. * 19-bit for 16bit output (in int32_t)
  120. * @param dest pointer to the output plane. For 16bit output, this is
  121. * uint16_t
  122. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  123. * to write into dest[]
  124. * @param uvalpha chroma scaling coefficient for the second line of chroma
  125. * pixels, either 2048 or 0. If 0, one chroma input is used
  126. * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  127. * is set, it generates 1 output pixel). If 2048, two chroma
  128. * input pixels should be averaged for 2 output pixels (this
  129. * only happens if SWS_FLAG_FULL_CHR_INT is not set)
  130. * @param y vertical line number for this output. This does not need
  131. * to be used to calculate the offset in the destination,
  132. * but can be used to generate comfort noise using dithering
  133. * for some output formats.
  134. */
  135. typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
  136. const int16_t *chrUSrc[2],
  137. const int16_t *chrVSrc[2],
  138. const int16_t *alpSrc, uint8_t *dest,
  139. int dstW, int uvalpha, int y);
  140. /**
  141. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  142. * output by doing bilinear scaling between two input lines.
  143. *
  144. * @param c SWS scaling context
  145. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  146. * 19-bit for 16bit output (in int32_t)
  147. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  148. * 19-bit for 16bit output (in int32_t)
  149. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  150. * 19-bit for 16bit output (in int32_t)
  151. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  152. * 19-bit for 16bit output (in int32_t)
  153. * @param dest pointer to the output plane. For 16bit output, this is
  154. * uint16_t
  155. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  156. * to write into dest[]
  157. * @param yalpha luma/alpha scaling coefficients for the second input line.
  158. * The first line's coefficients can be calculated by using
  159. * 4096 - yalpha
  160. * @param uvalpha chroma scaling coefficient for the second input line. The
  161. * first line's coefficients can be calculated by using
  162. * 4096 - uvalpha
  163. * @param y vertical line number for this output. This does not need
  164. * to be used to calculate the offset in the destination,
  165. * but can be used to generate comfort noise using dithering
  166. * for some output formats.
  167. */
  168. typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
  169. const int16_t *chrUSrc[2],
  170. const int16_t *chrVSrc[2],
  171. const int16_t *alpSrc[2],
  172. uint8_t *dest,
  173. int dstW, int yalpha, int uvalpha, int y);
  174. /**
  175. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  176. * output by doing multi-point vertical scaling between input pixels.
  177. *
  178. * @param c SWS scaling context
  179. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  180. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  181. * 19-bit for 16bit output (in int32_t)
  182. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  183. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  184. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  185. * 19-bit for 16bit output (in int32_t)
  186. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  187. * 19-bit for 16bit output (in int32_t)
  188. * @param chrFilterSize number of vertical chroma input lines to scale
  189. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  190. * 19-bit for 16bit output (in int32_t)
  191. * @param dest pointer to the output plane. For 16bit output, this is
  192. * uint16_t
  193. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  194. * to write into dest[]
  195. * @param y vertical line number for this output. This does not need
  196. * to be used to calculate the offset in the destination,
  197. * but can be used to generate comfort noise using dithering
  198. * or some output formats.
  199. */
  200. typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  201. const int16_t **lumSrc, int lumFilterSize,
  202. const int16_t *chrFilter,
  203. const int16_t **chrUSrc,
  204. const int16_t **chrVSrc, int chrFilterSize,
  205. const int16_t **alpSrc, uint8_t *dest,
  206. int dstW, int y);
  207. /**
  208. * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
  209. * output by doing multi-point vertical scaling between input pixels.
  210. *
  211. * @param c SWS scaling context
  212. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  213. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  214. * 19-bit for 16bit output (in int32_t)
  215. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  216. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  217. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  218. * 19-bit for 16bit output (in int32_t)
  219. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  220. * 19-bit for 16bit output (in int32_t)
  221. * @param chrFilterSize number of vertical chroma input lines to scale
  222. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  223. * 19-bit for 16bit output (in int32_t)
  224. * @param dest pointer to the output planes. For 16bit output, this is
  225. * uint16_t
  226. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  227. * to write into dest[]
  228. * @param y vertical line number for this output. This does not need
  229. * to be used to calculate the offset in the destination,
  230. * but can be used to generate comfort noise using dithering
  231. * or some output formats.
  232. */
  233. typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  234. const int16_t **lumSrc, int lumFilterSize,
  235. const int16_t *chrFilter,
  236. const int16_t **chrUSrc,
  237. const int16_t **chrVSrc, int chrFilterSize,
  238. const int16_t **alpSrc, uint8_t **dest,
  239. int dstW, int y);
  240. /* This struct should be aligned on at least a 32-byte boundary. */
  241. typedef struct SwsContext {
  242. /**
  243. * info on struct for av_log
  244. */
  245. const AVClass *av_class;
  246. /**
  247. * Note that src, dst, srcStride, dstStride will be copied in the
  248. * sws_scale() wrapper so they can be freely modified here.
  249. */
  250. SwsFunc swScale;
  251. int srcW; ///< Width of source luma/alpha planes.
  252. int srcH; ///< Height of source luma/alpha planes.
  253. int dstH; ///< Height of destination luma/alpha planes.
  254. int chrSrcW; ///< Width of source chroma planes.
  255. int chrSrcH; ///< Height of source chroma planes.
  256. int chrDstW; ///< Width of destination chroma planes.
  257. int chrDstH; ///< Height of destination chroma planes.
  258. int lumXInc, chrXInc;
  259. int lumYInc, chrYInc;
  260. enum AVPixelFormat dstFormat; ///< Destination pixel format.
  261. enum AVPixelFormat srcFormat; ///< Source pixel format.
  262. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
  263. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
  264. int dstBpc, srcBpc;
  265. int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
  266. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
  267. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
  268. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
  269. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
  270. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
  271. double param[2]; ///< Input parameters for scaling algorithms that need them.
  272. uint32_t pal_yuv[256];
  273. uint32_t pal_rgb[256];
  274. /**
  275. * @name Scaled horizontal lines ring buffer.
  276. * The horizontal scaler keeps just enough scaled lines in a ring buffer
  277. * so they may be passed to the vertical scaler. The pointers to the
  278. * allocated buffers for each line are duplicated in sequence in the ring
  279. * buffer to simplify indexing and avoid wrapping around between lines
  280. * inside the vertical scaler code. The wrapping is done before the
  281. * vertical scaler is called.
  282. */
  283. //@{
  284. int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
  285. int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  286. int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  287. int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
  288. int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
  289. int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
  290. int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
  291. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
  292. int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
  293. int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
  294. //@}
  295. uint8_t *formatConvBuffer;
  296. /**
  297. * @name Horizontal and vertical filters.
  298. * To better understand the following fields, here is a pseudo-code of
  299. * their usage in filtering a horizontal line:
  300. * @code
  301. * for (i = 0; i < width; i++) {
  302. * dst[i] = 0;
  303. * for (j = 0; j < filterSize; j++)
  304. * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
  305. * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
  306. * }
  307. * @endcode
  308. */
  309. //@{
  310. int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
  311. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
  312. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
  313. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
  314. int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
  315. int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
  316. int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
  317. int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
  318. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
  319. int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
  320. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
  321. int vChrFilterSize; ///< Vertical filter size for chroma pixels.
  322. //@}
  323. int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
  324. int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
  325. uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
  326. uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
  327. int canMMXEXTBeUsed;
  328. int dstY; ///< Last destination vertical line output from last slice.
  329. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
  330. void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
  331. uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
  332. uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
  333. int table_gV[256 + 2*YUVRGB_TABLE_HEADROOM];
  334. uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
  335. DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, teh C vales are always at the XY_IDX points
  336. #define RY_IDX 0
  337. #define GY_IDX 1
  338. #define BY_IDX 2
  339. #define RU_IDX 3
  340. #define GU_IDX 4
  341. #define BU_IDX 5
  342. #define RV_IDX 6
  343. #define GV_IDX 7
  344. #define BV_IDX 8
  345. #define RGB2YUV_SHIFT 15
  346. int *dither_error[4];
  347. //Colorspace stuff
  348. int contrast, brightness, saturation; // for sws_getColorspaceDetails
  349. int srcColorspaceTable[4];
  350. int dstColorspaceTable[4];
  351. int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
  352. int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
  353. int src0Alpha;
  354. int dst0Alpha;
  355. int srcXYZ;
  356. int dstXYZ;
  357. int yuv2rgb_y_offset;
  358. int yuv2rgb_y_coeff;
  359. int yuv2rgb_v2r_coeff;
  360. int yuv2rgb_v2g_coeff;
  361. int yuv2rgb_u2g_coeff;
  362. int yuv2rgb_u2b_coeff;
  363. #define RED_DITHER "0*8"
  364. #define GREEN_DITHER "1*8"
  365. #define BLUE_DITHER "2*8"
  366. #define Y_COEFF "3*8"
  367. #define VR_COEFF "4*8"
  368. #define UB_COEFF "5*8"
  369. #define VG_COEFF "6*8"
  370. #define UG_COEFF "7*8"
  371. #define Y_OFFSET "8*8"
  372. #define U_OFFSET "9*8"
  373. #define V_OFFSET "10*8"
  374. #define LUM_MMX_FILTER_OFFSET "11*8"
  375. #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
  376. #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
  377. #define ESP_OFFSET "11*8+4*4*256*2+8"
  378. #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
  379. #define U_TEMP "11*8+4*4*256*2+24"
  380. #define V_TEMP "11*8+4*4*256*2+32"
  381. #define Y_TEMP "11*8+4*4*256*2+40"
  382. #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
  383. #define UV_OFF_PX "11*8+4*4*256*3+48"
  384. #define UV_OFF_BYTE "11*8+4*4*256*3+56"
  385. #define DITHER16 "11*8+4*4*256*3+64"
  386. #define DITHER32 "11*8+4*4*256*3+80"
  387. DECLARE_ALIGNED(8, uint64_t, redDither);
  388. DECLARE_ALIGNED(8, uint64_t, greenDither);
  389. DECLARE_ALIGNED(8, uint64_t, blueDither);
  390. DECLARE_ALIGNED(8, uint64_t, yCoeff);
  391. DECLARE_ALIGNED(8, uint64_t, vrCoeff);
  392. DECLARE_ALIGNED(8, uint64_t, ubCoeff);
  393. DECLARE_ALIGNED(8, uint64_t, vgCoeff);
  394. DECLARE_ALIGNED(8, uint64_t, ugCoeff);
  395. DECLARE_ALIGNED(8, uint64_t, yOffset);
  396. DECLARE_ALIGNED(8, uint64_t, uOffset);
  397. DECLARE_ALIGNED(8, uint64_t, vOffset);
  398. int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
  399. int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
  400. int dstW; ///< Width of destination luma/alpha planes.
  401. DECLARE_ALIGNED(8, uint64_t, esp);
  402. DECLARE_ALIGNED(8, uint64_t, vRounder);
  403. DECLARE_ALIGNED(8, uint64_t, u_temp);
  404. DECLARE_ALIGNED(8, uint64_t, v_temp);
  405. DECLARE_ALIGNED(8, uint64_t, y_temp);
  406. int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
  407. // alignment of these values is not necessary, but merely here
  408. // to maintain the same offset across x8632 and x86-64. Once we
  409. // use proper offset macros in the asm, they can be removed.
  410. DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
  411. DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
  412. DECLARE_ALIGNED(8, uint16_t, dither16)[8];
  413. DECLARE_ALIGNED(8, uint32_t, dither32)[8];
  414. const uint8_t *chrDither8, *lumDither8;
  415. #if HAVE_ALTIVEC
  416. vector signed short CY;
  417. vector signed short CRV;
  418. vector signed short CBU;
  419. vector signed short CGU;
  420. vector signed short CGV;
  421. vector signed short OY;
  422. vector unsigned short CSHIFT;
  423. vector signed short *vYCoeffsBank, *vCCoeffsBank;
  424. #endif
  425. #if ARCH_BFIN
  426. DECLARE_ALIGNED(4, uint32_t, oy);
  427. DECLARE_ALIGNED(4, uint32_t, oc);
  428. DECLARE_ALIGNED(4, uint32_t, zero);
  429. DECLARE_ALIGNED(4, uint32_t, cy);
  430. DECLARE_ALIGNED(4, uint32_t, crv);
  431. DECLARE_ALIGNED(4, uint32_t, rmask);
  432. DECLARE_ALIGNED(4, uint32_t, cbu);
  433. DECLARE_ALIGNED(4, uint32_t, bmask);
  434. DECLARE_ALIGNED(4, uint32_t, cgu);
  435. DECLARE_ALIGNED(4, uint32_t, cgv);
  436. DECLARE_ALIGNED(4, uint32_t, gmask);
  437. #endif
  438. #if HAVE_VIS
  439. DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
  440. #endif
  441. int use_mmx_vfilter;
  442. /* pre defined color-spaces gamma */
  443. #define XYZ_GAMMA (2.6f)
  444. #define RGB_GAMMA (2.2f)
  445. int16_t *xyzgamma;
  446. int16_t *rgbgamma;
  447. int16_t xyz2rgb_matrix[3][4];
  448. /* function pointers for swScale() */
  449. yuv2planar1_fn yuv2plane1;
  450. yuv2planarX_fn yuv2planeX;
  451. yuv2interleavedX_fn yuv2nv12cX;
  452. yuv2packed1_fn yuv2packed1;
  453. yuv2packed2_fn yuv2packed2;
  454. yuv2packedX_fn yuv2packedX;
  455. yuv2anyX_fn yuv2anyX;
  456. /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
  457. void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  458. int width, uint32_t *pal);
  459. /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
  460. void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  461. int width, uint32_t *pal);
  462. /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
  463. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
  464. const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
  465. int width, uint32_t *pal);
  466. /**
  467. * Functions to read planar input, such as planar RGB, and convert
  468. * internally to Y/UV/A.
  469. */
  470. /** @{ */
  471. void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
  472. void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
  473. int width, int32_t *rgb2yuv);
  474. void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
  475. /** @} */
  476. /**
  477. * Scale one horizontal line of input data using a bilinear filter
  478. * to produce one line of output data. Compared to SwsContext->hScale(),
  479. * please take note of the following caveats when using these:
  480. * - Scaling is done using only 7bit instead of 14bit coefficients.
  481. * - You can use no more than 5 input pixels to produce 4 output
  482. * pixels. Therefore, this filter should not be used for downscaling
  483. * by more than ~20% in width (because that equals more than 5/4th
  484. * downscaling and thus more than 5 pixels input per 4 pixels output).
  485. * - In general, bilinear filters create artifacts during downscaling
  486. * (even when <20%), because one output pixel will span more than one
  487. * input pixel, and thus some pixels will need edges of both neighbor
  488. * pixels to interpolate the output pixel. Since you can use at most
  489. * two input pixels per output pixel in bilinear scaling, this is
  490. * impossible and thus downscaling by any size will create artifacts.
  491. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
  492. * in SwsContext->flags.
  493. */
  494. /** @{ */
  495. void (*hyscale_fast)(struct SwsContext *c,
  496. int16_t *dst, int dstWidth,
  497. const uint8_t *src, int srcW, int xInc);
  498. void (*hcscale_fast)(struct SwsContext *c,
  499. int16_t *dst1, int16_t *dst2, int dstWidth,
  500. const uint8_t *src1, const uint8_t *src2,
  501. int srcW, int xInc);
  502. /** @} */
  503. /**
  504. * Scale one horizontal line of input data using a filter over the input
  505. * lines, to produce one (differently sized) line of output data.
  506. *
  507. * @param dst pointer to destination buffer for horizontally scaled
  508. * data. If the number of bits per component of one
  509. * destination pixel (SwsContext->dstBpc) is <= 10, data
  510. * will be 15bpc in 16bits (int16_t) width. Else (i.e.
  511. * SwsContext->dstBpc == 16), data will be 19bpc in
  512. * 32bits (int32_t) width.
  513. * @param dstW width of destination image
  514. * @param src pointer to source data to be scaled. If the number of
  515. * bits per component of a source pixel (SwsContext->srcBpc)
  516. * is 8, this is 8bpc in 8bits (uint8_t) width. Else
  517. * (i.e. SwsContext->dstBpc > 8), this is native depth
  518. * in 16bits (uint16_t) width. In other words, for 9-bit
  519. * YUV input, this is 9bpc, for 10-bit YUV input, this is
  520. * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
  521. * @param filter filter coefficients to be used per output pixel for
  522. * scaling. This contains 14bpp filtering coefficients.
  523. * Guaranteed to contain dstW * filterSize entries.
  524. * @param filterPos position of the first input pixel to be used for
  525. * each output pixel during scaling. Guaranteed to
  526. * contain dstW entries.
  527. * @param filterSize the number of input coefficients to be used (and
  528. * thus the number of input pixels to be used) for
  529. * creating a single output pixel. Is aligned to 4
  530. * (and input coefficients thus padded with zeroes)
  531. * to simplify creating SIMD code.
  532. */
  533. /** @{ */
  534. void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
  535. const uint8_t *src, const int16_t *filter,
  536. const int32_t *filterPos, int filterSize);
  537. void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
  538. const uint8_t *src, const int16_t *filter,
  539. const int32_t *filterPos, int filterSize);
  540. /** @} */
  541. /// Color range conversion function for luma plane if needed.
  542. void (*lumConvertRange)(int16_t *dst, int width);
  543. /// Color range conversion function for chroma planes if needed.
  544. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
  545. int needs_hcscale; ///< Set if there are chroma planes to be converted.
  546. } SwsContext;
  547. //FIXME check init (where 0)
  548. SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
  549. int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
  550. int fullRange, int brightness,
  551. int contrast, int saturation);
  552. void ff_yuv2rgb_init_tables_altivec(SwsContext *c, const int inv_table[4],
  553. int brightness, int contrast, int saturation);
  554. void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
  555. int lastInLumBuf, int lastInChrBuf);
  556. SwsFunc ff_yuv2rgb_init_mmx(SwsContext *c);
  557. SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
  558. SwsFunc ff_yuv2rgb_init_altivec(SwsContext *c);
  559. SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
  560. void ff_bfin_get_unscaled_swscale(SwsContext *c);
  561. #if FF_API_SWS_FORMAT_NAME
  562. /**
  563. * @deprecated Use av_get_pix_fmt_name() instead.
  564. */
  565. attribute_deprecated
  566. const char *sws_format_name(enum AVPixelFormat format);
  567. #endif
  568. static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
  569. {
  570. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  571. av_assert0(desc);
  572. return desc->comp[0].depth_minus1 == 15;
  573. }
  574. static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
  575. {
  576. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  577. av_assert0(desc);
  578. return desc->comp[0].depth_minus1 >= 8 && desc->comp[0].depth_minus1 <= 13;
  579. }
  580. #define isNBPS(x) is9_OR_10BPS(x)
  581. static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
  582. {
  583. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  584. av_assert0(desc);
  585. return desc->flags & AV_PIX_FMT_FLAG_BE;
  586. }
  587. static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
  588. {
  589. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  590. av_assert0(desc);
  591. return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
  592. }
  593. static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
  594. {
  595. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  596. av_assert0(desc);
  597. return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
  598. }
  599. static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
  600. {
  601. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  602. av_assert0(desc);
  603. return (desc->flags & AV_PIX_FMT_FLAG_RGB);
  604. }
  605. #if 0 // FIXME
  606. #define isGray(x) \
  607. (!(av_pix_fmt_desc_get(x)->flags & AV_PIX_FMT_FLAG_PAL) && \
  608. av_pix_fmt_desc_get(x)->nb_components <= 2)
  609. #else
  610. #define isGray(x) \
  611. ((x) == AV_PIX_FMT_GRAY8 || \
  612. (x) == AV_PIX_FMT_Y400A || \
  613. (x) == AV_PIX_FMT_GRAY16BE || \
  614. (x) == AV_PIX_FMT_GRAY16LE)
  615. #endif
  616. #define isRGBinInt(x) \
  617. ( \
  618. (x) == AV_PIX_FMT_RGB48BE || \
  619. (x) == AV_PIX_FMT_RGB48LE || \
  620. (x) == AV_PIX_FMT_RGBA64BE || \
  621. (x) == AV_PIX_FMT_RGBA64LE || \
  622. (x) == AV_PIX_FMT_RGB32 || \
  623. (x) == AV_PIX_FMT_RGB32_1 || \
  624. (x) == AV_PIX_FMT_RGB24 || \
  625. (x) == AV_PIX_FMT_RGB565BE || \
  626. (x) == AV_PIX_FMT_RGB565LE || \
  627. (x) == AV_PIX_FMT_RGB555BE || \
  628. (x) == AV_PIX_FMT_RGB555LE || \
  629. (x) == AV_PIX_FMT_RGB444BE || \
  630. (x) == AV_PIX_FMT_RGB444LE || \
  631. (x) == AV_PIX_FMT_RGB8 || \
  632. (x) == AV_PIX_FMT_RGB4 || \
  633. (x) == AV_PIX_FMT_RGB4_BYTE || \
  634. (x) == AV_PIX_FMT_MONOBLACK || \
  635. (x) == AV_PIX_FMT_MONOWHITE \
  636. )
  637. #define isBGRinInt(x) \
  638. ( \
  639. (x) == AV_PIX_FMT_BGR48BE || \
  640. (x) == AV_PIX_FMT_BGR48LE || \
  641. (x) == AV_PIX_FMT_BGRA64BE || \
  642. (x) == AV_PIX_FMT_BGRA64LE || \
  643. (x) == AV_PIX_FMT_BGR32 || \
  644. (x) == AV_PIX_FMT_BGR32_1 || \
  645. (x) == AV_PIX_FMT_BGR24 || \
  646. (x) == AV_PIX_FMT_BGR565BE || \
  647. (x) == AV_PIX_FMT_BGR565LE || \
  648. (x) == AV_PIX_FMT_BGR555BE || \
  649. (x) == AV_PIX_FMT_BGR555LE || \
  650. (x) == AV_PIX_FMT_BGR444BE || \
  651. (x) == AV_PIX_FMT_BGR444LE || \
  652. (x) == AV_PIX_FMT_BGR8 || \
  653. (x) == AV_PIX_FMT_BGR4 || \
  654. (x) == AV_PIX_FMT_BGR4_BYTE || \
  655. (x) == AV_PIX_FMT_MONOBLACK || \
  656. (x) == AV_PIX_FMT_MONOWHITE \
  657. )
  658. #define isRGBinBytes(x) ( \
  659. (x) == AV_PIX_FMT_RGB48BE \
  660. || (x) == AV_PIX_FMT_RGB48LE \
  661. || (x) == AV_PIX_FMT_RGBA64BE \
  662. || (x) == AV_PIX_FMT_RGBA64LE \
  663. || (x) == AV_PIX_FMT_RGBA \
  664. || (x) == AV_PIX_FMT_ARGB \
  665. || (x) == AV_PIX_FMT_RGB24 \
  666. )
  667. #define isBGRinBytes(x) ( \
  668. (x) == AV_PIX_FMT_BGR48BE \
  669. || (x) == AV_PIX_FMT_BGR48LE \
  670. || (x) == AV_PIX_FMT_BGRA64BE \
  671. || (x) == AV_PIX_FMT_BGRA64LE \
  672. || (x) == AV_PIX_FMT_BGRA \
  673. || (x) == AV_PIX_FMT_ABGR \
  674. || (x) == AV_PIX_FMT_BGR24 \
  675. )
  676. #define isAnyRGB(x) \
  677. ( \
  678. isRGBinInt(x) || \
  679. isBGRinInt(x) || \
  680. isRGB(x) \
  681. )
  682. static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
  683. {
  684. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  685. av_assert0(desc);
  686. if (pix_fmt == AV_PIX_FMT_PAL8)
  687. return 1;
  688. return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
  689. }
  690. #if 1
  691. #define isPacked(x) ( \
  692. (x)==AV_PIX_FMT_PAL8 \
  693. || (x)==AV_PIX_FMT_YUYV422 \
  694. || (x)==AV_PIX_FMT_UYVY422 \
  695. || (x)==AV_PIX_FMT_Y400A \
  696. || isRGBinInt(x) \
  697. || isBGRinInt(x) \
  698. )
  699. #else
  700. static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
  701. {
  702. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  703. av_assert0(desc);
  704. return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
  705. pix_fmt == AV_PIX_FMT_PAL8);
  706. }
  707. #endif
  708. static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
  709. {
  710. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  711. av_assert0(desc);
  712. return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
  713. }
  714. static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
  715. {
  716. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  717. av_assert0(desc);
  718. return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
  719. }
  720. static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
  721. {
  722. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  723. av_assert0(desc);
  724. return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
  725. (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
  726. }
  727. static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
  728. {
  729. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  730. av_assert0(desc);
  731. return (desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL);
  732. }
  733. extern const uint64_t ff_dither4[2];
  734. extern const uint64_t ff_dither8[2];
  735. extern const uint8_t dithers[8][8][8];
  736. extern const uint16_t dither_scale[15][16];
  737. extern const AVClass sws_context_class;
  738. /**
  739. * Set c->swScale to an unscaled converter if one exists for the specific
  740. * source and destination formats, bit depths, flags, etc.
  741. */
  742. void ff_get_unscaled_swscale(SwsContext *c);
  743. void ff_swscale_get_unscaled_altivec(SwsContext *c);
  744. /**
  745. * Return function pointer to fastest main scaler path function depending
  746. * on architecture and available optimizations.
  747. */
  748. SwsFunc ff_getSwsFunc(SwsContext *c);
  749. void ff_sws_init_input_funcs(SwsContext *c);
  750. void ff_sws_init_output_funcs(SwsContext *c,
  751. yuv2planar1_fn *yuv2plane1,
  752. yuv2planarX_fn *yuv2planeX,
  753. yuv2interleavedX_fn *yuv2nv12cX,
  754. yuv2packed1_fn *yuv2packed1,
  755. yuv2packed2_fn *yuv2packed2,
  756. yuv2packedX_fn *yuv2packedX,
  757. yuv2anyX_fn *yuv2anyX);
  758. void ff_sws_init_swScale_altivec(SwsContext *c);
  759. void ff_sws_init_swScale_mmx(SwsContext *c);
  760. static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
  761. int alpha, int bits, const int big_endian)
  762. {
  763. int i, j;
  764. uint8_t *ptr = plane + stride * y;
  765. int v = alpha ? 0xFFFF>>(15-bits) : (1<<bits);
  766. for (i = 0; i < height; i++) {
  767. #define FILL(wfunc) \
  768. for (j = 0; j < width; j++) {\
  769. wfunc(ptr+2*j, v);\
  770. }
  771. if (big_endian) {
  772. FILL(AV_WB16);
  773. } else {
  774. FILL(AV_WL16);
  775. }
  776. ptr += stride;
  777. }
  778. }
  779. #endif /* SWSCALE_SWSCALE_INTERNAL_H */