timefilter.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. /*
  2. * Delay Locked Loop based time filter
  3. * Copyright (c) 2009 Samalyse
  4. * Copyright (c) 2009 Michael Niedermayer
  5. * Author: Olivier Guilyardi <olivier samalyse com>
  6. * Michael Niedermayer <michaelni gmx at>
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "libavutil/common.h"
  25. #include "libavutil/mem.h"
  26. #include "config.h"
  27. #include "timefilter.h"
  28. struct TimeFilter {
  29. // Delay Locked Loop data. These variables refer to mathematical
  30. // concepts described in: http://www.kokkinizita.net/papers/usingdll.pdf
  31. double cycle_time;
  32. double feedback2_factor;
  33. double feedback3_factor;
  34. double clock_period;
  35. int count;
  36. };
  37. /* 1 - exp(-x) using a 3-order power series */
  38. static double qexpneg(double x)
  39. {
  40. return 1 - 1 / (1 + x * (1 + x / 2 * (1 + x / 3)));
  41. }
  42. TimeFilter *ff_timefilter_new(double time_base,
  43. double period,
  44. double bandwidth)
  45. {
  46. TimeFilter *self = av_mallocz(sizeof(TimeFilter));
  47. double o = 2 * M_PI * bandwidth * period * time_base;
  48. self->clock_period = time_base;
  49. self->feedback2_factor = qexpneg(M_SQRT2 * o);
  50. self->feedback3_factor = qexpneg(o * o) / period;
  51. return self;
  52. }
  53. void ff_timefilter_destroy(TimeFilter *self)
  54. {
  55. av_freep(&self);
  56. }
  57. void ff_timefilter_reset(TimeFilter *self)
  58. {
  59. self->count = 0;
  60. }
  61. double ff_timefilter_update(TimeFilter *self, double system_time, double period)
  62. {
  63. self->count++;
  64. if (self->count == 1) {
  65. self->cycle_time = system_time;
  66. } else {
  67. double loop_error;
  68. self->cycle_time += self->clock_period * period;
  69. loop_error = system_time - self->cycle_time;
  70. self->cycle_time += FFMAX(self->feedback2_factor, 1.0 / self->count) * loop_error;
  71. self->clock_period += self->feedback3_factor * loop_error;
  72. }
  73. return self->cycle_time;
  74. }
  75. double ff_timefilter_eval(TimeFilter *self, double delta)
  76. {
  77. return self->cycle_time + self->clock_period * delta;
  78. }
  79. #ifdef TEST
  80. #include "libavutil/lfg.h"
  81. #define LFG_MAX ((1LL << 32) - 1)
  82. int main(void)
  83. {
  84. AVLFG prng;
  85. double n0, n1;
  86. #define SAMPLES 1000
  87. double ideal[SAMPLES];
  88. double samples[SAMPLES];
  89. double samplet[SAMPLES];
  90. for (n0 = 0; n0 < 40; n0 = 2 * n0 + 1) {
  91. for (n1 = 0; n1 < 10; n1 = 2 * n1 + 1) {
  92. double best_error = 1000000000;
  93. double bestpar0 = 1;
  94. double bestpar1 = 1;
  95. int better, i;
  96. av_lfg_init(&prng, 123);
  97. for (i = 0; i < SAMPLES; i++) {
  98. samplet[i] = 10 + i + (av_lfg_get(&prng) < LFG_MAX/2 ? 0 : 0.999);
  99. ideal[i] = samplet[i] + n1 * i / (1000);
  100. samples[i] = ideal[i] + n0 * (av_lfg_get(&prng) - LFG_MAX / 2) / (LFG_MAX * 10LL);
  101. if(i && samples[i]<samples[i-1])
  102. samples[i]=samples[i-1]+0.001;
  103. }
  104. do {
  105. double par0, par1;
  106. better = 0;
  107. for (par0 = bestpar0 * 0.8; par0 <= bestpar0 * 1.21; par0 += bestpar0 * 0.05) {
  108. for (par1 = bestpar1 * 0.8; par1 <= bestpar1 * 1.21; par1 += bestpar1 * 0.05) {
  109. double error = 0;
  110. TimeFilter *tf = ff_timefilter_new(1, par0, par1);
  111. for (i = 0; i < SAMPLES; i++) {
  112. double filtered;
  113. filtered = ff_timefilter_update(tf, samples[i], i ? (samplet[i] - samplet[i-1]) : 1);
  114. if(filtered < 0 || filtered > 1000000000)
  115. printf("filter is unstable\n");
  116. error += (filtered - ideal[i]) * (filtered - ideal[i]);
  117. }
  118. ff_timefilter_destroy(tf);
  119. if (error < best_error) {
  120. best_error = error;
  121. bestpar0 = par0;
  122. bestpar1 = par1;
  123. better = 1;
  124. }
  125. }
  126. }
  127. } while (better);
  128. #if 0
  129. double lastfil = 9;
  130. TimeFilter *tf = ff_timefilter_new(1, bestpar0, bestpar1);
  131. for (i = 0; i < SAMPLES; i++) {
  132. double filtered;
  133. filtered = ff_timefilter_update(tf, samples[i], 1);
  134. printf("%f %f %f %f\n", i - samples[i] + 10, filtered - samples[i],
  135. samples[FFMAX(i, 1)] - samples[FFMAX(i - 1, 0)], filtered - lastfil);
  136. lastfil = filtered;
  137. }
  138. ff_timefilter_destroy(tf);
  139. #else
  140. printf(" [%f %f %9f]", bestpar0, bestpar1, best_error);
  141. #endif
  142. }
  143. printf("\n");
  144. }
  145. return 0;
  146. }
  147. #endif