swscale_internal.h 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
  1. /*
  2. * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef SWSCALE_SWSCALE_INTERNAL_H
  21. #define SWSCALE_SWSCALE_INTERNAL_H
  22. #include "config.h"
  23. #if HAVE_ALTIVEC_H
  24. #include <altivec.h>
  25. #endif
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/avutil.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/log.h"
  31. #include "libavutil/pixfmt.h"
  32. #include "libavutil/pixdesc.h"
  33. #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
  34. #define YUVRGB_TABLE_HEADROOM 256
  35. #define FAST_BGR2YV12 // use 7-bit instead of 15-bit coefficients
  36. #define MAX_FILTER_SIZE 256
  37. #define DITHER1XBPP
  38. #if HAVE_BIGENDIAN
  39. #define ALT32_CORR (-1)
  40. #else
  41. #define ALT32_CORR 1
  42. #endif
  43. #if ARCH_X86_64
  44. # define APCK_PTR2 8
  45. # define APCK_COEF 16
  46. # define APCK_SIZE 24
  47. #else
  48. # define APCK_PTR2 4
  49. # define APCK_COEF 8
  50. # define APCK_SIZE 16
  51. #endif
  52. struct SwsContext;
  53. typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
  54. int srcStride[], int srcSliceY, int srcSliceH,
  55. uint8_t *dst[], int dstStride[]);
  56. /**
  57. * Write one line of horizontally scaled data to planar output
  58. * without any additional vertical scaling (or point-scaling).
  59. *
  60. * @param src scaled source data, 15bit for 8-10bit output,
  61. * 19-bit for 16bit output (in int32_t)
  62. * @param dest pointer to the output plane. For >8bit
  63. * output, this is in uint16_t
  64. * @param dstW width of destination in pixels
  65. * @param dither ordered dither array of type int16_t and size 8
  66. * @param offset Dither offset
  67. */
  68. typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
  69. const uint8_t *dither, int offset);
  70. /**
  71. * Write one line of horizontally scaled data to planar output
  72. * with multi-point vertical scaling between input pixels.
  73. *
  74. * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  75. * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
  76. * 19-bit for 16bit output (in int32_t)
  77. * @param filterSize number of vertical input lines to scale
  78. * @param dest pointer to output plane. For >8bit
  79. * output, this is in uint16_t
  80. * @param dstW width of destination pixels
  81. * @param offset Dither offset
  82. */
  83. typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
  84. const int16_t **src, uint8_t *dest, int dstW,
  85. const uint8_t *dither, int offset);
  86. /**
  87. * Write one line of horizontally scaled chroma to interleaved output
  88. * with multi-point vertical scaling between input pixels.
  89. *
  90. * @param c SWS scaling context
  91. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  92. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  93. * 19-bit for 16bit output (in int32_t)
  94. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  95. * 19-bit for 16bit output (in int32_t)
  96. * @param chrFilterSize number of vertical chroma input lines to scale
  97. * @param dest pointer to the output plane. For >8bit
  98. * output, this is in uint16_t
  99. * @param dstW width of chroma planes
  100. */
  101. typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
  102. const int16_t *chrFilter,
  103. int chrFilterSize,
  104. const int16_t **chrUSrc,
  105. const int16_t **chrVSrc,
  106. uint8_t *dest, int dstW);
  107. /**
  108. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  109. * output without any additional vertical scaling (or point-scaling). Note
  110. * that this function may do chroma scaling, see the "uvalpha" argument.
  111. *
  112. * @param c SWS scaling context
  113. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  114. * 19-bit for 16bit output (in int32_t)
  115. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  116. * 19-bit for 16bit output (in int32_t)
  117. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  118. * 19-bit for 16bit output (in int32_t)
  119. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  120. * 19-bit for 16bit output (in int32_t)
  121. * @param dest pointer to the output plane. For 16bit output, this is
  122. * uint16_t
  123. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  124. * to write into dest[]
  125. * @param uvalpha chroma scaling coefficient for the second line of chroma
  126. * pixels, either 2048 or 0. If 0, one chroma input is used
  127. * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  128. * is set, it generates 1 output pixel). If 2048, two chroma
  129. * input pixels should be averaged for 2 output pixels (this
  130. * only happens if SWS_FLAG_FULL_CHR_INT is not set)
  131. * @param y vertical line number for this output. This does not need
  132. * to be used to calculate the offset in the destination,
  133. * but can be used to generate comfort noise using dithering
  134. * for some output formats.
  135. */
  136. typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
  137. const int16_t *chrUSrc[2],
  138. const int16_t *chrVSrc[2],
  139. const int16_t *alpSrc, uint8_t *dest,
  140. int dstW, int uvalpha, int y);
  141. /**
  142. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  143. * output by doing bilinear scaling between two input lines.
  144. *
  145. * @param c SWS scaling context
  146. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  147. * 19-bit for 16bit output (in int32_t)
  148. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  149. * 19-bit for 16bit output (in int32_t)
  150. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  151. * 19-bit for 16bit output (in int32_t)
  152. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  153. * 19-bit for 16bit output (in int32_t)
  154. * @param dest pointer to the output plane. For 16bit output, this is
  155. * uint16_t
  156. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  157. * to write into dest[]
  158. * @param yalpha luma/alpha scaling coefficients for the second input line.
  159. * The first line's coefficients can be calculated by using
  160. * 4096 - yalpha
  161. * @param uvalpha chroma scaling coefficient for the second input line. The
  162. * first line's coefficients can be calculated by using
  163. * 4096 - uvalpha
  164. * @param y vertical line number for this output. This does not need
  165. * to be used to calculate the offset in the destination,
  166. * but can be used to generate comfort noise using dithering
  167. * for some output formats.
  168. */
  169. typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
  170. const int16_t *chrUSrc[2],
  171. const int16_t *chrVSrc[2],
  172. const int16_t *alpSrc[2],
  173. uint8_t *dest,
  174. int dstW, int yalpha, int uvalpha, int y);
  175. /**
  176. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  177. * output by doing multi-point vertical scaling between input pixels.
  178. *
  179. * @param c SWS scaling context
  180. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  181. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  182. * 19-bit for 16bit output (in int32_t)
  183. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  184. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  185. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  186. * 19-bit for 16bit output (in int32_t)
  187. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  188. * 19-bit for 16bit output (in int32_t)
  189. * @param chrFilterSize number of vertical chroma input lines to scale
  190. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  191. * 19-bit for 16bit output (in int32_t)
  192. * @param dest pointer to the output plane. For 16bit output, this is
  193. * uint16_t
  194. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  195. * to write into dest[]
  196. * @param y vertical line number for this output. This does not need
  197. * to be used to calculate the offset in the destination,
  198. * but can be used to generate comfort noise using dithering
  199. * or some output formats.
  200. */
  201. typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  202. const int16_t **lumSrc, int lumFilterSize,
  203. const int16_t *chrFilter,
  204. const int16_t **chrUSrc,
  205. const int16_t **chrVSrc, int chrFilterSize,
  206. const int16_t **alpSrc, uint8_t *dest,
  207. int dstW, int y);
  208. /**
  209. * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
  210. * output by doing multi-point vertical scaling between input pixels.
  211. *
  212. * @param c SWS scaling context
  213. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  214. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  215. * 19-bit for 16bit output (in int32_t)
  216. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  217. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  218. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  219. * 19-bit for 16bit output (in int32_t)
  220. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  221. * 19-bit for 16bit output (in int32_t)
  222. * @param chrFilterSize number of vertical chroma input lines to scale
  223. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  224. * 19-bit for 16bit output (in int32_t)
  225. * @param dest pointer to the output planes. For 16bit output, this is
  226. * uint16_t
  227. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  228. * to write into dest[]
  229. * @param y vertical line number for this output. This does not need
  230. * to be used to calculate the offset in the destination,
  231. * but can be used to generate comfort noise using dithering
  232. * or some output formats.
  233. */
  234. typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  235. const int16_t **lumSrc, int lumFilterSize,
  236. const int16_t *chrFilter,
  237. const int16_t **chrUSrc,
  238. const int16_t **chrVSrc, int chrFilterSize,
  239. const int16_t **alpSrc, uint8_t **dest,
  240. int dstW, int y);
  241. /* This struct should be aligned on at least a 32-byte boundary. */
  242. typedef struct SwsContext {
  243. /**
  244. * info on struct for av_log
  245. */
  246. const AVClass *av_class;
  247. /**
  248. * Note that src, dst, srcStride, dstStride will be copied in the
  249. * sws_scale() wrapper so they can be freely modified here.
  250. */
  251. SwsFunc swScale;
  252. int srcW; ///< Width of source luma/alpha planes.
  253. int srcH; ///< Height of source luma/alpha planes.
  254. int dstH; ///< Height of destination luma/alpha planes.
  255. int chrSrcW; ///< Width of source chroma planes.
  256. int chrSrcH; ///< Height of source chroma planes.
  257. int chrDstW; ///< Width of destination chroma planes.
  258. int chrDstH; ///< Height of destination chroma planes.
  259. int lumXInc, chrXInc;
  260. int lumYInc, chrYInc;
  261. enum AVPixelFormat dstFormat; ///< Destination pixel format.
  262. enum AVPixelFormat srcFormat; ///< Source pixel format.
  263. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
  264. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
  265. int dstBpc, srcBpc;
  266. int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
  267. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
  268. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
  269. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
  270. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
  271. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
  272. double param[2]; ///< Input parameters for scaling algorithms that need them.
  273. uint32_t pal_yuv[256];
  274. uint32_t pal_rgb[256];
  275. /**
  276. * @name Scaled horizontal lines ring buffer.
  277. * The horizontal scaler keeps just enough scaled lines in a ring buffer
  278. * so they may be passed to the vertical scaler. The pointers to the
  279. * allocated buffers for each line are duplicated in sequence in the ring
  280. * buffer to simplify indexing and avoid wrapping around between lines
  281. * inside the vertical scaler code. The wrapping is done before the
  282. * vertical scaler is called.
  283. */
  284. //@{
  285. int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
  286. int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  287. int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  288. int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
  289. int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
  290. int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
  291. int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
  292. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
  293. int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
  294. int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
  295. //@}
  296. uint8_t *formatConvBuffer;
  297. /**
  298. * @name Horizontal and vertical filters.
  299. * To better understand the following fields, here is a pseudo-code of
  300. * their usage in filtering a horizontal line:
  301. * @code
  302. * for (i = 0; i < width; i++) {
  303. * dst[i] = 0;
  304. * for (j = 0; j < filterSize; j++)
  305. * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
  306. * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
  307. * }
  308. * @endcode
  309. */
  310. //@{
  311. int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
  312. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
  313. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
  314. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
  315. int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
  316. int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
  317. int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
  318. int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
  319. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
  320. int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
  321. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
  322. int vChrFilterSize; ///< Vertical filter size for chroma pixels.
  323. //@}
  324. int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
  325. int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
  326. uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
  327. uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
  328. int canMMXEXTBeUsed;
  329. int dstY; ///< Last destination vertical line output from last slice.
  330. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
  331. void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
  332. uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
  333. uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
  334. int table_gV[256 + 2*YUVRGB_TABLE_HEADROOM];
  335. uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
  336. int *dither_error[4];
  337. //Colorspace stuff
  338. int contrast, brightness, saturation; // for sws_getColorspaceDetails
  339. int srcColorspaceTable[4];
  340. int dstColorspaceTable[4];
  341. int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
  342. int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
  343. int src0Alpha;
  344. int dst0Alpha;
  345. int yuv2rgb_y_offset;
  346. int yuv2rgb_y_coeff;
  347. int yuv2rgb_v2r_coeff;
  348. int yuv2rgb_v2g_coeff;
  349. int yuv2rgb_u2g_coeff;
  350. int yuv2rgb_u2b_coeff;
  351. #define RED_DITHER "0*8"
  352. #define GREEN_DITHER "1*8"
  353. #define BLUE_DITHER "2*8"
  354. #define Y_COEFF "3*8"
  355. #define VR_COEFF "4*8"
  356. #define UB_COEFF "5*8"
  357. #define VG_COEFF "6*8"
  358. #define UG_COEFF "7*8"
  359. #define Y_OFFSET "8*8"
  360. #define U_OFFSET "9*8"
  361. #define V_OFFSET "10*8"
  362. #define LUM_MMX_FILTER_OFFSET "11*8"
  363. #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
  364. #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
  365. #define ESP_OFFSET "11*8+4*4*256*2+8"
  366. #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
  367. #define U_TEMP "11*8+4*4*256*2+24"
  368. #define V_TEMP "11*8+4*4*256*2+32"
  369. #define Y_TEMP "11*8+4*4*256*2+40"
  370. #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
  371. #define UV_OFF_PX "11*8+4*4*256*3+48"
  372. #define UV_OFF_BYTE "11*8+4*4*256*3+56"
  373. #define DITHER16 "11*8+4*4*256*3+64"
  374. #define DITHER32 "11*8+4*4*256*3+80"
  375. DECLARE_ALIGNED(8, uint64_t, redDither);
  376. DECLARE_ALIGNED(8, uint64_t, greenDither);
  377. DECLARE_ALIGNED(8, uint64_t, blueDither);
  378. DECLARE_ALIGNED(8, uint64_t, yCoeff);
  379. DECLARE_ALIGNED(8, uint64_t, vrCoeff);
  380. DECLARE_ALIGNED(8, uint64_t, ubCoeff);
  381. DECLARE_ALIGNED(8, uint64_t, vgCoeff);
  382. DECLARE_ALIGNED(8, uint64_t, ugCoeff);
  383. DECLARE_ALIGNED(8, uint64_t, yOffset);
  384. DECLARE_ALIGNED(8, uint64_t, uOffset);
  385. DECLARE_ALIGNED(8, uint64_t, vOffset);
  386. int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
  387. int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
  388. int dstW; ///< Width of destination luma/alpha planes.
  389. DECLARE_ALIGNED(8, uint64_t, esp);
  390. DECLARE_ALIGNED(8, uint64_t, vRounder);
  391. DECLARE_ALIGNED(8, uint64_t, u_temp);
  392. DECLARE_ALIGNED(8, uint64_t, v_temp);
  393. DECLARE_ALIGNED(8, uint64_t, y_temp);
  394. int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
  395. // alignment of these values is not necessary, but merely here
  396. // to maintain the same offset across x8632 and x86-64. Once we
  397. // use proper offset macros in the asm, they can be removed.
  398. DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
  399. DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
  400. DECLARE_ALIGNED(8, uint16_t, dither16)[8];
  401. DECLARE_ALIGNED(8, uint32_t, dither32)[8];
  402. const uint8_t *chrDither8, *lumDither8;
  403. #if HAVE_ALTIVEC
  404. vector signed short CY;
  405. vector signed short CRV;
  406. vector signed short CBU;
  407. vector signed short CGU;
  408. vector signed short CGV;
  409. vector signed short OY;
  410. vector unsigned short CSHIFT;
  411. vector signed short *vYCoeffsBank, *vCCoeffsBank;
  412. #endif
  413. #if ARCH_BFIN
  414. DECLARE_ALIGNED(4, uint32_t, oy);
  415. DECLARE_ALIGNED(4, uint32_t, oc);
  416. DECLARE_ALIGNED(4, uint32_t, zero);
  417. DECLARE_ALIGNED(4, uint32_t, cy);
  418. DECLARE_ALIGNED(4, uint32_t, crv);
  419. DECLARE_ALIGNED(4, uint32_t, rmask);
  420. DECLARE_ALIGNED(4, uint32_t, cbu);
  421. DECLARE_ALIGNED(4, uint32_t, bmask);
  422. DECLARE_ALIGNED(4, uint32_t, cgu);
  423. DECLARE_ALIGNED(4, uint32_t, cgv);
  424. DECLARE_ALIGNED(4, uint32_t, gmask);
  425. #endif
  426. #if HAVE_VIS
  427. DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
  428. #endif
  429. int use_mmx_vfilter;
  430. /* function pointers for swScale() */
  431. yuv2planar1_fn yuv2plane1;
  432. yuv2planarX_fn yuv2planeX;
  433. yuv2interleavedX_fn yuv2nv12cX;
  434. yuv2packed1_fn yuv2packed1;
  435. yuv2packed2_fn yuv2packed2;
  436. yuv2packedX_fn yuv2packedX;
  437. yuv2anyX_fn yuv2anyX;
  438. /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
  439. void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  440. int width, uint32_t *pal);
  441. /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
  442. void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  443. int width, uint32_t *pal);
  444. /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
  445. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
  446. const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
  447. int width, uint32_t *pal);
  448. /**
  449. * Functions to read planar input, such as planar RGB, and convert
  450. * internally to Y/UV.
  451. */
  452. /** @{ */
  453. void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
  454. void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
  455. int width);
  456. /** @} */
  457. /**
  458. * Scale one horizontal line of input data using a bilinear filter
  459. * to produce one line of output data. Compared to SwsContext->hScale(),
  460. * please take note of the following caveats when using these:
  461. * - Scaling is done using only 7bit instead of 14bit coefficients.
  462. * - You can use no more than 5 input pixels to produce 4 output
  463. * pixels. Therefore, this filter should not be used for downscaling
  464. * by more than ~20% in width (because that equals more than 5/4th
  465. * downscaling and thus more than 5 pixels input per 4 pixels output).
  466. * - In general, bilinear filters create artifacts during downscaling
  467. * (even when <20%), because one output pixel will span more than one
  468. * input pixel, and thus some pixels will need edges of both neighbor
  469. * pixels to interpolate the output pixel. Since you can use at most
  470. * two input pixels per output pixel in bilinear scaling, this is
  471. * impossible and thus downscaling by any size will create artifacts.
  472. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
  473. * in SwsContext->flags.
  474. */
  475. /** @{ */
  476. void (*hyscale_fast)(struct SwsContext *c,
  477. int16_t *dst, int dstWidth,
  478. const uint8_t *src, int srcW, int xInc);
  479. void (*hcscale_fast)(struct SwsContext *c,
  480. int16_t *dst1, int16_t *dst2, int dstWidth,
  481. const uint8_t *src1, const uint8_t *src2,
  482. int srcW, int xInc);
  483. /** @} */
  484. /**
  485. * Scale one horizontal line of input data using a filter over the input
  486. * lines, to produce one (differently sized) line of output data.
  487. *
  488. * @param dst pointer to destination buffer for horizontally scaled
  489. * data. If the number of bits per component of one
  490. * destination pixel (SwsContext->dstBpc) is <= 10, data
  491. * will be 15bpc in 16bits (int16_t) width. Else (i.e.
  492. * SwsContext->dstBpc == 16), data will be 19bpc in
  493. * 32bits (int32_t) width.
  494. * @param dstW width of destination image
  495. * @param src pointer to source data to be scaled. If the number of
  496. * bits per component of a source pixel (SwsContext->srcBpc)
  497. * is 8, this is 8bpc in 8bits (uint8_t) width. Else
  498. * (i.e. SwsContext->dstBpc > 8), this is native depth
  499. * in 16bits (uint16_t) width. In other words, for 9-bit
  500. * YUV input, this is 9bpc, for 10-bit YUV input, this is
  501. * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
  502. * @param filter filter coefficients to be used per output pixel for
  503. * scaling. This contains 14bpp filtering coefficients.
  504. * Guaranteed to contain dstW * filterSize entries.
  505. * @param filterPos position of the first input pixel to be used for
  506. * each output pixel during scaling. Guaranteed to
  507. * contain dstW entries.
  508. * @param filterSize the number of input coefficients to be used (and
  509. * thus the number of input pixels to be used) for
  510. * creating a single output pixel. Is aligned to 4
  511. * (and input coefficients thus padded with zeroes)
  512. * to simplify creating SIMD code.
  513. */
  514. /** @{ */
  515. void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
  516. const uint8_t *src, const int16_t *filter,
  517. const int32_t *filterPos, int filterSize);
  518. void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
  519. const uint8_t *src, const int16_t *filter,
  520. const int32_t *filterPos, int filterSize);
  521. /** @} */
  522. /// Color range conversion function for luma plane if needed.
  523. void (*lumConvertRange)(int16_t *dst, int width);
  524. /// Color range conversion function for chroma planes if needed.
  525. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
  526. int needs_hcscale; ///< Set if there are chroma planes to be converted.
  527. } SwsContext;
  528. //FIXME check init (where 0)
  529. SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
  530. int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
  531. int fullRange, int brightness,
  532. int contrast, int saturation);
  533. void ff_yuv2rgb_init_tables_altivec(SwsContext *c, const int inv_table[4],
  534. int brightness, int contrast, int saturation);
  535. void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
  536. int lastInLumBuf, int lastInChrBuf);
  537. SwsFunc ff_yuv2rgb_init_mmx(SwsContext *c);
  538. SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
  539. SwsFunc ff_yuv2rgb_init_altivec(SwsContext *c);
  540. SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
  541. void ff_bfin_get_unscaled_swscale(SwsContext *c);
  542. #if FF_API_SWS_FORMAT_NAME
  543. /**
  544. * @deprecated Use av_get_pix_fmt_name() instead.
  545. */
  546. attribute_deprecated
  547. const char *sws_format_name(enum AVPixelFormat format);
  548. #endif
  549. static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
  550. {
  551. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  552. av_assert0(desc);
  553. return desc->comp[0].depth_minus1 == 15;
  554. }
  555. static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
  556. {
  557. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  558. av_assert0(desc);
  559. return desc->comp[0].depth_minus1 >= 8 && desc->comp[0].depth_minus1 <= 13;
  560. }
  561. #define isNBPS(x) is9_OR_10BPS(x)
  562. static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
  563. {
  564. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  565. av_assert0(desc);
  566. return desc->flags & PIX_FMT_BE;
  567. }
  568. static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
  569. {
  570. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  571. av_assert0(desc);
  572. return !(desc->flags & PIX_FMT_RGB) && desc->nb_components >= 2;
  573. }
  574. static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
  575. {
  576. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  577. av_assert0(desc);
  578. return ((desc->flags & PIX_FMT_PLANAR) && isYUV(pix_fmt));
  579. }
  580. static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
  581. {
  582. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  583. av_assert0(desc);
  584. return (desc->flags & PIX_FMT_RGB);
  585. }
  586. #if 0 // FIXME
  587. #define isGray(x) \
  588. (!(av_pix_fmt_desc_get(x)->flags & PIX_FMT_PAL) && \
  589. av_pix_fmt_desc_get(x)->nb_components <= 2)
  590. #else
  591. #define isGray(x) \
  592. ((x) == AV_PIX_FMT_GRAY8 || \
  593. (x) == AV_PIX_FMT_Y400A || \
  594. (x) == AV_PIX_FMT_GRAY16BE || \
  595. (x) == AV_PIX_FMT_GRAY16LE)
  596. #endif
  597. #define isRGBinInt(x) \
  598. ( \
  599. (x) == AV_PIX_FMT_RGB48BE || \
  600. (x) == AV_PIX_FMT_RGB48LE || \
  601. (x) == AV_PIX_FMT_RGBA64BE || \
  602. (x) == AV_PIX_FMT_RGBA64LE || \
  603. (x) == AV_PIX_FMT_RGB32 || \
  604. (x) == AV_PIX_FMT_RGB32_1 || \
  605. (x) == AV_PIX_FMT_RGB24 || \
  606. (x) == AV_PIX_FMT_RGB565BE || \
  607. (x) == AV_PIX_FMT_RGB565LE || \
  608. (x) == AV_PIX_FMT_RGB555BE || \
  609. (x) == AV_PIX_FMT_RGB555LE || \
  610. (x) == AV_PIX_FMT_RGB444BE || \
  611. (x) == AV_PIX_FMT_RGB444LE || \
  612. (x) == AV_PIX_FMT_RGB8 || \
  613. (x) == AV_PIX_FMT_RGB4 || \
  614. (x) == AV_PIX_FMT_RGB4_BYTE || \
  615. (x) == AV_PIX_FMT_MONOBLACK || \
  616. (x) == AV_PIX_FMT_MONOWHITE \
  617. )
  618. #define isBGRinInt(x) \
  619. ( \
  620. (x) == AV_PIX_FMT_BGR48BE || \
  621. (x) == AV_PIX_FMT_BGR48LE || \
  622. (x) == AV_PIX_FMT_BGRA64BE || \
  623. (x) == AV_PIX_FMT_BGRA64LE || \
  624. (x) == AV_PIX_FMT_BGR32 || \
  625. (x) == AV_PIX_FMT_BGR32_1 || \
  626. (x) == AV_PIX_FMT_BGR24 || \
  627. (x) == AV_PIX_FMT_BGR565BE || \
  628. (x) == AV_PIX_FMT_BGR565LE || \
  629. (x) == AV_PIX_FMT_BGR555BE || \
  630. (x) == AV_PIX_FMT_BGR555LE || \
  631. (x) == AV_PIX_FMT_BGR444BE || \
  632. (x) == AV_PIX_FMT_BGR444LE || \
  633. (x) == AV_PIX_FMT_BGR8 || \
  634. (x) == AV_PIX_FMT_BGR4 || \
  635. (x) == AV_PIX_FMT_BGR4_BYTE || \
  636. (x) == AV_PIX_FMT_MONOBLACK || \
  637. (x) == AV_PIX_FMT_MONOWHITE \
  638. )
  639. #define isRGBinBytes(x) ( \
  640. (x) == AV_PIX_FMT_RGB48BE \
  641. || (x) == AV_PIX_FMT_RGB48LE \
  642. || (x) == AV_PIX_FMT_RGBA64BE \
  643. || (x) == AV_PIX_FMT_RGBA64LE \
  644. || (x) == AV_PIX_FMT_RGBA \
  645. || (x) == AV_PIX_FMT_ARGB \
  646. || (x) == AV_PIX_FMT_RGB24 \
  647. )
  648. #define isBGRinBytes(x) ( \
  649. (x) == AV_PIX_FMT_BGR48BE \
  650. || (x) == AV_PIX_FMT_BGR48LE \
  651. || (x) == AV_PIX_FMT_BGRA64BE \
  652. || (x) == AV_PIX_FMT_BGRA64LE \
  653. || (x) == AV_PIX_FMT_BGRA \
  654. || (x) == AV_PIX_FMT_ABGR \
  655. || (x) == AV_PIX_FMT_BGR24 \
  656. )
  657. #define isAnyRGB(x) \
  658. ( \
  659. isRGBinInt(x) || \
  660. isBGRinInt(x) || \
  661. isRGB(x) || \
  662. (x)==AV_PIX_FMT_GBRP9LE || \
  663. (x)==AV_PIX_FMT_GBRP9BE || \
  664. (x)==AV_PIX_FMT_GBRP10LE || \
  665. (x)==AV_PIX_FMT_GBRP10BE || \
  666. (x)==AV_PIX_FMT_GBRP12LE || \
  667. (x)==AV_PIX_FMT_GBRP12BE || \
  668. (x)==AV_PIX_FMT_GBRP14LE || \
  669. (x)==AV_PIX_FMT_GBRP14BE || \
  670. (x)==AV_PIX_FMT_GBR24P \
  671. )
  672. static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
  673. {
  674. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  675. av_assert0(desc);
  676. return desc->flags & PIX_FMT_ALPHA;
  677. }
  678. #if 1
  679. #define isPacked(x) ( \
  680. (x)==AV_PIX_FMT_PAL8 \
  681. || (x)==AV_PIX_FMT_YUYV422 \
  682. || (x)==AV_PIX_FMT_UYVY422 \
  683. || (x)==AV_PIX_FMT_Y400A \
  684. || isRGBinInt(x) \
  685. || isBGRinInt(x) \
  686. )
  687. #else
  688. static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
  689. {
  690. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  691. av_assert0(desc);
  692. return ((desc->nb_components >= 2 && !(desc->flags & PIX_FMT_PLANAR)) ||
  693. pix_fmt == AV_PIX_FMT_PAL8);
  694. }
  695. #endif
  696. static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
  697. {
  698. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  699. av_assert0(desc);
  700. return (desc->nb_components >= 2 && (desc->flags & PIX_FMT_PLANAR));
  701. }
  702. static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
  703. {
  704. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  705. av_assert0(desc);
  706. return ((desc->flags & (PIX_FMT_PLANAR | PIX_FMT_RGB)) == PIX_FMT_RGB);
  707. }
  708. static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
  709. {
  710. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  711. av_assert0(desc);
  712. return ((desc->flags & (PIX_FMT_PLANAR | PIX_FMT_RGB)) ==
  713. (PIX_FMT_PLANAR | PIX_FMT_RGB));
  714. }
  715. static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
  716. {
  717. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  718. av_assert0(desc);
  719. return (desc->flags & PIX_FMT_PAL) || (desc->flags & PIX_FMT_PSEUDOPAL);
  720. }
  721. extern const uint64_t ff_dither4[2];
  722. extern const uint64_t ff_dither8[2];
  723. extern const uint8_t dithers[8][8][8];
  724. extern const uint16_t dither_scale[15][16];
  725. extern const AVClass sws_context_class;
  726. /**
  727. * Set c->swScale to an unscaled converter if one exists for the specific
  728. * source and destination formats, bit depths, flags, etc.
  729. */
  730. void ff_get_unscaled_swscale(SwsContext *c);
  731. void ff_swscale_get_unscaled_altivec(SwsContext *c);
  732. /**
  733. * Return function pointer to fastest main scaler path function depending
  734. * on architecture and available optimizations.
  735. */
  736. SwsFunc ff_getSwsFunc(SwsContext *c);
  737. void ff_sws_init_input_funcs(SwsContext *c);
  738. void ff_sws_init_output_funcs(SwsContext *c,
  739. yuv2planar1_fn *yuv2plane1,
  740. yuv2planarX_fn *yuv2planeX,
  741. yuv2interleavedX_fn *yuv2nv12cX,
  742. yuv2packed1_fn *yuv2packed1,
  743. yuv2packed2_fn *yuv2packed2,
  744. yuv2packedX_fn *yuv2packedX,
  745. yuv2anyX_fn *yuv2anyX);
  746. void ff_sws_init_swScale_altivec(SwsContext *c);
  747. void ff_sws_init_swScale_mmx(SwsContext *c);
  748. static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
  749. int alpha, int bits, const int big_endian)
  750. {
  751. int i, j;
  752. uint8_t *ptr = plane + stride * y;
  753. int v = alpha ? 0xFFFF>>(15-bits) : (1<<bits);
  754. for (i = 0; i < height; i++) {
  755. #define FILL(wfunc) \
  756. for (j = 0; j < width; j++) {\
  757. wfunc(ptr+2*j, v);\
  758. }
  759. if (big_endian) {
  760. FILL(AV_WB16);
  761. } else {
  762. FILL(AV_WL16);
  763. }
  764. ptr += stride;
  765. }
  766. }
  767. #endif /* SWSCALE_SWSCALE_INTERNAL_H */