swresample.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither.scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither.method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"lipshitz" , "select lipshitz noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
  74. {"shibata" , "select shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  75. {"low_shibata" , "select low shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  76. {"high_shibata" , "select high shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  77. {"f_weighted" , "select f-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  78. {"modified_e_weighted" , "select modified-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  79. {"improved_e_weighted" , "select improved-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  80. {"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
  81. {"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 24 , PARAM },
  82. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  83. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  84. /* duplicate option in order to work with avconv */
  85. {"resample_cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  86. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  87. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  88. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  89. {"precision" , "set soxr resampling precision (in bits)"
  90. , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  91. {"cheby" , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
  92. , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  93. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  94. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  95. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  96. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  97. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  98. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  99. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  100. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  101. {"async" , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
  102. , OFFSET(async) , AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  103. {"first_pts" , "Assume the first pts should be this value (in samples)."
  104. , OFFSET(firstpts_in_samples), AV_OPT_TYPE_INT64 ,{.i64=AV_NOPTS_VALUE }, INT64_MIN,INT64_MAX, PARAM },
  105. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  106. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  107. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  108. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  109. { "filter_type" , "select swr filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  110. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  111. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  112. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  113. { "kaiser_beta" , "set swr Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  114. { "output_sample_bits" , "" , OFFSET(dither.output_sample_bits) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 64 , 0 },
  115. {0}
  116. };
  117. static const char* context_to_name(void* ptr) {
  118. return "SWR";
  119. }
  120. static const AVClass av_class = {
  121. .class_name = "SWResampler",
  122. .item_name = context_to_name,
  123. .option = options,
  124. .version = LIBAVUTIL_VERSION_INT,
  125. .log_level_offset_offset = OFFSET(log_level_offset),
  126. .parent_log_context_offset = OFFSET(log_ctx),
  127. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  128. };
  129. unsigned swresample_version(void)
  130. {
  131. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  132. return LIBSWRESAMPLE_VERSION_INT;
  133. }
  134. const char *swresample_configuration(void)
  135. {
  136. return FFMPEG_CONFIGURATION;
  137. }
  138. const char *swresample_license(void)
  139. {
  140. #define LICENSE_PREFIX "libswresample license: "
  141. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  142. }
  143. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  144. if(!s || s->in_convert) // s needs to be allocated but not initialized
  145. return AVERROR(EINVAL);
  146. s->channel_map = channel_map;
  147. return 0;
  148. }
  149. const AVClass *swr_get_class(void)
  150. {
  151. return &av_class;
  152. }
  153. av_cold struct SwrContext *swr_alloc(void){
  154. SwrContext *s= av_mallocz(sizeof(SwrContext));
  155. if(s){
  156. s->av_class= &av_class;
  157. av_opt_set_defaults(s);
  158. }
  159. return s;
  160. }
  161. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  162. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  163. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  164. int log_offset, void *log_ctx){
  165. if(!s) s= swr_alloc();
  166. if(!s) return NULL;
  167. s->log_level_offset= log_offset;
  168. s->log_ctx= log_ctx;
  169. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  170. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  171. av_opt_set_int(s, "osr", out_sample_rate, 0);
  172. av_opt_set_int(s, "icl", in_ch_layout, 0);
  173. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  174. av_opt_set_int(s, "isr", in_sample_rate, 0);
  175. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  176. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  177. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  178. av_opt_set_int(s, "uch", 0, 0);
  179. return s;
  180. }
  181. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  182. a->fmt = fmt;
  183. a->bps = av_get_bytes_per_sample(fmt);
  184. a->planar= av_sample_fmt_is_planar(fmt);
  185. }
  186. static void free_temp(AudioData *a){
  187. av_free(a->data);
  188. memset(a, 0, sizeof(*a));
  189. }
  190. av_cold void swr_free(SwrContext **ss){
  191. SwrContext *s= *ss;
  192. if(s){
  193. free_temp(&s->postin);
  194. free_temp(&s->midbuf);
  195. free_temp(&s->preout);
  196. free_temp(&s->in_buffer);
  197. free_temp(&s->silence);
  198. free_temp(&s->drop_temp);
  199. free_temp(&s->dither.noise);
  200. free_temp(&s->dither.temp);
  201. swri_audio_convert_free(&s-> in_convert);
  202. swri_audio_convert_free(&s->out_convert);
  203. swri_audio_convert_free(&s->full_convert);
  204. if (s->resampler)
  205. s->resampler->free(&s->resample);
  206. swri_rematrix_free(s);
  207. }
  208. av_freep(ss);
  209. }
  210. av_cold int swr_init(struct SwrContext *s){
  211. int ret;
  212. s->in_buffer_index= 0;
  213. s->in_buffer_count= 0;
  214. s->resample_in_constraint= 0;
  215. free_temp(&s->postin);
  216. free_temp(&s->midbuf);
  217. free_temp(&s->preout);
  218. free_temp(&s->in_buffer);
  219. free_temp(&s->silence);
  220. free_temp(&s->drop_temp);
  221. free_temp(&s->dither.noise);
  222. free_temp(&s->dither.temp);
  223. memset(s->in.ch, 0, sizeof(s->in.ch));
  224. memset(s->out.ch, 0, sizeof(s->out.ch));
  225. swri_audio_convert_free(&s-> in_convert);
  226. swri_audio_convert_free(&s->out_convert);
  227. swri_audio_convert_free(&s->full_convert);
  228. swri_rematrix_free(s);
  229. s->flushed = 0;
  230. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  231. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  232. return AVERROR(EINVAL);
  233. }
  234. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  235. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  236. return AVERROR(EINVAL);
  237. }
  238. if(av_get_channel_layout_nb_channels(s-> in_ch_layout) > SWR_CH_MAX) {
  239. av_log(s, AV_LOG_WARNING, "Input channel layout 0x%"PRIx64" is invalid or unsupported.\n", s-> in_ch_layout);
  240. s->in_ch_layout = 0;
  241. }
  242. if(av_get_channel_layout_nb_channels(s->out_ch_layout) > SWR_CH_MAX) {
  243. av_log(s, AV_LOG_WARNING, "Output channel layout 0x%"PRIx64" is invalid or unsupported.\n", s->out_ch_layout);
  244. s->out_ch_layout = 0;
  245. }
  246. switch(s->engine){
  247. #if CONFIG_LIBSOXR
  248. extern struct Resampler const soxr_resampler;
  249. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  250. #endif
  251. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  252. default:
  253. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  254. return AVERROR(EINVAL);
  255. }
  256. if(!s->used_ch_count)
  257. s->used_ch_count= s->in.ch_count;
  258. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  259. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  260. s-> in_ch_layout= 0;
  261. }
  262. if(!s-> in_ch_layout)
  263. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  264. if(!s->out_ch_layout)
  265. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  266. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  267. s->rematrix_custom;
  268. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  269. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  270. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  271. }else if( av_get_planar_sample_fmt(s-> in_sample_fmt) == AV_SAMPLE_FMT_S32P
  272. && av_get_planar_sample_fmt(s->out_sample_fmt) == AV_SAMPLE_FMT_S32P
  273. && !s->rematrix
  274. && s->engine != SWR_ENGINE_SOXR){
  275. s->int_sample_fmt= AV_SAMPLE_FMT_S32P;
  276. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  277. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  278. }else{
  279. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  280. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  281. }
  282. }
  283. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  284. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  285. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  286. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  287. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  288. return AVERROR(EINVAL);
  289. }
  290. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  291. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  292. if (s->firstpts_in_samples != AV_NOPTS_VALUE) {
  293. if (!s->async && s->min_compensation >= FLT_MAX/2)
  294. s->async = 1;
  295. s->firstpts =
  296. s->outpts = s->firstpts_in_samples * s->out_sample_rate;
  297. } else
  298. s->firstpts = AV_NOPTS_VALUE;
  299. if (s->async) {
  300. if (s->min_compensation >= FLT_MAX/2)
  301. s->min_compensation = 0.001;
  302. if (s->async > 1.0001) {
  303. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  304. }
  305. }
  306. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  307. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  308. }else
  309. s->resampler->free(&s->resample);
  310. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  311. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  312. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  313. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  314. && s->resample){
  315. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  316. return -1;
  317. }
  318. #define RSC 1 //FIXME finetune
  319. if(!s-> in.ch_count)
  320. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  321. if(!s->used_ch_count)
  322. s->used_ch_count= s->in.ch_count;
  323. if(!s->out.ch_count)
  324. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  325. if(!s-> in.ch_count){
  326. av_assert0(!s->in_ch_layout);
  327. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  328. return -1;
  329. }
  330. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  331. char l1[1024], l2[1024];
  332. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  333. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  334. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  335. "but there is not enough information to do it\n", l1, l2);
  336. return -1;
  337. }
  338. av_assert0(s->used_ch_count);
  339. av_assert0(s->out.ch_count);
  340. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  341. s->in_buffer= s->in;
  342. s->silence = s->in;
  343. s->drop_temp= s->out;
  344. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  345. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  346. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  347. return 0;
  348. }
  349. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  350. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  351. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  352. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  353. if (!s->in_convert || !s->out_convert)
  354. return AVERROR(ENOMEM);
  355. s->postin= s->in;
  356. s->preout= s->out;
  357. s->midbuf= s->in;
  358. if(s->channel_map){
  359. s->postin.ch_count=
  360. s->midbuf.ch_count= s->used_ch_count;
  361. if(s->resample)
  362. s->in_buffer.ch_count= s->used_ch_count;
  363. }
  364. if(!s->resample_first){
  365. s->midbuf.ch_count= s->out.ch_count;
  366. if(s->resample)
  367. s->in_buffer.ch_count = s->out.ch_count;
  368. }
  369. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  370. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  371. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  372. if(s->resample){
  373. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  374. }
  375. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  376. return ret;
  377. if(s->rematrix || s->dither.method)
  378. return swri_rematrix_init(s);
  379. return 0;
  380. }
  381. int swri_realloc_audio(AudioData *a, int count){
  382. int i, countb;
  383. AudioData old;
  384. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  385. return AVERROR(EINVAL);
  386. if(a->count >= count)
  387. return 0;
  388. count*=2;
  389. countb= FFALIGN(count*a->bps, ALIGN);
  390. old= *a;
  391. av_assert0(a->bps);
  392. av_assert0(a->ch_count);
  393. a->data= av_mallocz(countb*a->ch_count);
  394. if(!a->data)
  395. return AVERROR(ENOMEM);
  396. for(i=0; i<a->ch_count; i++){
  397. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  398. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  399. }
  400. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  401. av_free(old.data);
  402. a->count= count;
  403. return 1;
  404. }
  405. static void copy(AudioData *out, AudioData *in,
  406. int count){
  407. av_assert0(out->planar == in->planar);
  408. av_assert0(out->bps == in->bps);
  409. av_assert0(out->ch_count == in->ch_count);
  410. if(out->planar){
  411. int ch;
  412. for(ch=0; ch<out->ch_count; ch++)
  413. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  414. }else
  415. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  416. }
  417. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  418. int i;
  419. if(!in_arg){
  420. memset(out->ch, 0, sizeof(out->ch));
  421. }else if(out->planar){
  422. for(i=0; i<out->ch_count; i++)
  423. out->ch[i]= in_arg[i];
  424. }else{
  425. for(i=0; i<out->ch_count; i++)
  426. out->ch[i]= in_arg[0] + i*out->bps;
  427. }
  428. }
  429. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  430. int i;
  431. if(out->planar){
  432. for(i=0; i<out->ch_count; i++)
  433. in_arg[i]= out->ch[i];
  434. }else{
  435. in_arg[0]= out->ch[0];
  436. }
  437. }
  438. /**
  439. *
  440. * out may be equal in.
  441. */
  442. static void buf_set(AudioData *out, AudioData *in, int count){
  443. int ch;
  444. if(in->planar){
  445. for(ch=0; ch<out->ch_count; ch++)
  446. out->ch[ch]= in->ch[ch] + count*out->bps;
  447. }else{
  448. for(ch=out->ch_count-1; ch>=0; ch--)
  449. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  450. }
  451. }
  452. /**
  453. *
  454. * @return number of samples output per channel
  455. */
  456. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  457. const AudioData * in_param, int in_count){
  458. AudioData in, out, tmp;
  459. int ret_sum=0;
  460. int border=0;
  461. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  462. av_assert1(s->in_buffer.planar == in_param->planar);
  463. av_assert1(s->in_buffer.fmt == in_param->fmt);
  464. tmp=out=*out_param;
  465. in = *in_param;
  466. do{
  467. int ret, size, consumed;
  468. if(!s->resample_in_constraint && s->in_buffer_count){
  469. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  470. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  471. out_count -= ret;
  472. ret_sum += ret;
  473. buf_set(&out, &out, ret);
  474. s->in_buffer_count -= consumed;
  475. s->in_buffer_index += consumed;
  476. if(!in_count)
  477. break;
  478. if(s->in_buffer_count <= border){
  479. buf_set(&in, &in, -s->in_buffer_count);
  480. in_count += s->in_buffer_count;
  481. s->in_buffer_count=0;
  482. s->in_buffer_index=0;
  483. border = 0;
  484. }
  485. }
  486. if((s->flushed || in_count) && !s->in_buffer_count){
  487. s->in_buffer_index=0;
  488. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  489. out_count -= ret;
  490. ret_sum += ret;
  491. buf_set(&out, &out, ret);
  492. in_count -= consumed;
  493. buf_set(&in, &in, consumed);
  494. }
  495. //TODO is this check sane considering the advanced copy avoidance below
  496. size= s->in_buffer_index + s->in_buffer_count + in_count;
  497. if( size > s->in_buffer.count
  498. && s->in_buffer_count + in_count <= s->in_buffer_index){
  499. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  500. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  501. s->in_buffer_index=0;
  502. }else
  503. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  504. return ret;
  505. if(in_count){
  506. int count= in_count;
  507. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  508. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  509. copy(&tmp, &in, /*in_*/count);
  510. s->in_buffer_count += count;
  511. in_count -= count;
  512. border += count;
  513. buf_set(&in, &in, count);
  514. s->resample_in_constraint= 0;
  515. if(s->in_buffer_count != count || in_count)
  516. continue;
  517. }
  518. break;
  519. }while(1);
  520. s->resample_in_constraint= !!out_count;
  521. return ret_sum;
  522. }
  523. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  524. AudioData *in , int in_count){
  525. AudioData *postin, *midbuf, *preout;
  526. int ret/*, in_max*/;
  527. AudioData preout_tmp, midbuf_tmp;
  528. if(s->full_convert){
  529. av_assert0(!s->resample);
  530. swri_audio_convert(s->full_convert, out, in, in_count);
  531. return out_count;
  532. }
  533. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  534. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  535. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  536. return ret;
  537. if(s->resample_first){
  538. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  539. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  540. return ret;
  541. }else{
  542. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  543. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  544. return ret;
  545. }
  546. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  547. return ret;
  548. postin= &s->postin;
  549. midbuf_tmp= s->midbuf;
  550. midbuf= &midbuf_tmp;
  551. preout_tmp= s->preout;
  552. preout= &preout_tmp;
  553. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  554. postin= in;
  555. if(s->resample_first ? !s->resample : !s->rematrix)
  556. midbuf= postin;
  557. if(s->resample_first ? !s->rematrix : !s->resample)
  558. preout= midbuf;
  559. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  560. if(preout==in){
  561. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  562. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  563. copy(out, in, out_count);
  564. return out_count;
  565. }
  566. else if(preout==postin) preout= midbuf= postin= out;
  567. else if(preout==midbuf) preout= midbuf= out;
  568. else preout= out;
  569. }
  570. if(in != postin){
  571. swri_audio_convert(s->in_convert, postin, in, in_count);
  572. }
  573. if(s->resample_first){
  574. if(postin != midbuf)
  575. out_count= resample(s, midbuf, out_count, postin, in_count);
  576. if(midbuf != preout)
  577. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  578. }else{
  579. if(postin != midbuf)
  580. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  581. if(midbuf != preout)
  582. out_count= resample(s, preout, out_count, midbuf, in_count);
  583. }
  584. if(preout != out && out_count){
  585. AudioData *conv_src = preout;
  586. if(s->dither.method){
  587. int ch;
  588. int dither_count= FFMAX(out_count, 1<<16);
  589. if (preout == in) {
  590. conv_src = &s->dither.temp;
  591. if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
  592. return ret;
  593. }
  594. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  595. return ret;
  596. if(ret)
  597. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  598. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt);
  599. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  600. if(s->dither.noise_pos + out_count > s->dither.noise.count)
  601. s->dither.noise_pos = 0;
  602. if (s->dither.method < SWR_DITHER_NS){
  603. if (s->mix_2_1_simd) {
  604. int len1= out_count&~15;
  605. int off = len1 * preout->bps;
  606. if(len1)
  607. for(ch=0; ch<preout->ch_count; ch++)
  608. s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, len1);
  609. if(out_count != len1)
  610. for(ch=0; ch<preout->ch_count; ch++)
  611. s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  612. } else {
  613. for(ch=0; ch<preout->ch_count; ch++)
  614. s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
  615. }
  616. } else {
  617. switch(s->int_sample_fmt) {
  618. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
  619. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
  620. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
  621. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
  622. }
  623. }
  624. s->dither.noise_pos += out_count;
  625. }
  626. //FIXME packed doesnt need more than 1 chan here!
  627. swri_audio_convert(s->out_convert, out, conv_src, out_count);
  628. }
  629. return out_count;
  630. }
  631. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  632. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  633. AudioData * in= &s->in;
  634. AudioData *out= &s->out;
  635. while(s->drop_output > 0){
  636. int ret;
  637. uint8_t *tmp_arg[SWR_CH_MAX];
  638. #define MAX_DROP_STEP 16384
  639. if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
  640. return ret;
  641. reversefill_audiodata(&s->drop_temp, tmp_arg);
  642. s->drop_output *= -1; //FIXME find a less hackish solution
  643. ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  644. s->drop_output *= -1;
  645. in_count = 0;
  646. if(ret>0) {
  647. s->drop_output -= ret;
  648. if (!s->drop_output && !out_arg)
  649. return 0;
  650. continue;
  651. }
  652. if(s->drop_output || !out_arg)
  653. return 0;
  654. }
  655. if(!in_arg){
  656. if(s->resample){
  657. if (!s->flushed)
  658. s->resampler->flush(s);
  659. s->resample_in_constraint = 0;
  660. s->flushed = 1;
  661. }else if(!s->in_buffer_count){
  662. return 0;
  663. }
  664. }else
  665. fill_audiodata(in , (void*)in_arg);
  666. fill_audiodata(out, out_arg);
  667. if(s->resample){
  668. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  669. if(ret>0 && !s->drop_output)
  670. s->outpts += ret * (int64_t)s->in_sample_rate;
  671. return ret;
  672. }else{
  673. AudioData tmp= *in;
  674. int ret2=0;
  675. int ret, size;
  676. size = FFMIN(out_count, s->in_buffer_count);
  677. if(size){
  678. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  679. ret= swr_convert_internal(s, out, size, &tmp, size);
  680. if(ret<0)
  681. return ret;
  682. ret2= ret;
  683. s->in_buffer_count -= ret;
  684. s->in_buffer_index += ret;
  685. buf_set(out, out, ret);
  686. out_count -= ret;
  687. if(!s->in_buffer_count)
  688. s->in_buffer_index = 0;
  689. }
  690. if(in_count){
  691. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  692. if(in_count > out_count) { //FIXME move after swr_convert_internal
  693. if( size > s->in_buffer.count
  694. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  695. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  696. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  697. s->in_buffer_index=0;
  698. }else
  699. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  700. return ret;
  701. }
  702. if(out_count){
  703. size = FFMIN(in_count, out_count);
  704. ret= swr_convert_internal(s, out, size, in, size);
  705. if(ret<0)
  706. return ret;
  707. buf_set(in, in, ret);
  708. in_count -= ret;
  709. ret2 += ret;
  710. }
  711. if(in_count){
  712. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  713. copy(&tmp, in, in_count);
  714. s->in_buffer_count += in_count;
  715. }
  716. }
  717. if(ret2>0 && !s->drop_output)
  718. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  719. return ret2;
  720. }
  721. }
  722. int swr_drop_output(struct SwrContext *s, int count){
  723. s->drop_output += count;
  724. if(s->drop_output <= 0)
  725. return 0;
  726. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  727. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  728. }
  729. int swr_inject_silence(struct SwrContext *s, int count){
  730. int ret, i;
  731. uint8_t *tmp_arg[SWR_CH_MAX];
  732. if(count <= 0)
  733. return 0;
  734. #define MAX_SILENCE_STEP 16384
  735. while (count > MAX_SILENCE_STEP) {
  736. if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
  737. return ret;
  738. count -= MAX_SILENCE_STEP;
  739. }
  740. if((ret=swri_realloc_audio(&s->silence, count))<0)
  741. return ret;
  742. if(s->silence.planar) for(i=0; i<s->silence.ch_count; i++) {
  743. memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
  744. } else
  745. memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
  746. reversefill_audiodata(&s->silence, tmp_arg);
  747. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  748. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  749. return ret;
  750. }
  751. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  752. if (s->resampler && s->resample){
  753. return s->resampler->get_delay(s, base);
  754. }else{
  755. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  756. }
  757. }
  758. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  759. int ret;
  760. if (!s || compensation_distance < 0)
  761. return AVERROR(EINVAL);
  762. if (!compensation_distance && sample_delta)
  763. return AVERROR(EINVAL);
  764. if (!s->resample) {
  765. s->flags |= SWR_FLAG_RESAMPLE;
  766. ret = swr_init(s);
  767. if (ret < 0)
  768. return ret;
  769. }
  770. if (!s->resampler->set_compensation){
  771. return AVERROR(EINVAL);
  772. }else{
  773. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  774. }
  775. }
  776. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  777. if(pts == INT64_MIN)
  778. return s->outpts;
  779. if (s->firstpts == AV_NOPTS_VALUE)
  780. s->outpts = s->firstpts = pts;
  781. if(s->min_compensation >= FLT_MAX) {
  782. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  783. } else {
  784. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
  785. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  786. if(fabs(fdelta) > s->min_compensation) {
  787. if(s->outpts == s->firstpts || fabs(fdelta) > s->min_hard_compensation){
  788. int ret;
  789. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  790. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  791. if(ret<0){
  792. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  793. }
  794. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  795. int duration = s->out_sample_rate * s->soft_compensation_duration;
  796. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  797. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  798. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  799. swr_set_compensation(s, comp, duration);
  800. }
  801. }
  802. return s->outpts;
  803. }
  804. }