swscale_internal.h 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793
  1. /*
  2. * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef SWSCALE_SWSCALE_INTERNAL_H
  21. #define SWSCALE_SWSCALE_INTERNAL_H
  22. #include "config.h"
  23. #if HAVE_ALTIVEC_H
  24. #include <altivec.h>
  25. #endif
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/avutil.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/log.h"
  31. #include "libavutil/pixfmt.h"
  32. #include "libavutil/pixdesc.h"
  33. #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
  34. #define YUVRGB_TABLE_HEADROOM 256
  35. #define FAST_BGR2YV12 // use 7-bit instead of 15-bit coefficients
  36. #define MAX_FILTER_SIZE 256
  37. #define DITHER1XBPP
  38. #if HAVE_BIGENDIAN
  39. #define ALT32_CORR (-1)
  40. #else
  41. #define ALT32_CORR 1
  42. #endif
  43. #if ARCH_X86_64
  44. # define APCK_PTR2 8
  45. # define APCK_COEF 16
  46. # define APCK_SIZE 24
  47. #else
  48. # define APCK_PTR2 4
  49. # define APCK_COEF 8
  50. # define APCK_SIZE 16
  51. #endif
  52. struct SwsContext;
  53. typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
  54. int srcStride[], int srcSliceY, int srcSliceH,
  55. uint8_t *dst[], int dstStride[]);
  56. /**
  57. * Write one line of horizontally scaled data to planar output
  58. * without any additional vertical scaling (or point-scaling).
  59. *
  60. * @param src scaled source data, 15bit for 8-10bit output,
  61. * 19-bit for 16bit output (in int32_t)
  62. * @param dest pointer to the output plane. For >8bit
  63. * output, this is in uint16_t
  64. * @param dstW width of destination in pixels
  65. * @param dither ordered dither array of type int16_t and size 8
  66. * @param offset Dither offset
  67. */
  68. typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
  69. const uint8_t *dither, int offset);
  70. /**
  71. * Write one line of horizontally scaled data to planar output
  72. * with multi-point vertical scaling between input pixels.
  73. *
  74. * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  75. * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
  76. * 19-bit for 16bit output (in int32_t)
  77. * @param filterSize number of vertical input lines to scale
  78. * @param dest pointer to output plane. For >8bit
  79. * output, this is in uint16_t
  80. * @param dstW width of destination pixels
  81. * @param offset Dither offset
  82. */
  83. typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
  84. const int16_t **src, uint8_t *dest, int dstW,
  85. const uint8_t *dither, int offset);
  86. /**
  87. * Write one line of horizontally scaled chroma to interleaved output
  88. * with multi-point vertical scaling between input pixels.
  89. *
  90. * @param c SWS scaling context
  91. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  92. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  93. * 19-bit for 16bit output (in int32_t)
  94. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  95. * 19-bit for 16bit output (in int32_t)
  96. * @param chrFilterSize number of vertical chroma input lines to scale
  97. * @param dest pointer to the output plane. For >8bit
  98. * output, this is in uint16_t
  99. * @param dstW width of chroma planes
  100. */
  101. typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
  102. const int16_t *chrFilter,
  103. int chrFilterSize,
  104. const int16_t **chrUSrc,
  105. const int16_t **chrVSrc,
  106. uint8_t *dest, int dstW);
  107. /**
  108. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  109. * output without any additional vertical scaling (or point-scaling). Note
  110. * that this function may do chroma scaling, see the "uvalpha" argument.
  111. *
  112. * @param c SWS scaling context
  113. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  114. * 19-bit for 16bit output (in int32_t)
  115. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  116. * 19-bit for 16bit output (in int32_t)
  117. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  118. * 19-bit for 16bit output (in int32_t)
  119. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  120. * 19-bit for 16bit output (in int32_t)
  121. * @param dest pointer to the output plane. For 16bit output, this is
  122. * uint16_t
  123. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  124. * to write into dest[]
  125. * @param uvalpha chroma scaling coefficient for the second line of chroma
  126. * pixels, either 2048 or 0. If 0, one chroma input is used
  127. * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  128. * is set, it generates 1 output pixel). If 2048, two chroma
  129. * input pixels should be averaged for 2 output pixels (this
  130. * only happens if SWS_FLAG_FULL_CHR_INT is not set)
  131. * @param y vertical line number for this output. This does not need
  132. * to be used to calculate the offset in the destination,
  133. * but can be used to generate comfort noise using dithering
  134. * for some output formats.
  135. */
  136. typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
  137. const int16_t *chrUSrc[2],
  138. const int16_t *chrVSrc[2],
  139. const int16_t *alpSrc, uint8_t *dest,
  140. int dstW, int uvalpha, int y);
  141. /**
  142. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  143. * output by doing bilinear scaling between two input lines.
  144. *
  145. * @param c SWS scaling context
  146. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  147. * 19-bit for 16bit output (in int32_t)
  148. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  149. * 19-bit for 16bit output (in int32_t)
  150. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  151. * 19-bit for 16bit output (in int32_t)
  152. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  153. * 19-bit for 16bit output (in int32_t)
  154. * @param dest pointer to the output plane. For 16bit output, this is
  155. * uint16_t
  156. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  157. * to write into dest[]
  158. * @param yalpha luma/alpha scaling coefficients for the second input line.
  159. * The first line's coefficients can be calculated by using
  160. * 4096 - yalpha
  161. * @param uvalpha chroma scaling coefficient for the second input line. The
  162. * first line's coefficients can be calculated by using
  163. * 4096 - uvalpha
  164. * @param y vertical line number for this output. This does not need
  165. * to be used to calculate the offset in the destination,
  166. * but can be used to generate comfort noise using dithering
  167. * for some output formats.
  168. */
  169. typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
  170. const int16_t *chrUSrc[2],
  171. const int16_t *chrVSrc[2],
  172. const int16_t *alpSrc[2],
  173. uint8_t *dest,
  174. int dstW, int yalpha, int uvalpha, int y);
  175. /**
  176. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  177. * output by doing multi-point vertical scaling between input pixels.
  178. *
  179. * @param c SWS scaling context
  180. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  181. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  182. * 19-bit for 16bit output (in int32_t)
  183. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  184. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  185. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  186. * 19-bit for 16bit output (in int32_t)
  187. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  188. * 19-bit for 16bit output (in int32_t)
  189. * @param chrFilterSize number of vertical chroma input lines to scale
  190. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  191. * 19-bit for 16bit output (in int32_t)
  192. * @param dest pointer to the output plane. For 16bit output, this is
  193. * uint16_t
  194. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  195. * to write into dest[]
  196. * @param y vertical line number for this output. This does not need
  197. * to be used to calculate the offset in the destination,
  198. * but can be used to generate comfort noise using dithering
  199. * or some output formats.
  200. */
  201. typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  202. const int16_t **lumSrc, int lumFilterSize,
  203. const int16_t *chrFilter,
  204. const int16_t **chrUSrc,
  205. const int16_t **chrVSrc, int chrFilterSize,
  206. const int16_t **alpSrc, uint8_t *dest,
  207. int dstW, int y);
  208. /* This struct should be aligned on at least a 32-byte boundary. */
  209. typedef struct SwsContext {
  210. /**
  211. * info on struct for av_log
  212. */
  213. const AVClass *av_class;
  214. /**
  215. * Note that src, dst, srcStride, dstStride will be copied in the
  216. * sws_scale() wrapper so they can be freely modified here.
  217. */
  218. SwsFunc swScale;
  219. int srcW; ///< Width of source luma/alpha planes.
  220. int srcH; ///< Height of source luma/alpha planes.
  221. int dstH; ///< Height of destination luma/alpha planes.
  222. int chrSrcW; ///< Width of source chroma planes.
  223. int chrSrcH; ///< Height of source chroma planes.
  224. int chrDstW; ///< Width of destination chroma planes.
  225. int chrDstH; ///< Height of destination chroma planes.
  226. int lumXInc, chrXInc;
  227. int lumYInc, chrYInc;
  228. enum AVPixelFormat dstFormat; ///< Destination pixel format.
  229. enum AVPixelFormat srcFormat; ///< Source pixel format.
  230. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
  231. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
  232. int dstBpc, srcBpc;
  233. int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
  234. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
  235. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
  236. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
  237. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
  238. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
  239. double param[2]; ///< Input parameters for scaling algorithms that need them.
  240. uint32_t pal_yuv[256];
  241. uint32_t pal_rgb[256];
  242. /**
  243. * @name Scaled horizontal lines ring buffer.
  244. * The horizontal scaler keeps just enough scaled lines in a ring buffer
  245. * so they may be passed to the vertical scaler. The pointers to the
  246. * allocated buffers for each line are duplicated in sequence in the ring
  247. * buffer to simplify indexing and avoid wrapping around between lines
  248. * inside the vertical scaler code. The wrapping is done before the
  249. * vertical scaler is called.
  250. */
  251. //@{
  252. int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
  253. int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  254. int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  255. int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
  256. int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
  257. int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
  258. int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
  259. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
  260. int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
  261. int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
  262. //@}
  263. uint8_t *formatConvBuffer;
  264. /**
  265. * @name Horizontal and vertical filters.
  266. * To better understand the following fields, here is a pseudo-code of
  267. * their usage in filtering a horizontal line:
  268. * @code
  269. * for (i = 0; i < width; i++) {
  270. * dst[i] = 0;
  271. * for (j = 0; j < filterSize; j++)
  272. * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
  273. * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
  274. * }
  275. * @endcode
  276. */
  277. //@{
  278. int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
  279. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
  280. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
  281. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
  282. int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
  283. int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
  284. int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
  285. int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
  286. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
  287. int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
  288. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
  289. int vChrFilterSize; ///< Vertical filter size for chroma pixels.
  290. //@}
  291. int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
  292. int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
  293. uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
  294. uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
  295. int canMMXEXTBeUsed;
  296. int dstY; ///< Last destination vertical line output from last slice.
  297. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
  298. void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
  299. uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
  300. uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
  301. int table_gV[256 + 2*YUVRGB_TABLE_HEADROOM];
  302. uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
  303. //Colorspace stuff
  304. int contrast, brightness, saturation; // for sws_getColorspaceDetails
  305. int srcColorspaceTable[4];
  306. int dstColorspaceTable[4];
  307. int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
  308. int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
  309. int src0Alpha;
  310. int dst0Alpha;
  311. int yuv2rgb_y_offset;
  312. int yuv2rgb_y_coeff;
  313. int yuv2rgb_v2r_coeff;
  314. int yuv2rgb_v2g_coeff;
  315. int yuv2rgb_u2g_coeff;
  316. int yuv2rgb_u2b_coeff;
  317. #define RED_DITHER "0*8"
  318. #define GREEN_DITHER "1*8"
  319. #define BLUE_DITHER "2*8"
  320. #define Y_COEFF "3*8"
  321. #define VR_COEFF "4*8"
  322. #define UB_COEFF "5*8"
  323. #define VG_COEFF "6*8"
  324. #define UG_COEFF "7*8"
  325. #define Y_OFFSET "8*8"
  326. #define U_OFFSET "9*8"
  327. #define V_OFFSET "10*8"
  328. #define LUM_MMX_FILTER_OFFSET "11*8"
  329. #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
  330. #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
  331. #define ESP_OFFSET "11*8+4*4*256*2+8"
  332. #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
  333. #define U_TEMP "11*8+4*4*256*2+24"
  334. #define V_TEMP "11*8+4*4*256*2+32"
  335. #define Y_TEMP "11*8+4*4*256*2+40"
  336. #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
  337. #define UV_OFF_PX "11*8+4*4*256*3+48"
  338. #define UV_OFF_BYTE "11*8+4*4*256*3+56"
  339. #define DITHER16 "11*8+4*4*256*3+64"
  340. #define DITHER32 "11*8+4*4*256*3+80"
  341. DECLARE_ALIGNED(8, uint64_t, redDither);
  342. DECLARE_ALIGNED(8, uint64_t, greenDither);
  343. DECLARE_ALIGNED(8, uint64_t, blueDither);
  344. DECLARE_ALIGNED(8, uint64_t, yCoeff);
  345. DECLARE_ALIGNED(8, uint64_t, vrCoeff);
  346. DECLARE_ALIGNED(8, uint64_t, ubCoeff);
  347. DECLARE_ALIGNED(8, uint64_t, vgCoeff);
  348. DECLARE_ALIGNED(8, uint64_t, ugCoeff);
  349. DECLARE_ALIGNED(8, uint64_t, yOffset);
  350. DECLARE_ALIGNED(8, uint64_t, uOffset);
  351. DECLARE_ALIGNED(8, uint64_t, vOffset);
  352. int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
  353. int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
  354. int dstW; ///< Width of destination luma/alpha planes.
  355. DECLARE_ALIGNED(8, uint64_t, esp);
  356. DECLARE_ALIGNED(8, uint64_t, vRounder);
  357. DECLARE_ALIGNED(8, uint64_t, u_temp);
  358. DECLARE_ALIGNED(8, uint64_t, v_temp);
  359. DECLARE_ALIGNED(8, uint64_t, y_temp);
  360. int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
  361. // alignment of these values is not necessary, but merely here
  362. // to maintain the same offset across x8632 and x86-64. Once we
  363. // use proper offset macros in the asm, they can be removed.
  364. DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
  365. DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
  366. DECLARE_ALIGNED(8, uint16_t, dither16)[8];
  367. DECLARE_ALIGNED(8, uint32_t, dither32)[8];
  368. const uint8_t *chrDither8, *lumDither8;
  369. #if HAVE_ALTIVEC
  370. vector signed short CY;
  371. vector signed short CRV;
  372. vector signed short CBU;
  373. vector signed short CGU;
  374. vector signed short CGV;
  375. vector signed short OY;
  376. vector unsigned short CSHIFT;
  377. vector signed short *vYCoeffsBank, *vCCoeffsBank;
  378. #endif
  379. #if ARCH_BFIN
  380. DECLARE_ALIGNED(4, uint32_t, oy);
  381. DECLARE_ALIGNED(4, uint32_t, oc);
  382. DECLARE_ALIGNED(4, uint32_t, zero);
  383. DECLARE_ALIGNED(4, uint32_t, cy);
  384. DECLARE_ALIGNED(4, uint32_t, crv);
  385. DECLARE_ALIGNED(4, uint32_t, rmask);
  386. DECLARE_ALIGNED(4, uint32_t, cbu);
  387. DECLARE_ALIGNED(4, uint32_t, bmask);
  388. DECLARE_ALIGNED(4, uint32_t, cgu);
  389. DECLARE_ALIGNED(4, uint32_t, cgv);
  390. DECLARE_ALIGNED(4, uint32_t, gmask);
  391. #endif
  392. #if HAVE_VIS
  393. DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
  394. #endif
  395. int use_mmx_vfilter;
  396. /* function pointers for swScale() */
  397. yuv2planar1_fn yuv2plane1;
  398. yuv2planarX_fn yuv2planeX;
  399. yuv2interleavedX_fn yuv2nv12cX;
  400. yuv2packed1_fn yuv2packed1;
  401. yuv2packed2_fn yuv2packed2;
  402. yuv2packedX_fn yuv2packedX;
  403. /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
  404. void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  405. int width, uint32_t *pal);
  406. /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
  407. void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  408. int width, uint32_t *pal);
  409. /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
  410. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
  411. const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
  412. int width, uint32_t *pal);
  413. /**
  414. * Functions to read planar input, such as planar RGB, and convert
  415. * internally to Y/UV.
  416. */
  417. /** @{ */
  418. void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
  419. void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
  420. int width);
  421. /** @} */
  422. /**
  423. * Scale one horizontal line of input data using a bilinear filter
  424. * to produce one line of output data. Compared to SwsContext->hScale(),
  425. * please take note of the following caveats when using these:
  426. * - Scaling is done using only 7bit instead of 14bit coefficients.
  427. * - You can use no more than 5 input pixels to produce 4 output
  428. * pixels. Therefore, this filter should not be used for downscaling
  429. * by more than ~20% in width (because that equals more than 5/4th
  430. * downscaling and thus more than 5 pixels input per 4 pixels output).
  431. * - In general, bilinear filters create artifacts during downscaling
  432. * (even when <20%), because one output pixel will span more than one
  433. * input pixel, and thus some pixels will need edges of both neighbor
  434. * pixels to interpolate the output pixel. Since you can use at most
  435. * two input pixels per output pixel in bilinear scaling, this is
  436. * impossible and thus downscaling by any size will create artifacts.
  437. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
  438. * in SwsContext->flags.
  439. */
  440. /** @{ */
  441. void (*hyscale_fast)(struct SwsContext *c,
  442. int16_t *dst, int dstWidth,
  443. const uint8_t *src, int srcW, int xInc);
  444. void (*hcscale_fast)(struct SwsContext *c,
  445. int16_t *dst1, int16_t *dst2, int dstWidth,
  446. const uint8_t *src1, const uint8_t *src2,
  447. int srcW, int xInc);
  448. /** @} */
  449. /**
  450. * Scale one horizontal line of input data using a filter over the input
  451. * lines, to produce one (differently sized) line of output data.
  452. *
  453. * @param dst pointer to destination buffer for horizontally scaled
  454. * data. If the number of bits per component of one
  455. * destination pixel (SwsContext->dstBpc) is <= 10, data
  456. * will be 15bpc in 16bits (int16_t) width. Else (i.e.
  457. * SwsContext->dstBpc == 16), data will be 19bpc in
  458. * 32bits (int32_t) width.
  459. * @param dstW width of destination image
  460. * @param src pointer to source data to be scaled. If the number of
  461. * bits per component of a source pixel (SwsContext->srcBpc)
  462. * is 8, this is 8bpc in 8bits (uint8_t) width. Else
  463. * (i.e. SwsContext->dstBpc > 8), this is native depth
  464. * in 16bits (uint16_t) width. In other words, for 9-bit
  465. * YUV input, this is 9bpc, for 10-bit YUV input, this is
  466. * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
  467. * @param filter filter coefficients to be used per output pixel for
  468. * scaling. This contains 14bpp filtering coefficients.
  469. * Guaranteed to contain dstW * filterSize entries.
  470. * @param filterPos position of the first input pixel to be used for
  471. * each output pixel during scaling. Guaranteed to
  472. * contain dstW entries.
  473. * @param filterSize the number of input coefficients to be used (and
  474. * thus the number of input pixels to be used) for
  475. * creating a single output pixel. Is aligned to 4
  476. * (and input coefficients thus padded with zeroes)
  477. * to simplify creating SIMD code.
  478. */
  479. /** @{ */
  480. void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
  481. const uint8_t *src, const int16_t *filter,
  482. const int32_t *filterPos, int filterSize);
  483. void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
  484. const uint8_t *src, const int16_t *filter,
  485. const int32_t *filterPos, int filterSize);
  486. /** @} */
  487. /// Color range conversion function for luma plane if needed.
  488. void (*lumConvertRange)(int16_t *dst, int width);
  489. /// Color range conversion function for chroma planes if needed.
  490. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
  491. int needs_hcscale; ///< Set if there are chroma planes to be converted.
  492. } SwsContext;
  493. //FIXME check init (where 0)
  494. SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
  495. int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
  496. int fullRange, int brightness,
  497. int contrast, int saturation);
  498. void ff_yuv2rgb_init_tables_altivec(SwsContext *c, const int inv_table[4],
  499. int brightness, int contrast, int saturation);
  500. void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
  501. int lastInLumBuf, int lastInChrBuf);
  502. SwsFunc ff_yuv2rgb_init_mmx(SwsContext *c);
  503. SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
  504. SwsFunc ff_yuv2rgb_init_altivec(SwsContext *c);
  505. SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
  506. void ff_bfin_get_unscaled_swscale(SwsContext *c);
  507. #if FF_API_SWS_FORMAT_NAME
  508. /**
  509. * @deprecated Use av_get_pix_fmt_name() instead.
  510. */
  511. attribute_deprecated
  512. const char *sws_format_name(enum AVPixelFormat format);
  513. #endif
  514. static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
  515. {
  516. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  517. av_assert0(desc);
  518. return desc->comp[0].depth_minus1 == 15;
  519. }
  520. static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
  521. {
  522. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  523. av_assert0(desc);
  524. return desc->comp[0].depth_minus1 >= 8 && desc->comp[0].depth_minus1 <= 13;
  525. }
  526. #define isNBPS(x) is9_OR_10BPS(x)
  527. static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
  528. {
  529. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  530. av_assert0(desc);
  531. return desc->flags & PIX_FMT_BE;
  532. }
  533. static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
  534. {
  535. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  536. av_assert0(desc);
  537. return !(desc->flags & PIX_FMT_RGB) && desc->nb_components >= 2;
  538. }
  539. static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
  540. {
  541. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  542. av_assert0(desc);
  543. return ((desc->flags & PIX_FMT_PLANAR) && isYUV(pix_fmt));
  544. }
  545. static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
  546. {
  547. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  548. av_assert0(desc);
  549. return (desc->flags & PIX_FMT_RGB);
  550. }
  551. #if 0 // FIXME
  552. #define isGray(x) \
  553. (!(av_pix_fmt_desc_get(x)->flags & PIX_FMT_PAL) && \
  554. av_pix_fmt_desc_get(x)->nb_components <= 2)
  555. #else
  556. #define isGray(x) \
  557. ((x) == AV_PIX_FMT_GRAY8 || \
  558. (x) == AV_PIX_FMT_Y400A || \
  559. (x) == AV_PIX_FMT_GRAY16BE || \
  560. (x) == AV_PIX_FMT_GRAY16LE)
  561. #endif
  562. #define isRGBinInt(x) \
  563. ( \
  564. (x) == AV_PIX_FMT_RGB48BE || \
  565. (x) == AV_PIX_FMT_RGB48LE || \
  566. (x) == AV_PIX_FMT_RGBA64BE || \
  567. (x) == AV_PIX_FMT_RGBA64LE || \
  568. (x) == AV_PIX_FMT_RGB32 || \
  569. (x) == AV_PIX_FMT_RGB32_1 || \
  570. (x) == AV_PIX_FMT_RGB24 || \
  571. (x) == AV_PIX_FMT_RGB565BE || \
  572. (x) == AV_PIX_FMT_RGB565LE || \
  573. (x) == AV_PIX_FMT_RGB555BE || \
  574. (x) == AV_PIX_FMT_RGB555LE || \
  575. (x) == AV_PIX_FMT_RGB444BE || \
  576. (x) == AV_PIX_FMT_RGB444LE || \
  577. (x) == AV_PIX_FMT_RGB8 || \
  578. (x) == AV_PIX_FMT_RGB4 || \
  579. (x) == AV_PIX_FMT_RGB4_BYTE || \
  580. (x) == AV_PIX_FMT_MONOBLACK || \
  581. (x) == AV_PIX_FMT_MONOWHITE \
  582. )
  583. #define isBGRinInt(x) \
  584. ( \
  585. (x) == AV_PIX_FMT_BGR48BE || \
  586. (x) == AV_PIX_FMT_BGR48LE || \
  587. (x) == AV_PIX_FMT_BGRA64BE || \
  588. (x) == AV_PIX_FMT_BGRA64LE || \
  589. (x) == AV_PIX_FMT_BGR32 || \
  590. (x) == AV_PIX_FMT_BGR32_1 || \
  591. (x) == AV_PIX_FMT_BGR24 || \
  592. (x) == AV_PIX_FMT_BGR565BE || \
  593. (x) == AV_PIX_FMT_BGR565LE || \
  594. (x) == AV_PIX_FMT_BGR555BE || \
  595. (x) == AV_PIX_FMT_BGR555LE || \
  596. (x) == AV_PIX_FMT_BGR444BE || \
  597. (x) == AV_PIX_FMT_BGR444LE || \
  598. (x) == AV_PIX_FMT_BGR8 || \
  599. (x) == AV_PIX_FMT_BGR4 || \
  600. (x) == AV_PIX_FMT_BGR4_BYTE || \
  601. (x) == AV_PIX_FMT_MONOBLACK || \
  602. (x) == AV_PIX_FMT_MONOWHITE \
  603. )
  604. #define isRGBinBytes(x) ( \
  605. (x) == AV_PIX_FMT_RGB48BE \
  606. || (x) == AV_PIX_FMT_RGB48LE \
  607. || (x) == AV_PIX_FMT_RGBA64BE \
  608. || (x) == AV_PIX_FMT_RGBA64LE \
  609. || (x) == AV_PIX_FMT_RGBA \
  610. || (x) == AV_PIX_FMT_ARGB \
  611. || (x) == AV_PIX_FMT_RGB24 \
  612. )
  613. #define isBGRinBytes(x) ( \
  614. (x) == AV_PIX_FMT_BGR48BE \
  615. || (x) == AV_PIX_FMT_BGR48LE \
  616. || (x) == AV_PIX_FMT_BGRA64BE \
  617. || (x) == AV_PIX_FMT_BGRA64LE \
  618. || (x) == AV_PIX_FMT_BGRA \
  619. || (x) == AV_PIX_FMT_ABGR \
  620. || (x) == AV_PIX_FMT_BGR24 \
  621. )
  622. #define isAnyRGB(x) \
  623. ( \
  624. isRGBinInt(x) || \
  625. isBGRinInt(x) || \
  626. (x)==AV_PIX_FMT_GBR24P \
  627. )
  628. static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
  629. {
  630. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  631. av_assert0(desc);
  632. return desc->nb_components == 2 || desc->nb_components == 4;
  633. }
  634. #if 1
  635. #define isPacked(x) ( \
  636. (x)==AV_PIX_FMT_PAL8 \
  637. || (x)==AV_PIX_FMT_YUYV422 \
  638. || (x)==AV_PIX_FMT_UYVY422 \
  639. || (x)==AV_PIX_FMT_Y400A \
  640. || isRGBinInt(x) \
  641. || isBGRinInt(x) \
  642. )
  643. #else
  644. static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
  645. {
  646. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  647. av_assert0(desc);
  648. return ((desc->nb_components >= 2 && !(desc->flags & PIX_FMT_PLANAR)) ||
  649. pix_fmt == AV_PIX_FMT_PAL8);
  650. }
  651. #endif
  652. static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
  653. {
  654. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  655. av_assert0(desc);
  656. return (desc->nb_components >= 2 && (desc->flags & PIX_FMT_PLANAR));
  657. }
  658. static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
  659. {
  660. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  661. av_assert0(desc);
  662. return ((desc->flags & (PIX_FMT_PLANAR | PIX_FMT_RGB)) == PIX_FMT_RGB);
  663. }
  664. static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
  665. {
  666. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  667. av_assert0(desc);
  668. return ((desc->flags & (PIX_FMT_PLANAR | PIX_FMT_RGB)) ==
  669. (PIX_FMT_PLANAR | PIX_FMT_RGB));
  670. }
  671. static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
  672. {
  673. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  674. av_assert0(desc);
  675. return (desc->flags & PIX_FMT_PAL) || (desc->flags & PIX_FMT_PSEUDOPAL);
  676. }
  677. extern const uint64_t ff_dither4[2];
  678. extern const uint64_t ff_dither8[2];
  679. extern const uint8_t dithers[8][8][8];
  680. extern const uint16_t dither_scale[15][16];
  681. extern const AVClass sws_context_class;
  682. /**
  683. * Set c->swScale to an unscaled converter if one exists for the specific
  684. * source and destination formats, bit depths, flags, etc.
  685. */
  686. void ff_get_unscaled_swscale(SwsContext *c);
  687. void ff_swscale_get_unscaled_altivec(SwsContext *c);
  688. /**
  689. * Return function pointer to fastest main scaler path function depending
  690. * on architecture and available optimizations.
  691. */
  692. SwsFunc ff_getSwsFunc(SwsContext *c);
  693. void ff_sws_init_input_funcs(SwsContext *c);
  694. void ff_sws_init_output_funcs(SwsContext *c,
  695. yuv2planar1_fn *yuv2plane1,
  696. yuv2planarX_fn *yuv2planeX,
  697. yuv2interleavedX_fn *yuv2nv12cX,
  698. yuv2packed1_fn *yuv2packed1,
  699. yuv2packed2_fn *yuv2packed2,
  700. yuv2packedX_fn *yuv2packedX);
  701. void ff_sws_init_swScale_altivec(SwsContext *c);
  702. void ff_sws_init_swScale_mmx(SwsContext *c);
  703. static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
  704. int alpha, int bits, const int big_endian)
  705. {
  706. int i, j;
  707. uint8_t *ptr = plane + stride * y;
  708. int v = alpha ? 0xFFFF>>(15-bits) : (1<<bits);
  709. for (i = 0; i < height; i++) {
  710. #define FILL(wfunc) \
  711. for (j = 0; j < width; j++) {\
  712. wfunc(ptr+2*j, v);\
  713. }
  714. if (big_endian) {
  715. FILL(AV_WB16);
  716. } else {
  717. FILL(AV_WL16);
  718. }
  719. ptr += stride;
  720. }
  721. }
  722. #endif /* SWSCALE_SWSCALE_INTERNAL_H */