scale.asm 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. ;******************************************************************************
  2. ;* x86-optimized horizontal line scaling functions
  3. ;* Copyright (c) 2011 Ronald S. Bultje <rsbultje@gmail.com>
  4. ;*
  5. ;* This file is part of Libav.
  6. ;*
  7. ;* Libav is free software; you can redistribute it and/or
  8. ;* modify it under the terms of the GNU Lesser General Public
  9. ;* License as published by the Free Software Foundation; either
  10. ;* version 2.1 of the License, or (at your option) any later version.
  11. ;*
  12. ;* Libav is distributed in the hope that it will be useful,
  13. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. ;* Lesser General Public License for more details.
  16. ;*
  17. ;* You should have received a copy of the GNU Lesser General Public
  18. ;* License along with Libav; if not, write to the Free Software
  19. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. ;******************************************************************************
  21. %include "x86inc.asm"
  22. %include "x86util.asm"
  23. SECTION_RODATA
  24. max_19bit_int: times 4 dd 0x7ffff
  25. max_19bit_flt: times 4 dd 524287.0
  26. minshort: times 8 dw 0x8000
  27. unicoeff: times 4 dd 0x20000000
  28. SECTION .text
  29. ;-----------------------------------------------------------------------------
  30. ; horizontal line scaling
  31. ;
  32. ; void hscale<source_width>to<intermediate_nbits>_<filterSize>_<opt>
  33. ; (SwsContext *c, int{16,32}_t *dst,
  34. ; int dstW, const uint{8,16}_t *src,
  35. ; const int16_t *filter,
  36. ; const int32_t *filterPos, int filterSize);
  37. ;
  38. ; Scale one horizontal line. Input is either 8-bits width or 16-bits width
  39. ; ($source_width can be either 8, 9, 10 or 16, difference is whether we have to
  40. ; downscale before multiplying). Filter is 14-bits. Output is either 15bits
  41. ; (in int16_t) or 19bits (in int32_t), as given in $intermediate_nbits. Each
  42. ; output pixel is generated from $filterSize input pixels, the position of
  43. ; the first pixel is given in filterPos[nOutputPixel].
  44. ;-----------------------------------------------------------------------------
  45. ; SCALE_FUNC source_width, intermediate_nbits, filtersize, filtersuffix, n_args, n_xmm
  46. %macro SCALE_FUNC 6
  47. %ifnidn %3, X
  48. cglobal hscale%1to%2_%4, %5, 7, %6, pos0, dst, w, src, filter, fltpos, pos1
  49. %else
  50. cglobal hscale%1to%2_%4, %5, 10, %6, pos0, dst, w, srcmem, filter, fltpos, fltsize
  51. %endif
  52. %if ARCH_X86_64
  53. movsxd wq, wd
  54. %define mov32 movsxd
  55. %else ; x86-32
  56. %define mov32 mov
  57. %endif ; x86-64
  58. %if %2 == 19
  59. %if mmsize == 8 ; mmx
  60. mova m2, [max_19bit_int]
  61. %elif cpuflag(sse4)
  62. mova m2, [max_19bit_int]
  63. %else ; ssse3/sse2
  64. mova m2, [max_19bit_flt]
  65. %endif ; mmx/sse2/ssse3/sse4
  66. %endif ; %2 == 19
  67. %if %1 == 16
  68. mova m6, [minshort]
  69. mova m7, [unicoeff]
  70. %elif %1 == 8
  71. pxor m3, m3
  72. %endif ; %1 == 8/16
  73. %if %1 == 8
  74. %define movlh movd
  75. %define movbh movh
  76. %define srcmul 1
  77. %else ; %1 == 9-16
  78. %define movlh movq
  79. %define movbh movu
  80. %define srcmul 2
  81. %endif ; %1 == 8/9-16
  82. %ifnidn %3, X
  83. ; setup loop
  84. %if %3 == 8
  85. shl wq, 1 ; this allows *16 (i.e. now *8) in lea instructions for the 8-tap filter
  86. %define wshr 1
  87. %else ; %3 == 4
  88. %define wshr 0
  89. %endif ; %3 == 8
  90. lea filterq, [filterq+wq*8]
  91. %if %2 == 15
  92. lea dstq, [dstq+wq*(2>>wshr)]
  93. %else ; %2 == 19
  94. lea dstq, [dstq+wq*(4>>wshr)]
  95. %endif ; %2 == 15/19
  96. lea fltposq, [fltposq+wq*(4>>wshr)]
  97. neg wq
  98. .loop:
  99. %if %3 == 4 ; filterSize == 4 scaling
  100. ; load 2x4 or 4x4 source pixels into m0/m1
  101. mov32 pos0q, dword [fltposq+wq*4+ 0] ; filterPos[0]
  102. mov32 pos1q, dword [fltposq+wq*4+ 4] ; filterPos[1]
  103. movlh m0, [srcq+pos0q*srcmul] ; src[filterPos[0] + {0,1,2,3}]
  104. %if mmsize == 8
  105. movlh m1, [srcq+pos1q*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  106. %else ; mmsize == 16
  107. %if %1 > 8
  108. movhps m0, [srcq+pos1q*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  109. %else ; %1 == 8
  110. movd m4, [srcq+pos1q*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  111. %endif
  112. mov32 pos0q, dword [fltposq+wq*4+ 8] ; filterPos[2]
  113. mov32 pos1q, dword [fltposq+wq*4+12] ; filterPos[3]
  114. movlh m1, [srcq+pos0q*srcmul] ; src[filterPos[2] + {0,1,2,3}]
  115. %if %1 > 8
  116. movhps m1, [srcq+pos1q*srcmul] ; src[filterPos[3] + {0,1,2,3}]
  117. %else ; %1 == 8
  118. movd m5, [srcq+pos1q*srcmul] ; src[filterPos[3] + {0,1,2,3}]
  119. punpckldq m0, m4
  120. punpckldq m1, m5
  121. %endif ; %1 == 8
  122. %endif ; mmsize == 8/16
  123. %if %1 == 8
  124. punpcklbw m0, m3 ; byte -> word
  125. punpcklbw m1, m3 ; byte -> word
  126. %endif ; %1 == 8
  127. ; multiply with filter coefficients
  128. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  129. ; add back 0x8000 * sum(coeffs) after the horizontal add
  130. psubw m0, m6
  131. psubw m1, m6
  132. %endif ; %1 == 16
  133. pmaddwd m0, [filterq+wq*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
  134. pmaddwd m1, [filterq+wq*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
  135. ; add up horizontally (4 srcpix * 4 coefficients -> 1 dstpix)
  136. %if mmsize == 8 ; mmx
  137. movq m4, m0
  138. punpckldq m0, m1
  139. punpckhdq m4, m1
  140. paddd m0, m4
  141. %elif notcpuflag(ssse3) ; sse2
  142. mova m4, m0
  143. shufps m0, m1, 10001000b
  144. shufps m4, m1, 11011101b
  145. paddd m0, m4
  146. %else ; ssse3/sse4
  147. phaddd m0, m1 ; filter[{ 0, 1, 2, 3}]*src[filterPos[0]+{0,1,2,3}],
  148. ; filter[{ 4, 5, 6, 7}]*src[filterPos[1]+{0,1,2,3}],
  149. ; filter[{ 8, 9,10,11}]*src[filterPos[2]+{0,1,2,3}],
  150. ; filter[{12,13,14,15}]*src[filterPos[3]+{0,1,2,3}]
  151. %endif ; mmx/sse2/ssse3/sse4
  152. %else ; %3 == 8, i.e. filterSize == 8 scaling
  153. ; load 2x8 or 4x8 source pixels into m0, m1, m4 and m5
  154. mov32 pos0q, dword [fltposq+wq*2+0] ; filterPos[0]
  155. mov32 pos1q, dword [fltposq+wq*2+4] ; filterPos[1]
  156. movbh m0, [srcq+ pos0q *srcmul] ; src[filterPos[0] + {0,1,2,3,4,5,6,7}]
  157. %if mmsize == 8
  158. movbh m1, [srcq+(pos0q+4)*srcmul] ; src[filterPos[0] + {4,5,6,7}]
  159. movbh m4, [srcq+ pos1q *srcmul] ; src[filterPos[1] + {0,1,2,3}]
  160. movbh m5, [srcq+(pos1q+4)*srcmul] ; src[filterPos[1] + {4,5,6,7}]
  161. %else ; mmsize == 16
  162. movbh m1, [srcq+ pos1q *srcmul] ; src[filterPos[1] + {0,1,2,3,4,5,6,7}]
  163. mov32 pos0q, dword [fltposq+wq*2+8] ; filterPos[2]
  164. mov32 pos1q, dword [fltposq+wq*2+12] ; filterPos[3]
  165. movbh m4, [srcq+ pos0q *srcmul] ; src[filterPos[2] + {0,1,2,3,4,5,6,7}]
  166. movbh m5, [srcq+ pos1q *srcmul] ; src[filterPos[3] + {0,1,2,3,4,5,6,7}]
  167. %endif ; mmsize == 8/16
  168. %if %1 == 8
  169. punpcklbw m0, m3 ; byte -> word
  170. punpcklbw m1, m3 ; byte -> word
  171. punpcklbw m4, m3 ; byte -> word
  172. punpcklbw m5, m3 ; byte -> word
  173. %endif ; %1 == 8
  174. ; multiply
  175. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  176. ; add back 0x8000 * sum(coeffs) after the horizontal add
  177. psubw m0, m6
  178. psubw m1, m6
  179. psubw m4, m6
  180. psubw m5, m6
  181. %endif ; %1 == 16
  182. pmaddwd m0, [filterq+wq*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
  183. pmaddwd m1, [filterq+wq*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
  184. pmaddwd m4, [filterq+wq*8+mmsize*2] ; *= filter[{16,17,..,22,23}]
  185. pmaddwd m5, [filterq+wq*8+mmsize*3] ; *= filter[{24,25,..,30,31}]
  186. ; add up horizontally (8 srcpix * 8 coefficients -> 1 dstpix)
  187. %if mmsize == 8
  188. paddd m0, m1
  189. paddd m4, m5
  190. movq m1, m0
  191. punpckldq m0, m4
  192. punpckhdq m1, m4
  193. paddd m0, m1
  194. %elif notcpuflag(ssse3) ; sse2
  195. %if %1 == 8
  196. %define mex m6
  197. %else
  198. %define mex m3
  199. %endif
  200. ; emulate horizontal add as transpose + vertical add
  201. mova mex, m0
  202. punpckldq m0, m1
  203. punpckhdq mex, m1
  204. paddd m0, mex
  205. mova m1, m4
  206. punpckldq m4, m5
  207. punpckhdq m1, m5
  208. paddd m4, m1
  209. mova m1, m0
  210. punpcklqdq m0, m4
  211. punpckhqdq m1, m4
  212. paddd m0, m1
  213. %else ; ssse3/sse4
  214. ; FIXME if we rearrange the filter in pairs of 4, we can
  215. ; load pixels likewise and use 2 x paddd + phaddd instead
  216. ; of 3 x phaddd here, faster on older cpus
  217. phaddd m0, m1
  218. phaddd m4, m5
  219. phaddd m0, m4 ; filter[{ 0, 1,..., 6, 7}]*src[filterPos[0]+{0,1,...,6,7}],
  220. ; filter[{ 8, 9,...,14,15}]*src[filterPos[1]+{0,1,...,6,7}],
  221. ; filter[{16,17,...,22,23}]*src[filterPos[2]+{0,1,...,6,7}],
  222. ; filter[{24,25,...,30,31}]*src[filterPos[3]+{0,1,...,6,7}]
  223. %endif ; mmx/sse2/ssse3/sse4
  224. %endif ; %3 == 4/8
  225. %else ; %3 == X, i.e. any filterSize scaling
  226. %ifidn %4, X4
  227. %define dlt 4
  228. %else ; %4 == X || %4 == X8
  229. %define dlt 0
  230. %endif ; %4 ==/!= X4
  231. %if ARCH_X86_64
  232. %define srcq r8
  233. %define pos1q r7
  234. %define srcendq r9
  235. movsxd fltsizeq, fltsized ; filterSize
  236. lea srcendq, [srcmemq+(fltsizeq-dlt)*srcmul] ; &src[filterSize&~4]
  237. %else ; x86-32
  238. %define srcq srcmemq
  239. %define pos1q dstq
  240. %define srcendq r6m
  241. lea pos0q, [srcmemq+(fltsizeq-dlt)*srcmul] ; &src[filterSize&~4]
  242. mov srcendq, pos0q
  243. %endif ; x86-32/64
  244. lea fltposq, [fltposq+wq*4]
  245. %if %2 == 15
  246. lea dstq, [dstq+wq*2]
  247. %else ; %2 == 19
  248. lea dstq, [dstq+wq*4]
  249. %endif ; %2 == 15/19
  250. movifnidn dstmp, dstq
  251. neg wq
  252. .loop:
  253. mov32 pos0q, dword [fltposq+wq*4+0] ; filterPos[0]
  254. mov32 pos1q, dword [fltposq+wq*4+4] ; filterPos[1]
  255. ; FIXME maybe do 4px/iteration on x86-64 (x86-32 wouldn't have enough regs)?
  256. pxor m4, m4
  257. pxor m5, m5
  258. mov srcq, srcmemmp
  259. .innerloop:
  260. ; load 2x4 (mmx) or 2x8 (sse) source pixels into m0/m1 -> m4/m5
  261. movbh m0, [srcq+ pos0q *srcmul] ; src[filterPos[0] + {0,1,2,3(,4,5,6,7)}]
  262. movbh m1, [srcq+(pos1q+dlt)*srcmul] ; src[filterPos[1] + {0,1,2,3(,4,5,6,7)}]
  263. %if %1 == 8
  264. punpcklbw m0, m3
  265. punpcklbw m1, m3
  266. %endif ; %1 == 8
  267. ; multiply
  268. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  269. ; add back 0x8000 * sum(coeffs) after the horizontal add
  270. psubw m0, m6
  271. psubw m1, m6
  272. %endif ; %1 == 16
  273. pmaddwd m0, [filterq] ; filter[{0,1,2,3(,4,5,6,7)}]
  274. pmaddwd m1, [filterq+(fltsizeq+dlt)*2]; filter[filtersize+{0,1,2,3(,4,5,6,7)}]
  275. paddd m4, m0
  276. paddd m5, m1
  277. add filterq, mmsize
  278. add srcq, srcmul*mmsize/2
  279. cmp srcq, srcendq ; while (src += 4) < &src[filterSize]
  280. jl .innerloop
  281. %ifidn %4, X4
  282. mov32 pos1q, dword [fltposq+wq*4+4] ; filterPos[1]
  283. movlh m0, [srcq+ pos0q *srcmul] ; split last 4 srcpx of dstpx[0]
  284. sub pos1q, fltsizeq ; and first 4 srcpx of dstpx[1]
  285. %if %1 > 8
  286. movhps m0, [srcq+(pos1q+dlt)*srcmul]
  287. %else ; %1 == 8
  288. movd m1, [srcq+(pos1q+dlt)*srcmul]
  289. punpckldq m0, m1
  290. %endif ; %1 == 8
  291. %if %1 == 8
  292. punpcklbw m0, m3
  293. %endif ; %1 == 8
  294. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  295. ; add back 0x8000 * sum(coeffs) after the horizontal add
  296. psubw m0, m6
  297. %endif ; %1 == 16
  298. pmaddwd m0, [filterq]
  299. %endif ; %4 == X4
  300. lea filterq, [filterq+(fltsizeq+dlt)*2]
  301. %if mmsize == 8 ; mmx
  302. movq m0, m4
  303. punpckldq m4, m5
  304. punpckhdq m0, m5
  305. paddd m0, m4
  306. %else ; mmsize == 16
  307. %if notcpuflag(ssse3) ; sse2
  308. mova m1, m4
  309. punpcklqdq m4, m5
  310. punpckhqdq m1, m5
  311. paddd m4, m1
  312. %else ; ssse3/sse4
  313. phaddd m4, m5
  314. %endif ; sse2/ssse3/sse4
  315. %ifidn %4, X4
  316. paddd m4, m0
  317. %endif ; %3 == X4
  318. %if notcpuflag(ssse3) ; sse2
  319. pshufd m4, m4, 11011000b
  320. movhlps m0, m4
  321. paddd m0, m4
  322. %else ; ssse3/sse4
  323. phaddd m4, m4
  324. SWAP 0, 4
  325. %endif ; sse2/ssse3/sse4
  326. %endif ; mmsize == 8/16
  327. %endif ; %3 ==/!= X
  328. %if %1 == 16 ; add 0x8000 * sum(coeffs), i.e. back from signed -> unsigned
  329. paddd m0, m7
  330. %endif ; %1 == 16
  331. ; clip, store
  332. psrad m0, 14 + %1 - %2
  333. %ifidn %3, X
  334. movifnidn dstq, dstmp
  335. %endif ; %3 == X
  336. %if %2 == 15
  337. packssdw m0, m0
  338. %ifnidn %3, X
  339. movh [dstq+wq*(2>>wshr)], m0
  340. %else ; %3 == X
  341. movd [dstq+wq*2], m0
  342. %endif ; %3 ==/!= X
  343. %else ; %2 == 19
  344. %if mmsize == 8
  345. PMINSD_MMX m0, m2, m4
  346. %elif cpuflag(sse4)
  347. pminsd m0, m2
  348. %else ; sse2/ssse3
  349. cvtdq2ps m0, m0
  350. minps m0, m2
  351. cvtps2dq m0, m0
  352. %endif ; mmx/sse2/ssse3/sse4
  353. %ifnidn %3, X
  354. mova [dstq+wq*(4>>wshr)], m0
  355. %else ; %3 == X
  356. movq [dstq+wq*4], m0
  357. %endif ; %3 ==/!= X
  358. %endif ; %2 == 15/19
  359. %ifnidn %3, X
  360. add wq, (mmsize<<wshr)/4 ; both 8tap and 4tap really only do 4 pixels (or for mmx: 2 pixels)
  361. ; per iteration. see "shl wq,1" above as for why we do this
  362. %else ; %3 == X
  363. add wq, 2
  364. %endif ; %3 ==/!= X
  365. jl .loop
  366. REP_RET
  367. %endmacro
  368. ; SCALE_FUNCS source_width, intermediate_nbits, n_xmm
  369. %macro SCALE_FUNCS 3
  370. SCALE_FUNC %1, %2, 4, 4, 6, %3
  371. SCALE_FUNC %1, %2, 8, 8, 6, %3
  372. %if mmsize == 8
  373. SCALE_FUNC %1, %2, X, X, 7, %3
  374. %else
  375. SCALE_FUNC %1, %2, X, X4, 7, %3
  376. SCALE_FUNC %1, %2, X, X8, 7, %3
  377. %endif
  378. %endmacro
  379. ; SCALE_FUNCS2 8_xmm_args, 9to10_xmm_args, 16_xmm_args
  380. %macro SCALE_FUNCS2 3
  381. %if notcpuflag(sse4)
  382. SCALE_FUNCS 8, 15, %1
  383. SCALE_FUNCS 9, 15, %2
  384. SCALE_FUNCS 10, 15, %2
  385. SCALE_FUNCS 12, 15, %2
  386. SCALE_FUNCS 14, 15, %2
  387. SCALE_FUNCS 16, 15, %3
  388. %endif ; !sse4
  389. SCALE_FUNCS 8, 19, %1
  390. SCALE_FUNCS 9, 19, %2
  391. SCALE_FUNCS 10, 19, %2
  392. SCALE_FUNCS 12, 19, %2
  393. SCALE_FUNCS 14, 19, %2
  394. SCALE_FUNCS 16, 19, %3
  395. %endmacro
  396. %if ARCH_X86_32
  397. INIT_MMX mmx
  398. SCALE_FUNCS2 0, 0, 0
  399. %endif
  400. INIT_XMM sse2
  401. SCALE_FUNCS2 6, 7, 8
  402. INIT_XMM ssse3
  403. SCALE_FUNCS2 6, 6, 8
  404. INIT_XMM sse4
  405. SCALE_FUNCS2 6, 6, 8