scale.asm 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815
  1. ;******************************************************************************
  2. ;* x86-optimized horizontal/vertical line scaling functions
  3. ;* Copyright (c) 2011 Ronald S. Bultje <rsbultje@gmail.com>
  4. ;* Kieran Kunhya <kieran@kunhya.com>
  5. ;*
  6. ;* This file is part of Libav.
  7. ;*
  8. ;* Libav is free software; you can redistribute it and/or
  9. ;* modify it under the terms of the GNU Lesser General Public
  10. ;* License as published by the Free Software Foundation; either
  11. ;* version 2.1 of the License, or (at your option) any later version.
  12. ;*
  13. ;* Libav is distributed in the hope that it will be useful,
  14. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. ;* Lesser General Public License for more details.
  17. ;*
  18. ;* You should have received a copy of the GNU Lesser General Public
  19. ;* License along with Libav; if not, write to the Free Software
  20. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. ;******************************************************************************
  22. %include "x86inc.asm"
  23. %include "x86util.asm"
  24. SECTION_RODATA
  25. max_19bit_int: times 4 dd 0x7ffff
  26. max_19bit_flt: times 4 dd 524287.0
  27. minshort: times 8 dw 0x8000
  28. unicoeff: times 4 dd 0x20000000
  29. yuv2yuvX_16_start: times 4 dd 0x4000 - 0x40000000
  30. yuv2yuvX_10_start: times 4 dd 0x10000
  31. yuv2yuvX_9_start: times 4 dd 0x20000
  32. yuv2yuvX_10_upper: times 8 dw 0x3ff
  33. yuv2yuvX_9_upper: times 8 dw 0x1ff
  34. pd_4: times 4 dd 4
  35. pd_4min0x40000:times 4 dd 4 - (0x40000)
  36. pw_16: times 8 dw 16
  37. pw_32: times 8 dw 32
  38. pw_512: times 8 dw 512
  39. pw_1024: times 8 dw 1024
  40. SECTION .text
  41. ;-----------------------------------------------------------------------------
  42. ; horizontal line scaling
  43. ;
  44. ; void hscale<source_width>to<intermediate_nbits>_<filterSize>_<opt>
  45. ; (SwsContext *c, int{16,32}_t *dst,
  46. ; int dstW, const uint{8,16}_t *src,
  47. ; const int16_t *filter,
  48. ; const int16_t *filterPos, int filterSize);
  49. ;
  50. ; Scale one horizontal line. Input is either 8-bits width or 16-bits width
  51. ; ($source_width can be either 8, 9, 10 or 16, difference is whether we have to
  52. ; downscale before multiplying). Filter is 14-bits. Output is either 15bits
  53. ; (in int16_t) or 19bits (in int32_t), as given in $intermediate_nbits. Each
  54. ; output pixel is generated from $filterSize input pixels, the position of
  55. ; the first pixel is given in filterPos[nOutputPixel].
  56. ;-----------------------------------------------------------------------------
  57. ; SCALE_FUNC source_width, intermediate_nbits, filtersize, filtersuffix, opt, n_args, n_xmm
  58. %macro SCALE_FUNC 7
  59. cglobal hscale%1to%2_%4_%5, %6, 7, %7
  60. %ifdef ARCH_X86_64
  61. movsxd r2, r2d
  62. %endif ; x86-64
  63. %if %2 == 19
  64. %if mmsize == 8 ; mmx
  65. mova m2, [max_19bit_int]
  66. %elifidn %5, sse4
  67. mova m2, [max_19bit_int]
  68. %else ; ssse3/sse2
  69. mova m2, [max_19bit_flt]
  70. %endif ; mmx/sse2/ssse3/sse4
  71. %endif ; %2 == 19
  72. %if %1 == 16
  73. mova m6, [minshort]
  74. mova m7, [unicoeff]
  75. %elif %1 == 8
  76. pxor m3, m3
  77. %endif ; %1 == 8/16
  78. %if %1 == 8
  79. %define movlh movd
  80. %define movbh movh
  81. %define srcmul 1
  82. %else ; %1 == 9-16
  83. %define movlh movq
  84. %define movbh movu
  85. %define srcmul 2
  86. %endif ; %1 == 8/9-16
  87. %ifnidn %3, X
  88. ; setup loop
  89. %if %3 == 8
  90. shl r2, 1 ; this allows *16 (i.e. now *8) in lea instructions for the 8-tap filter
  91. %define r2shr 1
  92. %else ; %3 == 4
  93. %define r2shr 0
  94. %endif ; %3 == 8
  95. lea r4, [r4+r2*8]
  96. %if %2 == 15
  97. lea r1, [r1+r2*(2>>r2shr)]
  98. %else ; %2 == 19
  99. lea r1, [r1+r2*(4>>r2shr)]
  100. %endif ; %2 == 15/19
  101. lea r5, [r5+r2*(2>>r2shr)]
  102. neg r2
  103. .loop:
  104. %if %3 == 4 ; filterSize == 4 scaling
  105. ; load 2x4 or 4x4 source pixels into m0/m1
  106. movsx r0, word [r5+r2*2+0] ; filterPos[0]
  107. movsx r6, word [r5+r2*2+2] ; filterPos[1]
  108. movlh m0, [r3+r0*srcmul] ; src[filterPos[0] + {0,1,2,3}]
  109. %if mmsize == 8
  110. movlh m1, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  111. %else ; mmsize == 16
  112. %if %1 > 8
  113. movhps m0, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  114. %else ; %1 == 8
  115. movd m4, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  116. %endif
  117. movsx r0, word [r5+r2*2+4] ; filterPos[2]
  118. movsx r6, word [r5+r2*2+6] ; filterPos[3]
  119. movlh m1, [r3+r0*srcmul] ; src[filterPos[2] + {0,1,2,3}]
  120. %if %1 > 8
  121. movhps m1, [r3+r6*srcmul] ; src[filterPos[3] + {0,1,2,3}]
  122. %else ; %1 == 8
  123. movd m5, [r3+r6*srcmul] ; src[filterPos[3] + {0,1,2,3}]
  124. punpckldq m0, m4
  125. punpckldq m1, m5
  126. %endif ; %1 == 8 && %5 <= ssse
  127. %endif ; mmsize == 8/16
  128. %if %1 == 8
  129. punpcklbw m0, m3 ; byte -> word
  130. punpcklbw m1, m3 ; byte -> word
  131. %endif ; %1 == 8
  132. ; multiply with filter coefficients
  133. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  134. ; add back 0x8000 * sum(coeffs) after the horizontal add
  135. psubw m0, m6
  136. psubw m1, m6
  137. %endif ; %1 == 16
  138. pmaddwd m0, [r4+r2*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
  139. pmaddwd m1, [r4+r2*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
  140. ; add up horizontally (4 srcpix * 4 coefficients -> 1 dstpix)
  141. %if mmsize == 8 ; mmx
  142. movq m4, m0
  143. punpckldq m0, m1
  144. punpckhdq m4, m1
  145. paddd m0, m4
  146. %elifidn %5, sse2
  147. mova m4, m0
  148. shufps m0, m1, 10001000b
  149. shufps m4, m1, 11011101b
  150. paddd m0, m4
  151. %else ; ssse3/sse4
  152. phaddd m0, m1 ; filter[{ 0, 1, 2, 3}]*src[filterPos[0]+{0,1,2,3}],
  153. ; filter[{ 4, 5, 6, 7}]*src[filterPos[1]+{0,1,2,3}],
  154. ; filter[{ 8, 9,10,11}]*src[filterPos[2]+{0,1,2,3}],
  155. ; filter[{12,13,14,15}]*src[filterPos[3]+{0,1,2,3}]
  156. %endif ; mmx/sse2/ssse3/sse4
  157. %else ; %3 == 8, i.e. filterSize == 8 scaling
  158. ; load 2x8 or 4x8 source pixels into m0, m1, m4 and m5
  159. movsx r0, word [r5+r2*1+0] ; filterPos[0]
  160. movsx r6, word [r5+r2*1+2] ; filterPos[1]
  161. movbh m0, [r3+ r0 *srcmul] ; src[filterPos[0] + {0,1,2,3,4,5,6,7}]
  162. %if mmsize == 8
  163. movbh m1, [r3+(r0+4)*srcmul] ; src[filterPos[0] + {4,5,6,7}]
  164. movbh m4, [r3+ r6 *srcmul] ; src[filterPos[1] + {0,1,2,3}]
  165. movbh m5, [r3+(r6+4)*srcmul] ; src[filterPos[1] + {4,5,6,7}]
  166. %else ; mmsize == 16
  167. movbh m1, [r3+ r6 *srcmul] ; src[filterPos[1] + {0,1,2,3,4,5,6,7}]
  168. movsx r0, word [r5+r2*1+4] ; filterPos[2]
  169. movsx r6, word [r5+r2*1+6] ; filterPos[3]
  170. movbh m4, [r3+ r0 *srcmul] ; src[filterPos[2] + {0,1,2,3,4,5,6,7}]
  171. movbh m5, [r3+ r6 *srcmul] ; src[filterPos[3] + {0,1,2,3,4,5,6,7}]
  172. %endif ; mmsize == 8/16
  173. %if %1 == 8
  174. punpcklbw m0, m3 ; byte -> word
  175. punpcklbw m1, m3 ; byte -> word
  176. punpcklbw m4, m3 ; byte -> word
  177. punpcklbw m5, m3 ; byte -> word
  178. %endif ; %1 == 8
  179. ; multiply
  180. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  181. ; add back 0x8000 * sum(coeffs) after the horizontal add
  182. psubw m0, m6
  183. psubw m1, m6
  184. psubw m4, m6
  185. psubw m5, m6
  186. %endif ; %1 == 16
  187. pmaddwd m0, [r4+r2*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
  188. pmaddwd m1, [r4+r2*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
  189. pmaddwd m4, [r4+r2*8+mmsize*2] ; *= filter[{16,17,..,22,23}]
  190. pmaddwd m5, [r4+r2*8+mmsize*3] ; *= filter[{24,25,..,30,31}]
  191. ; add up horizontally (8 srcpix * 8 coefficients -> 1 dstpix)
  192. %if mmsize == 8
  193. paddd m0, m1
  194. paddd m4, m5
  195. movq m1, m0
  196. punpckldq m0, m4
  197. punpckhdq m1, m4
  198. paddd m0, m1
  199. %elifidn %5, sse2
  200. %if %1 == 8
  201. %define mex m6
  202. %else
  203. %define mex m3
  204. %endif
  205. ; emulate horizontal add as transpose + vertical add
  206. mova mex, m0
  207. punpckldq m0, m1
  208. punpckhdq mex, m1
  209. paddd m0, mex
  210. mova m1, m4
  211. punpckldq m4, m5
  212. punpckhdq m1, m5
  213. paddd m4, m1
  214. mova m1, m0
  215. punpcklqdq m0, m4
  216. punpckhqdq m1, m4
  217. paddd m0, m1
  218. %else ; ssse3/sse4
  219. ; FIXME if we rearrange the filter in pairs of 4, we can
  220. ; load pixels likewise and use 2 x paddd + phaddd instead
  221. ; of 3 x phaddd here, faster on older cpus
  222. phaddd m0, m1
  223. phaddd m4, m5
  224. phaddd m0, m4 ; filter[{ 0, 1,..., 6, 7}]*src[filterPos[0]+{0,1,...,6,7}],
  225. ; filter[{ 8, 9,...,14,15}]*src[filterPos[1]+{0,1,...,6,7}],
  226. ; filter[{16,17,...,22,23}]*src[filterPos[2]+{0,1,...,6,7}],
  227. ; filter[{24,25,...,30,31}]*src[filterPos[3]+{0,1,...,6,7}]
  228. %endif ; mmx/sse2/ssse3/sse4
  229. %endif ; %3 == 4/8
  230. %else ; %3 == X, i.e. any filterSize scaling
  231. %ifidn %4, X4
  232. %define r6sub 4
  233. %else ; %4 == X || %4 == X8
  234. %define r6sub 0
  235. %endif ; %4 ==/!= X4
  236. %ifdef ARCH_X86_64
  237. push r12
  238. movsxd r6, r6d ; filterSize
  239. lea r12, [r3+(r6-r6sub)*srcmul] ; &src[filterSize&~4]
  240. %define src_reg r11
  241. %define r1x r10
  242. %define filter2 r12
  243. %else ; x86-32
  244. lea r0, [r3+(r6-r6sub)*srcmul] ; &src[filterSize&~4]
  245. mov r6m, r0
  246. %define src_reg r3
  247. %define r1x r1
  248. %define filter2 r6m
  249. %endif ; x86-32/64
  250. lea r5, [r5+r2*2]
  251. %if %2 == 15
  252. lea r1, [r1+r2*2]
  253. %else ; %2 == 19
  254. lea r1, [r1+r2*4]
  255. %endif ; %2 == 15/19
  256. movifnidn r1mp, r1
  257. neg r2
  258. .loop:
  259. movsx r0, word [r5+r2*2+0] ; filterPos[0]
  260. movsx r1x, word [r5+r2*2+2] ; filterPos[1]
  261. ; FIXME maybe do 4px/iteration on x86-64 (x86-32 wouldn't have enough regs)?
  262. pxor m4, m4
  263. pxor m5, m5
  264. mov src_reg, r3mp
  265. .innerloop:
  266. ; load 2x4 (mmx) or 2x8 (sse) source pixels into m0/m1 -> m4/m5
  267. movbh m0, [src_reg+r0 *srcmul] ; src[filterPos[0] + {0,1,2,3(,4,5,6,7)}]
  268. movbh m1, [src_reg+(r1x+r6sub)*srcmul] ; src[filterPos[1] + {0,1,2,3(,4,5,6,7)}]
  269. %if %1 == 8
  270. punpcklbw m0, m3
  271. punpcklbw m1, m3
  272. %endif ; %1 == 8
  273. ; multiply
  274. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  275. ; add back 0x8000 * sum(coeffs) after the horizontal add
  276. psubw m0, m6
  277. psubw m1, m6
  278. %endif ; %1 == 16
  279. pmaddwd m0, [r4 ] ; filter[{0,1,2,3(,4,5,6,7)}]
  280. pmaddwd m1, [r4+(r6+r6sub)*2] ; filter[filtersize+{0,1,2,3(,4,5,6,7)}]
  281. paddd m4, m0
  282. paddd m5, m1
  283. add r4, mmsize
  284. add src_reg, srcmul*mmsize/2
  285. cmp src_reg, filter2 ; while (src += 4) < &src[filterSize]
  286. jl .innerloop
  287. %ifidn %4, X4
  288. movsx r1x, word [r5+r2*2+2] ; filterPos[1]
  289. movlh m0, [src_reg+r0 *srcmul] ; split last 4 srcpx of dstpx[0]
  290. sub r1x, r6 ; and first 4 srcpx of dstpx[1]
  291. %if %1 > 8
  292. movhps m0, [src_reg+(r1x+r6sub)*srcmul]
  293. %else ; %1 == 8
  294. movd m1, [src_reg+(r1x+r6sub)*srcmul]
  295. punpckldq m0, m1
  296. %endif ; %1 == 8 && %5 <= ssse
  297. %if %1 == 8
  298. punpcklbw m0, m3
  299. %endif ; %1 == 8
  300. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  301. ; add back 0x8000 * sum(coeffs) after the horizontal add
  302. psubw m0, m6
  303. %endif ; %1 == 16
  304. pmaddwd m0, [r4]
  305. %endif ; %4 == X4
  306. lea r4, [r4+(r6+r6sub)*2]
  307. %if mmsize == 8 ; mmx
  308. movq m0, m4
  309. punpckldq m4, m5
  310. punpckhdq m0, m5
  311. paddd m0, m4
  312. %else ; mmsize == 16
  313. %ifidn %5, sse2
  314. mova m1, m4
  315. punpcklqdq m4, m5
  316. punpckhqdq m1, m5
  317. paddd m4, m1
  318. %else ; ssse3/sse4
  319. phaddd m4, m5
  320. %endif ; sse2/ssse3/sse4
  321. %ifidn %4, X4
  322. paddd m4, m0
  323. %endif ; %3 == X4
  324. %ifidn %5, sse2
  325. pshufd m4, m4, 11011000b
  326. movhlps m0, m4
  327. paddd m0, m4
  328. %else ; ssse3/sse4
  329. phaddd m4, m4
  330. SWAP 0, 4
  331. %endif ; sse2/ssse3/sse4
  332. %endif ; mmsize == 8/16
  333. %endif ; %3 ==/!= X
  334. %if %1 == 16 ; add 0x8000 * sum(coeffs), i.e. back from signed -> unsigned
  335. paddd m0, m7
  336. %endif ; %1 == 16
  337. ; clip, store
  338. psrad m0, 14 + %1 - %2
  339. %ifidn %3, X
  340. movifnidn r1, r1mp
  341. %endif ; %3 == X
  342. %if %2 == 15
  343. packssdw m0, m0
  344. %ifnidn %3, X
  345. movh [r1+r2*(2>>r2shr)], m0
  346. %else ; %3 == X
  347. movd [r1+r2*2], m0
  348. %endif ; %3 ==/!= X
  349. %else ; %2 == 19
  350. %if mmsize == 8
  351. PMINSD_MMX m0, m2, m4
  352. %elifidn %5, sse4
  353. pminsd m0, m2
  354. %else ; sse2/ssse3
  355. cvtdq2ps m0, m0
  356. minps m0, m2
  357. cvtps2dq m0, m0
  358. %endif ; mmx/sse2/ssse3/sse4
  359. %ifnidn %3, X
  360. mova [r1+r2*(4>>r2shr)], m0
  361. %else ; %3 == X
  362. movq [r1+r2*4], m0
  363. %endif ; %3 ==/!= X
  364. %endif ; %2 == 15/19
  365. %ifnidn %3, X
  366. add r2, (mmsize<<r2shr)/4 ; both 8tap and 4tap really only do 4 pixels (or for mmx: 2 pixels)
  367. ; per iteration. see "shl r2,1" above as for why we do this
  368. %else ; %3 == X
  369. add r2, 2
  370. %endif ; %3 ==/!= X
  371. jl .loop
  372. %ifnidn %3, X
  373. REP_RET
  374. %else ; %3 == X
  375. %ifdef ARCH_X86_64
  376. pop r12
  377. RET
  378. %else ; x86-32
  379. REP_RET
  380. %endif ; x86-32/64
  381. %endif ; %3 ==/!= X
  382. %endmacro
  383. ; SCALE_FUNCS source_width, intermediate_nbits, opt, n_xmm
  384. %macro SCALE_FUNCS 4
  385. SCALE_FUNC %1, %2, 4, 4, %3, 6, %4
  386. SCALE_FUNC %1, %2, 8, 8, %3, 6, %4
  387. %if mmsize == 8
  388. SCALE_FUNC %1, %2, X, X, %3, 7, %4
  389. %else
  390. SCALE_FUNC %1, %2, X, X4, %3, 7, %4
  391. SCALE_FUNC %1, %2, X, X8, %3, 7, %4
  392. %endif
  393. %endmacro
  394. ; SCALE_FUNCS2 opt, 8_xmm_args, 9to10_xmm_args, 16_xmm_args
  395. %macro SCALE_FUNCS2 4
  396. %ifnidn %1, sse4
  397. SCALE_FUNCS 8, 15, %1, %2
  398. SCALE_FUNCS 9, 15, %1, %3
  399. SCALE_FUNCS 10, 15, %1, %3
  400. SCALE_FUNCS 14, 15, %1, %3
  401. SCALE_FUNCS 16, 15, %1, %4
  402. %endif ; !sse4
  403. SCALE_FUNCS 8, 19, %1, %2
  404. SCALE_FUNCS 9, 19, %1, %3
  405. SCALE_FUNCS 10, 19, %1, %3
  406. SCALE_FUNCS 14, 19, %1, %3
  407. SCALE_FUNCS 16, 19, %1, %4
  408. %endmacro
  409. %ifdef ARCH_X86_32
  410. INIT_MMX
  411. SCALE_FUNCS2 mmx, 0, 0, 0
  412. %endif
  413. INIT_XMM
  414. SCALE_FUNCS2 sse2, 6, 7, 8
  415. SCALE_FUNCS2 ssse3, 6, 6, 8
  416. SCALE_FUNCS2 sse4, 6, 6, 8
  417. ;-----------------------------------------------------------------------------
  418. ; vertical line scaling
  419. ;
  420. ; void yuv2plane1_<output_size>_<opt>(const int16_t *src, uint8_t *dst, int dstW,
  421. ; const uint8_t *dither, int offset)
  422. ; and
  423. ; void yuv2planeX_<output_size>_<opt>(const int16_t *filter, int filterSize,
  424. ; const int16_t **src, uint8_t *dst, int dstW,
  425. ; const uint8_t *dither, int offset)
  426. ;
  427. ; Scale one or $filterSize lines of source data to generate one line of output
  428. ; data. The input is 15-bit in int16_t if $output_size is [8,10] and 19-bit in
  429. ; int32_t if $output_size is 16. $filter is 12-bits. $filterSize is a multiple
  430. ; of 2. $offset is either 0 or 3. $dither holds 8 values.
  431. ;-----------------------------------------------------------------------------
  432. %macro yuv2planeX_fn 4
  433. %ifdef ARCH_X86_32
  434. %define cntr_reg r1
  435. %define movsx mov
  436. %else
  437. %define cntr_reg r11
  438. %define movsx movsxd
  439. %endif
  440. cglobal yuv2planeX_%2_%1, %4, 7, %3
  441. %if %2 == 8 || %2 == 9 || %2 == 10
  442. pxor m6, m6
  443. %endif ; %2 == 8/9/10
  444. %if %2 == 8
  445. %ifdef ARCH_X86_32
  446. %assign pad 0x2c - (stack_offset & 15)
  447. SUB rsp, pad
  448. %define m_dith m7
  449. %else ; x86-64
  450. %define m_dith m9
  451. %endif ; x86-32
  452. ; create registers holding dither
  453. movq m_dith, [r5] ; dither
  454. test r6d, r6d
  455. jz .no_rot
  456. %if mmsize == 16
  457. punpcklqdq m_dith, m_dith
  458. %endif ; mmsize == 16
  459. PALIGNR m_dith, m_dith, 3, m0
  460. .no_rot:
  461. %if mmsize == 16
  462. punpcklbw m_dith, m6
  463. %ifdef ARCH_X86_64
  464. punpcklwd m8, m_dith, m6
  465. pslld m8, 12
  466. %else ; x86-32
  467. punpcklwd m5, m_dith, m6
  468. pslld m5, 12
  469. %endif ; x86-32/64
  470. punpckhwd m_dith, m6
  471. pslld m_dith, 12
  472. %ifdef ARCH_X86_32
  473. mova [rsp+ 0], m5
  474. mova [rsp+16], m_dith
  475. %endif
  476. %else ; mmsize == 8
  477. punpcklbw m5, m_dith, m6
  478. punpckhbw m_dith, m6
  479. punpcklwd m4, m5, m6
  480. punpckhwd m5, m6
  481. punpcklwd m3, m_dith, m6
  482. punpckhwd m_dith, m6
  483. pslld m4, 12
  484. pslld m5, 12
  485. pslld m3, 12
  486. pslld m_dith, 12
  487. mova [rsp+ 0], m4
  488. mova [rsp+ 8], m5
  489. mova [rsp+16], m3
  490. mova [rsp+24], m_dith
  491. %endif ; mmsize == 8/16
  492. %endif ; %2 == 8
  493. xor r5, r5
  494. .pixelloop:
  495. %assign %%i 0
  496. ; the rep here is for the 8bit output mmx case, where dither covers
  497. ; 8 pixels but we can only handle 2 pixels per register, and thus 4
  498. ; pixels per iteration. In order to not have to keep track of where
  499. ; we are w.r.t. dithering, we unroll the mmx/8bit loop x2.
  500. %if %2 == 8
  501. %rep 16/mmsize
  502. %endif ; %2 == 8
  503. %if %2 == 8
  504. %ifdef ARCH_X86_32
  505. mova m2, [rsp+mmsize*(0+%%i)]
  506. mova m1, [rsp+mmsize*(1+%%i)]
  507. %else ; x86-64
  508. mova m2, m8
  509. mova m1, m_dith
  510. %endif ; x86-32/64
  511. %else ; %2 == 9/10/16
  512. mova m1, [yuv2yuvX_%2_start]
  513. mova m2, m1
  514. %endif ; %2 == 8/9/10/16
  515. movsx cntr_reg, r1m
  516. .filterloop_ %+ %%i:
  517. ; input pixels
  518. mov r6, [r2+gprsize*cntr_reg-2*gprsize]
  519. %if %2 == 16
  520. mova m3, [r6+r5*4]
  521. mova m5, [r6+r5*4+mmsize]
  522. %else ; %2 == 8/9/10
  523. mova m3, [r6+r5*2]
  524. %endif ; %2 == 8/9/10/16
  525. mov r6, [r2+gprsize*cntr_reg-gprsize]
  526. %if %2 == 16
  527. mova m4, [r6+r5*4]
  528. mova m6, [r6+r5*4+mmsize]
  529. %else ; %2 == 8/9/10
  530. mova m4, [r6+r5*2]
  531. %endif ; %2 == 8/9/10/16
  532. ; coefficients
  533. movd m0, [r0+2*cntr_reg-4]; coeff[0], coeff[1]
  534. %if %2 == 16
  535. pshuflw m7, m0, 0 ; coeff[0]
  536. pshuflw m0, m0, 0x55 ; coeff[1]
  537. pmovsxwd m7, m7 ; word -> dword
  538. pmovsxwd m0, m0 ; word -> dword
  539. pmulld m3, m7
  540. pmulld m5, m7
  541. pmulld m4, m0
  542. pmulld m6, m0
  543. paddd m2, m3
  544. paddd m1, m5
  545. paddd m2, m4
  546. paddd m1, m6
  547. %else ; %2 == 10/9/8
  548. punpcklwd m5, m3, m4
  549. punpckhwd m3, m4
  550. SPLATD m0, m0
  551. pmaddwd m5, m0
  552. pmaddwd m3, m0
  553. paddd m2, m5
  554. paddd m1, m3
  555. %endif ; %2 == 8/9/10/16
  556. sub cntr_reg, 2
  557. jg .filterloop_ %+ %%i
  558. %if %2 == 16
  559. psrad m2, 31 - %2
  560. psrad m1, 31 - %2
  561. %else ; %2 == 10/9/8
  562. psrad m2, 27 - %2
  563. psrad m1, 27 - %2
  564. %endif ; %2 == 8/9/10/16
  565. %if %2 == 8
  566. packssdw m2, m1
  567. packuswb m2, m2
  568. movh [r3+r5*1], m2
  569. %else ; %2 == 9/10/16
  570. %if %2 == 16
  571. packssdw m2, m1
  572. paddw m2, [minshort]
  573. %else ; %2 == 9/10
  574. %ifidn %1, sse4
  575. packusdw m2, m1
  576. %elifidn %1, avx
  577. packusdw m2, m1
  578. %else ; mmx2/sse2
  579. packssdw m2, m1
  580. pmaxsw m2, m6
  581. %endif ; mmx2/sse2/sse4/avx
  582. pminsw m2, [yuv2yuvX_%2_upper]
  583. %endif ; %2 == 9/10/16
  584. mova [r3+r5*2], m2
  585. %endif ; %2 == 8/9/10/16
  586. add r5, mmsize/2
  587. sub r4d, mmsize/2
  588. %if %2 == 8
  589. %assign %%i %%i+2
  590. %endrep
  591. %endif ; %2 == 8
  592. jg .pixelloop
  593. %if %2 == 8
  594. %ifdef ARCH_X86_32
  595. ADD rsp, pad
  596. RET
  597. %else ; x86-64
  598. REP_RET
  599. %endif ; x86-32/64
  600. %else ; %2 == 9/10/16
  601. REP_RET
  602. %endif ; %2 == 8/9/10/16
  603. %endmacro
  604. %define PALIGNR PALIGNR_MMX
  605. %ifdef ARCH_X86_32
  606. INIT_MMX
  607. yuv2planeX_fn mmx, 8, 0, 7
  608. yuv2planeX_fn mmx2, 9, 0, 5
  609. yuv2planeX_fn mmx2, 10, 0, 5
  610. %endif
  611. INIT_XMM
  612. yuv2planeX_fn sse2, 8, 10, 7
  613. yuv2planeX_fn sse2, 9, 7, 5
  614. yuv2planeX_fn sse2, 10, 7, 5
  615. %define PALIGNR PALIGNR_SSSE3
  616. yuv2planeX_fn sse4, 8, 10, 7
  617. yuv2planeX_fn sse4, 9, 7, 5
  618. yuv2planeX_fn sse4, 10, 7, 5
  619. yuv2planeX_fn sse4, 16, 8, 5
  620. %ifdef HAVE_AVX
  621. INIT_AVX
  622. yuv2planeX_fn avx, 8, 10, 7
  623. yuv2planeX_fn avx, 9, 7, 5
  624. yuv2planeX_fn avx, 10, 7, 5
  625. %endif
  626. ; %1=outout-bpc, %2=alignment (u/a)
  627. %macro yuv2plane1_mainloop 2
  628. .loop_%2:
  629. %if %1 == 8
  630. paddsw m0, m2, [r0+r2*2+mmsize*0]
  631. paddsw m1, m3, [r0+r2*2+mmsize*1]
  632. psraw m0, 7
  633. psraw m1, 7
  634. packuswb m0, m1
  635. mov%2 [r1+r2], m0
  636. %elif %1 == 16
  637. paddd m0, m4, [r0+r2*4+mmsize*0]
  638. paddd m1, m4, [r0+r2*4+mmsize*1]
  639. paddd m2, m4, [r0+r2*4+mmsize*2]
  640. paddd m3, m4, [r0+r2*4+mmsize*3]
  641. psrad m0, 3
  642. psrad m1, 3
  643. psrad m2, 3
  644. psrad m3, 3
  645. %if cpuflag(sse4) ; avx/sse4
  646. packusdw m0, m1
  647. packusdw m2, m3
  648. %else ; mmx/sse2
  649. packssdw m0, m1
  650. packssdw m2, m3
  651. paddw m0, m5
  652. paddw m2, m5
  653. %endif ; mmx/sse2/sse4/avx
  654. mov%2 [r1+r2*2], m0
  655. mov%2 [r1+r2*2+mmsize], m2
  656. %else
  657. paddsw m0, m2, [r0+r2*2+mmsize*0]
  658. paddsw m1, m2, [r0+r2*2+mmsize*1]
  659. psraw m0, 15 - %1
  660. psraw m1, 15 - %1
  661. pmaxsw m0, m4
  662. pmaxsw m1, m4
  663. pminsw m0, m3
  664. pminsw m1, m3
  665. mov%2 [r1+r2*2], m0
  666. mov%2 [r1+r2*2+mmsize], m1
  667. %endif
  668. add r2, mmsize
  669. jl .loop_%2
  670. %endmacro
  671. %macro yuv2plane1_fn 3
  672. cglobal yuv2plane1_%1, %3, %3, %2
  673. add r2, mmsize - 1
  674. and r2, ~(mmsize - 1)
  675. %if %1 == 8
  676. add r1, r2
  677. %else ; %1 != 8
  678. lea r1, [r1+r2*2]
  679. %endif ; %1 == 8
  680. %if %1 == 16
  681. lea r0, [r0+r2*4]
  682. %else ; %1 != 16
  683. lea r0, [r0+r2*2]
  684. %endif ; %1 == 16
  685. neg r2
  686. %if %1 == 8
  687. pxor m4, m4 ; zero
  688. ; create registers holding dither
  689. movq m3, [r3] ; dither
  690. test r4d, r4d
  691. jz .no_rot
  692. %if mmsize == 16
  693. punpcklqdq m3, m3
  694. %endif ; mmsize == 16
  695. PALIGNR_MMX m3, m3, 3, m2
  696. .no_rot:
  697. %if mmsize == 8
  698. mova m2, m3
  699. punpckhbw m3, m4 ; byte->word
  700. punpcklbw m2, m4 ; byte->word
  701. %else
  702. punpcklbw m3, m4
  703. mova m2, m3
  704. %endif
  705. %elif %1 == 9
  706. pxor m4, m4
  707. mova m3, [pw_512]
  708. mova m2, [pw_32]
  709. %elif %1 == 10
  710. pxor m4, m4
  711. mova m3, [pw_1024]
  712. mova m2, [pw_16]
  713. %else ; %1 == 16
  714. %if cpuflag(sse4) ; sse4/avx
  715. mova m4, [pd_4]
  716. %else ; mmx/sse2
  717. mova m4, [pd_4min0x40000]
  718. mova m5, [minshort]
  719. %endif ; mmx/sse2/sse4/avx
  720. %endif ; %1 == ..
  721. ; actual pixel scaling
  722. %if mmsize == 8
  723. yuv2plane1_mainloop %1, a
  724. %else ; mmsize == 16
  725. test r1, 15
  726. jnz .unaligned
  727. yuv2plane1_mainloop %1, a
  728. REP_RET
  729. .unaligned:
  730. yuv2plane1_mainloop %1, u
  731. %endif ; mmsize == 8/16
  732. REP_RET
  733. %endmacro
  734. %ifdef ARCH_X86_32
  735. INIT_MMX mmx
  736. yuv2plane1_fn 8, 0, 5
  737. yuv2plane1_fn 16, 0, 3
  738. INIT_MMX mmx2
  739. yuv2plane1_fn 9, 0, 3
  740. yuv2plane1_fn 10, 0, 3
  741. %endif
  742. INIT_XMM sse2
  743. yuv2plane1_fn 8, 5, 5
  744. yuv2plane1_fn 9, 5, 3
  745. yuv2plane1_fn 10, 5, 3
  746. yuv2plane1_fn 16, 6, 3
  747. INIT_XMM sse4
  748. yuv2plane1_fn 16, 5, 3
  749. %ifdef HAVE_AVX
  750. INIT_XMM avx
  751. yuv2plane1_fn 8, 5, 5
  752. yuv2plane1_fn 9, 5, 3
  753. yuv2plane1_fn 10, 5, 3
  754. yuv2plane1_fn 16, 5, 3
  755. %endif