audiogen.c 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. /*
  2. * Generates a synthetic stereo sound
  3. * NOTE: No floats are used to guarantee a bit exact output.
  4. *
  5. * Copyright (c) 2002 Fabrice Bellard
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #define NB_CHANNELS 2
  26. #define FE 44100
  27. static unsigned int myrnd(unsigned int *seed_ptr, int n)
  28. {
  29. unsigned int seed, val;
  30. seed = *seed_ptr;
  31. seed = (seed * 314159) + 1;
  32. if (n == 256) {
  33. val = seed >> 24;
  34. } else {
  35. val = seed % n;
  36. }
  37. *seed_ptr = seed;
  38. return val;
  39. }
  40. #define FRAC_BITS 16
  41. #define FRAC_ONE (1 << FRAC_BITS)
  42. #define COS_TABLE_BITS 7
  43. /* integer cosinus */
  44. static const unsigned short cos_table[(1 << COS_TABLE_BITS) + 2] = {
  45. 0x8000, 0x7ffe, 0x7ff6, 0x7fea, 0x7fd9, 0x7fc2, 0x7fa7, 0x7f87,
  46. 0x7f62, 0x7f38, 0x7f0a, 0x7ed6, 0x7e9d, 0x7e60, 0x7e1e, 0x7dd6,
  47. 0x7d8a, 0x7d3a, 0x7ce4, 0x7c89, 0x7c2a, 0x7bc6, 0x7b5d, 0x7aef,
  48. 0x7a7d, 0x7a06, 0x798a, 0x790a, 0x7885, 0x77fb, 0x776c, 0x76d9,
  49. 0x7642, 0x75a6, 0x7505, 0x7460, 0x73b6, 0x7308, 0x7255, 0x719e,
  50. 0x70e3, 0x7023, 0x6f5f, 0x6e97, 0x6dca, 0x6cf9, 0x6c24, 0x6b4b,
  51. 0x6a6e, 0x698c, 0x68a7, 0x67bd, 0x66d0, 0x65de, 0x64e9, 0x63ef,
  52. 0x62f2, 0x61f1, 0x60ec, 0x5fe4, 0x5ed7, 0x5dc8, 0x5cb4, 0x5b9d,
  53. 0x5a82, 0x5964, 0x5843, 0x571e, 0x55f6, 0x54ca, 0x539b, 0x5269,
  54. 0x5134, 0x4ffb, 0x4ec0, 0x4d81, 0x4c40, 0x4afb, 0x49b4, 0x486a,
  55. 0x471d, 0x45cd, 0x447b, 0x4326, 0x41ce, 0x4074, 0x3f17, 0x3db8,
  56. 0x3c57, 0x3af3, 0x398d, 0x3825, 0x36ba, 0x354e, 0x33df, 0x326e,
  57. 0x30fc, 0x2f87, 0x2e11, 0x2c99, 0x2b1f, 0x29a4, 0x2827, 0x26a8,
  58. 0x2528, 0x23a7, 0x2224, 0x209f, 0x1f1a, 0x1d93, 0x1c0c, 0x1a83,
  59. 0x18f9, 0x176e, 0x15e2, 0x1455, 0x12c8, 0x113a, 0x0fab, 0x0e1c,
  60. 0x0c8c, 0x0afb, 0x096b, 0x07d9, 0x0648, 0x04b6, 0x0324, 0x0192,
  61. 0x0000, 0x0000,
  62. };
  63. #define CSHIFT (FRAC_BITS - COS_TABLE_BITS - 2)
  64. static int int_cos(int a)
  65. {
  66. int neg, v, f;
  67. const unsigned short *p;
  68. a = a & (FRAC_ONE - 1); /* modulo 2 * pi */
  69. if (a >= (FRAC_ONE / 2))
  70. a = FRAC_ONE - a;
  71. neg = 0;
  72. if (a > (FRAC_ONE / 4)) {
  73. neg = -1;
  74. a = (FRAC_ONE / 2) - a;
  75. }
  76. p = cos_table + (a >> CSHIFT);
  77. /* linear interpolation */
  78. f = a & ((1 << CSHIFT) - 1);
  79. v = p[0] + (((p[1] - p[0]) * f + (1 << (CSHIFT - 1))) >> CSHIFT);
  80. v = (v ^ neg) - neg;
  81. v = v << (FRAC_BITS - 15);
  82. return v;
  83. }
  84. FILE *outfile;
  85. static void put_sample(int v)
  86. {
  87. fputc(v & 0xff, outfile);
  88. fputc((v >> 8) & 0xff, outfile);
  89. }
  90. int main(int argc, char **argv)
  91. {
  92. int i, a, v, j, f, amp, ampa;
  93. unsigned int seed = 1;
  94. int tabf1[NB_CHANNELS], tabf2[NB_CHANNELS];
  95. int taba[NB_CHANNELS];
  96. if (argc != 2) {
  97. printf("usage: %s file\n"
  98. "generate a test raw 16 bit stereo audio stream\n", argv[0]);
  99. exit(1);
  100. }
  101. outfile = fopen(argv[1], "wb");
  102. if (!outfile) {
  103. perror(argv[1]);
  104. return 1;
  105. }
  106. /* 1 second of single freq sinus at 1000 Hz */
  107. a = 0;
  108. for(i=0;i<1 * FE;i++) {
  109. v = (int_cos(a) * 10000) >> FRAC_BITS;
  110. for(j=0;j<NB_CHANNELS;j++)
  111. put_sample(v);
  112. a += (1000 * FRAC_ONE) / FE;
  113. }
  114. /* 1 second of varing frequency between 100 and 10000 Hz */
  115. a = 0;
  116. for(i=0;i<1 * FE;i++) {
  117. v = (int_cos(a) * 10000) >> FRAC_BITS;
  118. for(j=0;j<NB_CHANNELS;j++)
  119. put_sample(v);
  120. f = 100 + (((10000 - 100) * i) / FE);
  121. a += (f * FRAC_ONE) / FE;
  122. }
  123. /* 0.5 second of low amplitude white noise */
  124. for(i=0;i<FE / 2;i++) {
  125. v = myrnd(&seed, 20000) - 10000;
  126. for(j=0;j<NB_CHANNELS;j++)
  127. put_sample(v);
  128. }
  129. /* 0.5 second of high amplitude white noise */
  130. for(i=0;i<FE / 2;i++) {
  131. v = myrnd(&seed, 65535) - 32768;
  132. for(j=0;j<NB_CHANNELS;j++)
  133. put_sample(v);
  134. }
  135. /* stereo : 2 unrelated ramps */
  136. for(j=0;j<NB_CHANNELS;j++) {
  137. taba[j] = 0;
  138. tabf1[j] = 100 + myrnd(&seed, 5000);
  139. tabf2[j] = 100 + myrnd(&seed, 5000);
  140. }
  141. for(i=0;i<1 * FE;i++) {
  142. for(j=0;j<NB_CHANNELS;j++) {
  143. v = (int_cos(taba[j]) * 10000) >> FRAC_BITS;
  144. put_sample(v);
  145. f = tabf1[j] + (((tabf2[j] - tabf1[j]) * i) / FE);
  146. taba[j] += (f * FRAC_ONE) / FE;
  147. }
  148. }
  149. /* stereo 500 Hz with varying volume */
  150. a = 0;
  151. ampa = 0;
  152. for(i=0;i<2 * FE;i++) {
  153. for(j=0;j<NB_CHANNELS;j++) {
  154. amp = ((FRAC_ONE + int_cos(ampa)) * 5000) >> FRAC_BITS;
  155. if (j & 1)
  156. amp = 10000 - amp;
  157. v = (int_cos(a) * amp) >> FRAC_BITS;
  158. put_sample(v);
  159. a += (500 * FRAC_ONE) / FE;
  160. ampa += (2 * FRAC_ONE) / FE;
  161. }
  162. }
  163. fclose(outfile);
  164. return 0;
  165. }