vc1.c 155 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403
  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "msmpeg4data.h"
  35. #include "unary.h"
  36. #include "simple_idct.h"
  37. #include "mathops.h"
  38. #include "vdpau_internal.h"
  39. #undef NDEBUG
  40. #include <assert.h>
  41. #define MB_INTRA_VLC_BITS 9
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /**
  46. * Init VC-1 specific tables and VC1Context members
  47. * @param v The VC1Context to initialize
  48. * @return Status
  49. */
  50. static int vc1_init_common(VC1Context *v)
  51. {
  52. static int done = 0;
  53. int i = 0;
  54. v->hrd_rate = v->hrd_buffer = NULL;
  55. /* VLC tables */
  56. if(!done)
  57. {
  58. done = 1;
  59. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  60. ff_vc1_bfraction_bits, 1, 1,
  61. ff_vc1_bfraction_codes, 1, 1, 1);
  62. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  63. ff_vc1_norm2_bits, 1, 1,
  64. ff_vc1_norm2_codes, 1, 1, 1);
  65. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  66. ff_vc1_norm6_bits, 1, 1,
  67. ff_vc1_norm6_codes, 2, 2, 1);
  68. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  69. ff_vc1_imode_bits, 1, 1,
  70. ff_vc1_imode_codes, 1, 1, 1);
  71. for (i=0; i<3; i++)
  72. {
  73. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  74. ff_vc1_ttmb_bits[i], 1, 1,
  75. ff_vc1_ttmb_codes[i], 2, 2, 1);
  76. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  77. ff_vc1_ttblk_bits[i], 1, 1,
  78. ff_vc1_ttblk_codes[i], 1, 1, 1);
  79. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  80. ff_vc1_subblkpat_bits[i], 1, 1,
  81. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  82. }
  83. for(i=0; i<4; i++)
  84. {
  85. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  86. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  87. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  88. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  89. ff_vc1_cbpcy_p_bits[i], 1, 1,
  90. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  91. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  92. ff_vc1_mv_diff_bits[i], 1, 1,
  93. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  94. }
  95. for(i=0; i<8; i++)
  96. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  97. &vc1_ac_tables[i][0][1], 8, 4,
  98. &vc1_ac_tables[i][0][0], 8, 4, 1);
  99. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  100. &ff_msmp4_mb_i_table[0][1], 4, 2,
  101. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  102. }
  103. /* Other defaults */
  104. v->pq = -1;
  105. v->mvrange = 0; /* 7.1.1.18, p80 */
  106. return 0;
  107. }
  108. /***********************************************************************/
  109. /**
  110. * @defgroup vc1bitplane VC-1 Bitplane decoding
  111. * @see 8.7, p56
  112. * @{
  113. */
  114. /**
  115. * Imode types
  116. * @{
  117. */
  118. enum Imode {
  119. IMODE_RAW,
  120. IMODE_NORM2,
  121. IMODE_DIFF2,
  122. IMODE_NORM6,
  123. IMODE_DIFF6,
  124. IMODE_ROWSKIP,
  125. IMODE_COLSKIP
  126. };
  127. /** @} */ //imode defines
  128. /** Decode rows by checking if they are skipped
  129. * @param plane Buffer to store decoded bits
  130. * @param[in] width Width of this buffer
  131. * @param[in] height Height of this buffer
  132. * @param[in] stride of this buffer
  133. */
  134. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  135. int x, y;
  136. for (y=0; y<height; y++){
  137. if (!get_bits1(gb)) //rowskip
  138. memset(plane, 0, width);
  139. else
  140. for (x=0; x<width; x++)
  141. plane[x] = get_bits1(gb);
  142. plane += stride;
  143. }
  144. }
  145. /** Decode columns by checking if they are skipped
  146. * @param plane Buffer to store decoded bits
  147. * @param[in] width Width of this buffer
  148. * @param[in] height Height of this buffer
  149. * @param[in] stride of this buffer
  150. * @todo FIXME: Optimize
  151. */
  152. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  153. int x, y;
  154. for (x=0; x<width; x++){
  155. if (!get_bits1(gb)) //colskip
  156. for (y=0; y<height; y++)
  157. plane[y*stride] = 0;
  158. else
  159. for (y=0; y<height; y++)
  160. plane[y*stride] = get_bits1(gb);
  161. plane ++;
  162. }
  163. }
  164. /** Decode a bitplane's bits
  165. * @param data bitplane where to store the decode bits
  166. * @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly
  167. * @param v VC-1 context for bit reading and logging
  168. * @return Status
  169. * @todo FIXME: Optimize
  170. */
  171. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  172. {
  173. GetBitContext *gb = &v->s.gb;
  174. int imode, x, y, code, offset;
  175. uint8_t invert, *planep = data;
  176. int width, height, stride;
  177. width = v->s.mb_width;
  178. height = v->s.mb_height;
  179. stride = v->s.mb_stride;
  180. invert = get_bits1(gb);
  181. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  182. *raw_flag = 0;
  183. switch (imode)
  184. {
  185. case IMODE_RAW:
  186. //Data is actually read in the MB layer (same for all tests == "raw")
  187. *raw_flag = 1; //invert ignored
  188. return invert;
  189. case IMODE_DIFF2:
  190. case IMODE_NORM2:
  191. if ((height * width) & 1)
  192. {
  193. *planep++ = get_bits1(gb);
  194. offset = 1;
  195. }
  196. else offset = 0;
  197. // decode bitplane as one long line
  198. for (y = offset; y < height * width; y += 2) {
  199. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  200. *planep++ = code & 1;
  201. offset++;
  202. if(offset == width) {
  203. offset = 0;
  204. planep += stride - width;
  205. }
  206. *planep++ = code >> 1;
  207. offset++;
  208. if(offset == width) {
  209. offset = 0;
  210. planep += stride - width;
  211. }
  212. }
  213. break;
  214. case IMODE_DIFF6:
  215. case IMODE_NORM6:
  216. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  217. for(y = 0; y < height; y+= 3) {
  218. for(x = width & 1; x < width; x += 2) {
  219. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  220. if(code < 0){
  221. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  222. return -1;
  223. }
  224. planep[x + 0] = (code >> 0) & 1;
  225. planep[x + 1] = (code >> 1) & 1;
  226. planep[x + 0 + stride] = (code >> 2) & 1;
  227. planep[x + 1 + stride] = (code >> 3) & 1;
  228. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  229. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  230. }
  231. planep += stride * 3;
  232. }
  233. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  234. } else { // 3x2
  235. planep += (height & 1) * stride;
  236. for(y = height & 1; y < height; y += 2) {
  237. for(x = width % 3; x < width; x += 3) {
  238. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  239. if(code < 0){
  240. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  241. return -1;
  242. }
  243. planep[x + 0] = (code >> 0) & 1;
  244. planep[x + 1] = (code >> 1) & 1;
  245. planep[x + 2] = (code >> 2) & 1;
  246. planep[x + 0 + stride] = (code >> 3) & 1;
  247. planep[x + 1 + stride] = (code >> 4) & 1;
  248. planep[x + 2 + stride] = (code >> 5) & 1;
  249. }
  250. planep += stride * 2;
  251. }
  252. x = width % 3;
  253. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  254. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  255. }
  256. break;
  257. case IMODE_ROWSKIP:
  258. decode_rowskip(data, width, height, stride, &v->s.gb);
  259. break;
  260. case IMODE_COLSKIP:
  261. decode_colskip(data, width, height, stride, &v->s.gb);
  262. break;
  263. default: break;
  264. }
  265. /* Applying diff operator */
  266. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  267. {
  268. planep = data;
  269. planep[0] ^= invert;
  270. for (x=1; x<width; x++)
  271. planep[x] ^= planep[x-1];
  272. for (y=1; y<height; y++)
  273. {
  274. planep += stride;
  275. planep[0] ^= planep[-stride];
  276. for (x=1; x<width; x++)
  277. {
  278. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  279. else planep[x] ^= planep[x-1];
  280. }
  281. }
  282. }
  283. else if (invert)
  284. {
  285. planep = data;
  286. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  287. }
  288. return (imode<<1) + invert;
  289. }
  290. /** @} */ //Bitplane group
  291. #define FILTSIGN(a) ((a) >= 0 ? 1 : -1)
  292. /**
  293. * VC-1 in-loop deblocking filter for one line
  294. * @param src source block type
  295. * @param stride block stride
  296. * @param pq block quantizer
  297. * @return whether other 3 pairs should be filtered or not
  298. * @see 8.6
  299. */
  300. static av_always_inline int vc1_filter_line(uint8_t* src, int stride, int pq){
  301. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  302. int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
  303. int a0_sign = a0 >> 31; /* Store sign */
  304. a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
  305. if(a0 < pq){
  306. int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3);
  307. int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3);
  308. if(a1 < a0 || a2 < a0){
  309. int clip = src[-1*stride] - src[ 0*stride];
  310. int clip_sign = clip >> 31;
  311. clip = ((clip ^ clip_sign) - clip_sign)>>1;
  312. if(clip){
  313. int a3 = FFMIN(a1, a2);
  314. int d = 5 * (a3 - a0);
  315. int d_sign = (d >> 31);
  316. d = ((d ^ d_sign) - d_sign) >> 3;
  317. d_sign ^= a0_sign;
  318. if( d_sign ^ clip_sign )
  319. d = 0;
  320. else{
  321. d = FFMIN(d, clip);
  322. d = (d ^ d_sign) - d_sign; /* Restore sign */
  323. src[-1*stride] = cm[src[-1*stride] - d];
  324. src[ 0*stride] = cm[src[ 0*stride] + d];
  325. }
  326. return 1;
  327. }
  328. }
  329. }
  330. return 0;
  331. }
  332. /**
  333. * VC-1 in-loop deblocking filter
  334. * @param src source block type
  335. * @param step distance between horizontally adjacent elements
  336. * @param stride distance between vertically adjacent elements
  337. * @param len edge length to filter (4 or 8 pixels)
  338. * @param pq block quantizer
  339. * @see 8.6
  340. */
  341. static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
  342. {
  343. int i;
  344. int filt3;
  345. for(i = 0; i < len; i += 4){
  346. filt3 = vc1_filter_line(src + 2*step, stride, pq);
  347. if(filt3){
  348. vc1_filter_line(src + 0*step, stride, pq);
  349. vc1_filter_line(src + 1*step, stride, pq);
  350. vc1_filter_line(src + 3*step, stride, pq);
  351. }
  352. src += step * 4;
  353. }
  354. }
  355. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  356. {
  357. int i, j;
  358. if(!s->first_slice_line)
  359. vc1_loop_filter(s->dest[0], 1, s->linesize, 16, pq);
  360. vc1_loop_filter(s->dest[0] + 8*s->linesize, 1, s->linesize, 16, pq);
  361. for(i = !s->mb_x*8; i < 16; i += 8)
  362. vc1_loop_filter(s->dest[0] + i, s->linesize, 1, 16, pq);
  363. for(j = 0; j < 2; j++){
  364. if(!s->first_slice_line)
  365. vc1_loop_filter(s->dest[j+1], 1, s->uvlinesize, 8, pq);
  366. if(s->mb_x)
  367. vc1_loop_filter(s->dest[j+1], s->uvlinesize, 1, 8, pq);
  368. }
  369. }
  370. /***********************************************************************/
  371. /** VOP Dquant decoding
  372. * @param v VC-1 Context
  373. */
  374. static int vop_dquant_decoding(VC1Context *v)
  375. {
  376. GetBitContext *gb = &v->s.gb;
  377. int pqdiff;
  378. //variable size
  379. if (v->dquant == 2)
  380. {
  381. pqdiff = get_bits(gb, 3);
  382. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  383. else v->altpq = v->pq + pqdiff + 1;
  384. }
  385. else
  386. {
  387. v->dquantfrm = get_bits1(gb);
  388. if ( v->dquantfrm )
  389. {
  390. v->dqprofile = get_bits(gb, 2);
  391. switch (v->dqprofile)
  392. {
  393. case DQPROFILE_SINGLE_EDGE:
  394. case DQPROFILE_DOUBLE_EDGES:
  395. v->dqsbedge = get_bits(gb, 2);
  396. break;
  397. case DQPROFILE_ALL_MBS:
  398. v->dqbilevel = get_bits1(gb);
  399. if(!v->dqbilevel)
  400. v->halfpq = 0;
  401. default: break; //Forbidden ?
  402. }
  403. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  404. {
  405. pqdiff = get_bits(gb, 3);
  406. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  407. else v->altpq = v->pq + pqdiff + 1;
  408. }
  409. }
  410. }
  411. return 0;
  412. }
  413. /** Put block onto picture
  414. */
  415. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  416. {
  417. uint8_t *Y;
  418. int ys, us, vs;
  419. DSPContext *dsp = &v->s.dsp;
  420. if(v->rangeredfrm) {
  421. int i, j, k;
  422. for(k = 0; k < 6; k++)
  423. for(j = 0; j < 8; j++)
  424. for(i = 0; i < 8; i++)
  425. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  426. }
  427. ys = v->s.current_picture.linesize[0];
  428. us = v->s.current_picture.linesize[1];
  429. vs = v->s.current_picture.linesize[2];
  430. Y = v->s.dest[0];
  431. dsp->put_pixels_clamped(block[0], Y, ys);
  432. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  433. Y += ys * 8;
  434. dsp->put_pixels_clamped(block[2], Y, ys);
  435. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  436. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  437. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  438. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  439. }
  440. }
  441. /** Do motion compensation over 1 macroblock
  442. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  443. */
  444. static void vc1_mc_1mv(VC1Context *v, int dir)
  445. {
  446. MpegEncContext *s = &v->s;
  447. DSPContext *dsp = &v->s.dsp;
  448. uint8_t *srcY, *srcU, *srcV;
  449. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  450. if(!v->s.last_picture.data[0])return;
  451. mx = s->mv[dir][0][0];
  452. my = s->mv[dir][0][1];
  453. // store motion vectors for further use in B frames
  454. if(s->pict_type == FF_P_TYPE) {
  455. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  456. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  457. }
  458. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  459. uvmy = (my + ((my & 3) == 3)) >> 1;
  460. if(v->fastuvmc) {
  461. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  462. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  463. }
  464. if(!dir) {
  465. srcY = s->last_picture.data[0];
  466. srcU = s->last_picture.data[1];
  467. srcV = s->last_picture.data[2];
  468. } else {
  469. srcY = s->next_picture.data[0];
  470. srcU = s->next_picture.data[1];
  471. srcV = s->next_picture.data[2];
  472. }
  473. src_x = s->mb_x * 16 + (mx >> 2);
  474. src_y = s->mb_y * 16 + (my >> 2);
  475. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  476. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  477. if(v->profile != PROFILE_ADVANCED){
  478. src_x = av_clip( src_x, -16, s->mb_width * 16);
  479. src_y = av_clip( src_y, -16, s->mb_height * 16);
  480. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  481. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  482. }else{
  483. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  484. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  485. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  486. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  487. }
  488. srcY += src_y * s->linesize + src_x;
  489. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  490. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  491. /* for grayscale we should not try to read from unknown area */
  492. if(s->flags & CODEC_FLAG_GRAY) {
  493. srcU = s->edge_emu_buffer + 18 * s->linesize;
  494. srcV = s->edge_emu_buffer + 18 * s->linesize;
  495. }
  496. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  497. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  498. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  499. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  500. srcY -= s->mspel * (1 + s->linesize);
  501. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  502. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  503. srcY = s->edge_emu_buffer;
  504. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  505. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  506. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  507. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  508. srcU = uvbuf;
  509. srcV = uvbuf + 16;
  510. /* if we deal with range reduction we need to scale source blocks */
  511. if(v->rangeredfrm) {
  512. int i, j;
  513. uint8_t *src, *src2;
  514. src = srcY;
  515. for(j = 0; j < 17 + s->mspel*2; j++) {
  516. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  517. src += s->linesize;
  518. }
  519. src = srcU; src2 = srcV;
  520. for(j = 0; j < 9; j++) {
  521. for(i = 0; i < 9; i++) {
  522. src[i] = ((src[i] - 128) >> 1) + 128;
  523. src2[i] = ((src2[i] - 128) >> 1) + 128;
  524. }
  525. src += s->uvlinesize;
  526. src2 += s->uvlinesize;
  527. }
  528. }
  529. /* if we deal with intensity compensation we need to scale source blocks */
  530. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  531. int i, j;
  532. uint8_t *src, *src2;
  533. src = srcY;
  534. for(j = 0; j < 17 + s->mspel*2; j++) {
  535. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  536. src += s->linesize;
  537. }
  538. src = srcU; src2 = srcV;
  539. for(j = 0; j < 9; j++) {
  540. for(i = 0; i < 9; i++) {
  541. src[i] = v->lutuv[src[i]];
  542. src2[i] = v->lutuv[src2[i]];
  543. }
  544. src += s->uvlinesize;
  545. src2 += s->uvlinesize;
  546. }
  547. }
  548. srcY += s->mspel * (1 + s->linesize);
  549. }
  550. if(s->mspel) {
  551. dxy = ((my & 3) << 2) | (mx & 3);
  552. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  553. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  554. srcY += s->linesize * 8;
  555. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  556. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  557. } else { // hpel mc - always used for luma
  558. dxy = (my & 2) | ((mx & 2) >> 1);
  559. if(!v->rnd)
  560. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  561. else
  562. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  563. }
  564. if(s->flags & CODEC_FLAG_GRAY) return;
  565. /* Chroma MC always uses qpel bilinear */
  566. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  567. uvmx = (uvmx&3)<<1;
  568. uvmy = (uvmy&3)<<1;
  569. if(!v->rnd){
  570. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  571. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  572. }else{
  573. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  574. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  575. }
  576. }
  577. /** Do motion compensation for 4-MV macroblock - luminance block
  578. */
  579. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  580. {
  581. MpegEncContext *s = &v->s;
  582. DSPContext *dsp = &v->s.dsp;
  583. uint8_t *srcY;
  584. int dxy, mx, my, src_x, src_y;
  585. int off;
  586. if(!v->s.last_picture.data[0])return;
  587. mx = s->mv[0][n][0];
  588. my = s->mv[0][n][1];
  589. srcY = s->last_picture.data[0];
  590. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  591. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  592. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  593. if(v->profile != PROFILE_ADVANCED){
  594. src_x = av_clip( src_x, -16, s->mb_width * 16);
  595. src_y = av_clip( src_y, -16, s->mb_height * 16);
  596. }else{
  597. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  598. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  599. }
  600. srcY += src_y * s->linesize + src_x;
  601. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  602. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  603. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  604. srcY -= s->mspel * (1 + s->linesize);
  605. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  606. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  607. srcY = s->edge_emu_buffer;
  608. /* if we deal with range reduction we need to scale source blocks */
  609. if(v->rangeredfrm) {
  610. int i, j;
  611. uint8_t *src;
  612. src = srcY;
  613. for(j = 0; j < 9 + s->mspel*2; j++) {
  614. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  615. src += s->linesize;
  616. }
  617. }
  618. /* if we deal with intensity compensation we need to scale source blocks */
  619. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  620. int i, j;
  621. uint8_t *src;
  622. src = srcY;
  623. for(j = 0; j < 9 + s->mspel*2; j++) {
  624. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  625. src += s->linesize;
  626. }
  627. }
  628. srcY += s->mspel * (1 + s->linesize);
  629. }
  630. if(s->mspel) {
  631. dxy = ((my & 3) << 2) | (mx & 3);
  632. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  633. } else { // hpel mc - always used for luma
  634. dxy = (my & 2) | ((mx & 2) >> 1);
  635. if(!v->rnd)
  636. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  637. else
  638. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  639. }
  640. }
  641. static inline int median4(int a, int b, int c, int d)
  642. {
  643. if(a < b) {
  644. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  645. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  646. } else {
  647. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  648. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  649. }
  650. }
  651. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  652. */
  653. static void vc1_mc_4mv_chroma(VC1Context *v)
  654. {
  655. MpegEncContext *s = &v->s;
  656. DSPContext *dsp = &v->s.dsp;
  657. uint8_t *srcU, *srcV;
  658. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  659. int i, idx, tx = 0, ty = 0;
  660. int mvx[4], mvy[4], intra[4];
  661. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  662. if(!v->s.last_picture.data[0])return;
  663. if(s->flags & CODEC_FLAG_GRAY) return;
  664. for(i = 0; i < 4; i++) {
  665. mvx[i] = s->mv[0][i][0];
  666. mvy[i] = s->mv[0][i][1];
  667. intra[i] = v->mb_type[0][s->block_index[i]];
  668. }
  669. /* calculate chroma MV vector from four luma MVs */
  670. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  671. if(!idx) { // all blocks are inter
  672. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  673. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  674. } else if(count[idx] == 1) { // 3 inter blocks
  675. switch(idx) {
  676. case 0x1:
  677. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  678. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  679. break;
  680. case 0x2:
  681. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  682. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  683. break;
  684. case 0x4:
  685. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  686. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  687. break;
  688. case 0x8:
  689. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  690. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  691. break;
  692. }
  693. } else if(count[idx] == 2) {
  694. int t1 = 0, t2 = 0;
  695. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  696. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  697. tx = (mvx[t1] + mvx[t2]) / 2;
  698. ty = (mvy[t1] + mvy[t2]) / 2;
  699. } else {
  700. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  701. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  702. return; //no need to do MC for inter blocks
  703. }
  704. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  705. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  706. uvmx = (tx + ((tx&3) == 3)) >> 1;
  707. uvmy = (ty + ((ty&3) == 3)) >> 1;
  708. if(v->fastuvmc) {
  709. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  710. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  711. }
  712. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  713. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  714. if(v->profile != PROFILE_ADVANCED){
  715. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  716. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  717. }else{
  718. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  719. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  720. }
  721. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  722. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  723. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  724. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  725. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  726. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  727. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  728. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  729. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  730. srcU = s->edge_emu_buffer;
  731. srcV = s->edge_emu_buffer + 16;
  732. /* if we deal with range reduction we need to scale source blocks */
  733. if(v->rangeredfrm) {
  734. int i, j;
  735. uint8_t *src, *src2;
  736. src = srcU; src2 = srcV;
  737. for(j = 0; j < 9; j++) {
  738. for(i = 0; i < 9; i++) {
  739. src[i] = ((src[i] - 128) >> 1) + 128;
  740. src2[i] = ((src2[i] - 128) >> 1) + 128;
  741. }
  742. src += s->uvlinesize;
  743. src2 += s->uvlinesize;
  744. }
  745. }
  746. /* if we deal with intensity compensation we need to scale source blocks */
  747. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  748. int i, j;
  749. uint8_t *src, *src2;
  750. src = srcU; src2 = srcV;
  751. for(j = 0; j < 9; j++) {
  752. for(i = 0; i < 9; i++) {
  753. src[i] = v->lutuv[src[i]];
  754. src2[i] = v->lutuv[src2[i]];
  755. }
  756. src += s->uvlinesize;
  757. src2 += s->uvlinesize;
  758. }
  759. }
  760. }
  761. /* Chroma MC always uses qpel bilinear */
  762. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  763. uvmx = (uvmx&3)<<1;
  764. uvmy = (uvmy&3)<<1;
  765. if(!v->rnd){
  766. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  767. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  768. }else{
  769. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  770. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  771. }
  772. }
  773. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  774. /**
  775. * Decode Simple/Main Profiles sequence header
  776. * @see Figure 7-8, p16-17
  777. * @param avctx Codec context
  778. * @param gb GetBit context initialized from Codec context extra_data
  779. * @return Status
  780. */
  781. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  782. {
  783. VC1Context *v = avctx->priv_data;
  784. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  785. v->profile = get_bits(gb, 2);
  786. if (v->profile == PROFILE_COMPLEX)
  787. {
  788. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  789. }
  790. if (v->profile == PROFILE_ADVANCED)
  791. {
  792. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  793. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  794. return decode_sequence_header_adv(v, gb);
  795. }
  796. else
  797. {
  798. v->zz_8x4 = wmv2_scantableA;
  799. v->zz_4x8 = wmv2_scantableB;
  800. v->res_sm = get_bits(gb, 2); //reserved
  801. if (v->res_sm)
  802. {
  803. av_log(avctx, AV_LOG_ERROR,
  804. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  805. return -1;
  806. }
  807. }
  808. // (fps-2)/4 (->30)
  809. v->frmrtq_postproc = get_bits(gb, 3); //common
  810. // (bitrate-32kbps)/64kbps
  811. v->bitrtq_postproc = get_bits(gb, 5); //common
  812. v->s.loop_filter = get_bits1(gb); //common
  813. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  814. {
  815. av_log(avctx, AV_LOG_ERROR,
  816. "LOOPFILTER shell not be enabled in simple profile\n");
  817. }
  818. if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
  819. v->s.loop_filter = 0;
  820. v->res_x8 = get_bits1(gb); //reserved
  821. v->multires = get_bits1(gb);
  822. v->res_fasttx = get_bits1(gb);
  823. if (!v->res_fasttx)
  824. {
  825. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  826. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  827. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  828. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  829. }
  830. v->fastuvmc = get_bits1(gb); //common
  831. if (!v->profile && !v->fastuvmc)
  832. {
  833. av_log(avctx, AV_LOG_ERROR,
  834. "FASTUVMC unavailable in Simple Profile\n");
  835. return -1;
  836. }
  837. v->extended_mv = get_bits1(gb); //common
  838. if (!v->profile && v->extended_mv)
  839. {
  840. av_log(avctx, AV_LOG_ERROR,
  841. "Extended MVs unavailable in Simple Profile\n");
  842. return -1;
  843. }
  844. v->dquant = get_bits(gb, 2); //common
  845. v->vstransform = get_bits1(gb); //common
  846. v->res_transtab = get_bits1(gb);
  847. if (v->res_transtab)
  848. {
  849. av_log(avctx, AV_LOG_ERROR,
  850. "1 for reserved RES_TRANSTAB is forbidden\n");
  851. return -1;
  852. }
  853. v->overlap = get_bits1(gb); //common
  854. v->s.resync_marker = get_bits1(gb);
  855. v->rangered = get_bits1(gb);
  856. if (v->rangered && v->profile == PROFILE_SIMPLE)
  857. {
  858. av_log(avctx, AV_LOG_INFO,
  859. "RANGERED should be set to 0 in simple profile\n");
  860. }
  861. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  862. v->quantizer_mode = get_bits(gb, 2); //common
  863. v->finterpflag = get_bits1(gb); //common
  864. v->res_rtm_flag = get_bits1(gb); //reserved
  865. if (!v->res_rtm_flag)
  866. {
  867. // av_log(avctx, AV_LOG_ERROR,
  868. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  869. av_log(avctx, AV_LOG_ERROR,
  870. "Old WMV3 version detected, only I-frames will be decoded\n");
  871. //return -1;
  872. }
  873. //TODO: figure out what they mean (always 0x402F)
  874. if(!v->res_fasttx) skip_bits(gb, 16);
  875. av_log(avctx, AV_LOG_DEBUG,
  876. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  877. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  878. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  879. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  880. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  881. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  882. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  883. v->dquant, v->quantizer_mode, avctx->max_b_frames
  884. );
  885. return 0;
  886. }
  887. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  888. {
  889. v->res_rtm_flag = 1;
  890. v->level = get_bits(gb, 3);
  891. if(v->level >= 5)
  892. {
  893. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  894. }
  895. v->chromaformat = get_bits(gb, 2);
  896. if (v->chromaformat != 1)
  897. {
  898. av_log(v->s.avctx, AV_LOG_ERROR,
  899. "Only 4:2:0 chroma format supported\n");
  900. return -1;
  901. }
  902. // (fps-2)/4 (->30)
  903. v->frmrtq_postproc = get_bits(gb, 3); //common
  904. // (bitrate-32kbps)/64kbps
  905. v->bitrtq_postproc = get_bits(gb, 5); //common
  906. v->postprocflag = get_bits1(gb); //common
  907. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  908. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  909. v->s.avctx->width = v->s.avctx->coded_width;
  910. v->s.avctx->height = v->s.avctx->coded_height;
  911. v->broadcast = get_bits1(gb);
  912. v->interlace = get_bits1(gb);
  913. v->tfcntrflag = get_bits1(gb);
  914. v->finterpflag = get_bits1(gb);
  915. skip_bits1(gb); // reserved
  916. v->s.h_edge_pos = v->s.avctx->coded_width;
  917. v->s.v_edge_pos = v->s.avctx->coded_height;
  918. av_log(v->s.avctx, AV_LOG_DEBUG,
  919. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  920. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  921. "TFCTRflag=%i, FINTERPflag=%i\n",
  922. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  923. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  924. v->tfcntrflag, v->finterpflag
  925. );
  926. v->psf = get_bits1(gb);
  927. if(v->psf) { //PsF, 6.1.13
  928. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  929. return -1;
  930. }
  931. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  932. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  933. int w, h, ar = 0;
  934. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  935. v->s.avctx->coded_width = w = get_bits(gb, 14) + 1;
  936. v->s.avctx->coded_height = h = get_bits(gb, 14) + 1;
  937. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  938. if(get_bits1(gb))
  939. ar = get_bits(gb, 4);
  940. if(ar && ar < 14){
  941. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  942. }else if(ar == 15){
  943. w = get_bits(gb, 8);
  944. h = get_bits(gb, 8);
  945. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  946. }
  947. av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
  948. if(get_bits1(gb)){ //framerate stuff
  949. if(get_bits1(gb)) {
  950. v->s.avctx->time_base.num = 32;
  951. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  952. } else {
  953. int nr, dr;
  954. nr = get_bits(gb, 8);
  955. dr = get_bits(gb, 4);
  956. if(nr && nr < 8 && dr && dr < 3){
  957. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  958. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  959. }
  960. }
  961. }
  962. if(get_bits1(gb)){
  963. v->color_prim = get_bits(gb, 8);
  964. v->transfer_char = get_bits(gb, 8);
  965. v->matrix_coef = get_bits(gb, 8);
  966. }
  967. }
  968. v->hrd_param_flag = get_bits1(gb);
  969. if(v->hrd_param_flag) {
  970. int i;
  971. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  972. skip_bits(gb, 4); //bitrate exponent
  973. skip_bits(gb, 4); //buffer size exponent
  974. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  975. skip_bits(gb, 16); //hrd_rate[n]
  976. skip_bits(gb, 16); //hrd_buffer[n]
  977. }
  978. }
  979. return 0;
  980. }
  981. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  982. {
  983. VC1Context *v = avctx->priv_data;
  984. int i;
  985. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  986. v->broken_link = get_bits1(gb);
  987. v->closed_entry = get_bits1(gb);
  988. v->panscanflag = get_bits1(gb);
  989. v->refdist_flag = get_bits1(gb);
  990. v->s.loop_filter = get_bits1(gb);
  991. v->fastuvmc = get_bits1(gb);
  992. v->extended_mv = get_bits1(gb);
  993. v->dquant = get_bits(gb, 2);
  994. v->vstransform = get_bits1(gb);
  995. v->overlap = get_bits1(gb);
  996. v->quantizer_mode = get_bits(gb, 2);
  997. if(v->hrd_param_flag){
  998. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  999. skip_bits(gb, 8); //hrd_full[n]
  1000. }
  1001. }
  1002. if(get_bits1(gb)){
  1003. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1004. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1005. }
  1006. if(v->extended_mv)
  1007. v->extended_dmv = get_bits1(gb);
  1008. if((v->range_mapy_flag = get_bits1(gb))) {
  1009. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1010. v->range_mapy = get_bits(gb, 3);
  1011. }
  1012. if((v->range_mapuv_flag = get_bits1(gb))) {
  1013. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1014. v->range_mapuv = get_bits(gb, 3);
  1015. }
  1016. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1017. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1018. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1019. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1020. v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
  1021. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1022. return 0;
  1023. }
  1024. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1025. {
  1026. int pqindex, lowquant, status;
  1027. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1028. skip_bits(gb, 2); //framecnt unused
  1029. v->rangeredfrm = 0;
  1030. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  1031. v->s.pict_type = get_bits1(gb);
  1032. if (v->s.avctx->max_b_frames) {
  1033. if (!v->s.pict_type) {
  1034. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  1035. else v->s.pict_type = FF_B_TYPE;
  1036. } else v->s.pict_type = FF_P_TYPE;
  1037. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  1038. v->bi_type = 0;
  1039. if(v->s.pict_type == FF_B_TYPE) {
  1040. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1041. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  1042. if(v->bfraction == 0) {
  1043. v->s.pict_type = FF_BI_TYPE;
  1044. }
  1045. }
  1046. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1047. skip_bits(gb, 7); // skip buffer fullness
  1048. /* calculate RND */
  1049. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1050. v->rnd = 1;
  1051. if(v->s.pict_type == FF_P_TYPE)
  1052. v->rnd ^= 1;
  1053. /* Quantizer stuff */
  1054. pqindex = get_bits(gb, 5);
  1055. if(!pqindex) return -1;
  1056. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1057. v->pq = ff_vc1_pquant_table[0][pqindex];
  1058. else
  1059. v->pq = ff_vc1_pquant_table[1][pqindex];
  1060. v->pquantizer = 1;
  1061. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1062. v->pquantizer = pqindex < 9;
  1063. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1064. v->pquantizer = 0;
  1065. v->pqindex = pqindex;
  1066. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1067. else v->halfpq = 0;
  1068. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1069. v->pquantizer = get_bits1(gb);
  1070. v->dquantfrm = 0;
  1071. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1072. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1073. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1074. v->range_x = 1 << (v->k_x - 1);
  1075. v->range_y = 1 << (v->k_y - 1);
  1076. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1077. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1078. v->x8_type = get_bits1(gb);
  1079. }else v->x8_type = 0;
  1080. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1081. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1082. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1083. switch(v->s.pict_type) {
  1084. case FF_P_TYPE:
  1085. if (v->pq < 5) v->tt_index = 0;
  1086. else if(v->pq < 13) v->tt_index = 1;
  1087. else v->tt_index = 2;
  1088. lowquant = (v->pq > 12) ? 0 : 1;
  1089. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1090. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1091. {
  1092. int scale, shift, i;
  1093. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1094. v->lumscale = get_bits(gb, 6);
  1095. v->lumshift = get_bits(gb, 6);
  1096. v->use_ic = 1;
  1097. /* fill lookup tables for intensity compensation */
  1098. if(!v->lumscale) {
  1099. scale = -64;
  1100. shift = (255 - v->lumshift * 2) << 6;
  1101. if(v->lumshift > 31)
  1102. shift += 128 << 6;
  1103. } else {
  1104. scale = v->lumscale + 32;
  1105. if(v->lumshift > 31)
  1106. shift = (v->lumshift - 64) << 6;
  1107. else
  1108. shift = v->lumshift << 6;
  1109. }
  1110. for(i = 0; i < 256; i++) {
  1111. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1112. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1113. }
  1114. }
  1115. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1116. v->s.quarter_sample = 0;
  1117. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1118. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1119. v->s.quarter_sample = 0;
  1120. else
  1121. v->s.quarter_sample = 1;
  1122. } else
  1123. v->s.quarter_sample = 1;
  1124. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1125. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1126. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1127. || v->mv_mode == MV_PMODE_MIXED_MV)
  1128. {
  1129. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1130. if (status < 0) return -1;
  1131. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1132. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1133. } else {
  1134. v->mv_type_is_raw = 0;
  1135. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1136. }
  1137. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1138. if (status < 0) return -1;
  1139. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1140. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1141. /* Hopefully this is correct for P frames */
  1142. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1143. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1144. if (v->dquant)
  1145. {
  1146. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1147. vop_dquant_decoding(v);
  1148. }
  1149. v->ttfrm = 0; //FIXME Is that so ?
  1150. if (v->vstransform)
  1151. {
  1152. v->ttmbf = get_bits1(gb);
  1153. if (v->ttmbf)
  1154. {
  1155. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1156. }
  1157. } else {
  1158. v->ttmbf = 1;
  1159. v->ttfrm = TT_8X8;
  1160. }
  1161. break;
  1162. case FF_B_TYPE:
  1163. if (v->pq < 5) v->tt_index = 0;
  1164. else if(v->pq < 13) v->tt_index = 1;
  1165. else v->tt_index = 2;
  1166. lowquant = (v->pq > 12) ? 0 : 1;
  1167. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1168. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1169. v->s.mspel = v->s.quarter_sample;
  1170. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1171. if (status < 0) return -1;
  1172. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1173. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1174. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1175. if (status < 0) return -1;
  1176. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1177. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1178. v->s.mv_table_index = get_bits(gb, 2);
  1179. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1180. if (v->dquant)
  1181. {
  1182. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1183. vop_dquant_decoding(v);
  1184. }
  1185. v->ttfrm = 0;
  1186. if (v->vstransform)
  1187. {
  1188. v->ttmbf = get_bits1(gb);
  1189. if (v->ttmbf)
  1190. {
  1191. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1192. }
  1193. } else {
  1194. v->ttmbf = 1;
  1195. v->ttfrm = TT_8X8;
  1196. }
  1197. break;
  1198. }
  1199. if(!v->x8_type)
  1200. {
  1201. /* AC Syntax */
  1202. v->c_ac_table_index = decode012(gb);
  1203. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1204. {
  1205. v->y_ac_table_index = decode012(gb);
  1206. }
  1207. /* DC Syntax */
  1208. v->s.dc_table_index = get_bits1(gb);
  1209. }
  1210. if(v->s.pict_type == FF_BI_TYPE) {
  1211. v->s.pict_type = FF_B_TYPE;
  1212. v->bi_type = 1;
  1213. }
  1214. return 0;
  1215. }
  1216. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1217. {
  1218. int pqindex, lowquant;
  1219. int status;
  1220. v->p_frame_skipped = 0;
  1221. if(v->interlace){
  1222. v->fcm = decode012(gb);
  1223. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1224. }
  1225. switch(get_unary(gb, 0, 4)) {
  1226. case 0:
  1227. v->s.pict_type = FF_P_TYPE;
  1228. break;
  1229. case 1:
  1230. v->s.pict_type = FF_B_TYPE;
  1231. break;
  1232. case 2:
  1233. v->s.pict_type = FF_I_TYPE;
  1234. break;
  1235. case 3:
  1236. v->s.pict_type = FF_BI_TYPE;
  1237. break;
  1238. case 4:
  1239. v->s.pict_type = FF_P_TYPE; // skipped pic
  1240. v->p_frame_skipped = 1;
  1241. return 0;
  1242. }
  1243. if(v->tfcntrflag)
  1244. skip_bits(gb, 8);
  1245. if(v->broadcast) {
  1246. if(!v->interlace || v->psf) {
  1247. v->rptfrm = get_bits(gb, 2);
  1248. } else {
  1249. v->tff = get_bits1(gb);
  1250. v->rptfrm = get_bits1(gb);
  1251. }
  1252. }
  1253. if(v->panscanflag) {
  1254. //...
  1255. }
  1256. v->rnd = get_bits1(gb);
  1257. if(v->interlace)
  1258. v->uvsamp = get_bits1(gb);
  1259. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1260. if(v->s.pict_type == FF_B_TYPE) {
  1261. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1262. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  1263. if(v->bfraction == 0) {
  1264. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1265. }
  1266. }
  1267. pqindex = get_bits(gb, 5);
  1268. if(!pqindex) return -1;
  1269. v->pqindex = pqindex;
  1270. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1271. v->pq = ff_vc1_pquant_table[0][pqindex];
  1272. else
  1273. v->pq = ff_vc1_pquant_table[1][pqindex];
  1274. v->pquantizer = 1;
  1275. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1276. v->pquantizer = pqindex < 9;
  1277. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1278. v->pquantizer = 0;
  1279. v->pqindex = pqindex;
  1280. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1281. else v->halfpq = 0;
  1282. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1283. v->pquantizer = get_bits1(gb);
  1284. if(v->postprocflag)
  1285. v->postproc = get_bits(gb, 2);
  1286. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1287. switch(v->s.pict_type) {
  1288. case FF_I_TYPE:
  1289. case FF_BI_TYPE:
  1290. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1291. if (status < 0) return -1;
  1292. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1293. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1294. v->condover = CONDOVER_NONE;
  1295. if(v->overlap && v->pq <= 8) {
  1296. v->condover = decode012(gb);
  1297. if(v->condover == CONDOVER_SELECT) {
  1298. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1299. if (status < 0) return -1;
  1300. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1301. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1302. }
  1303. }
  1304. break;
  1305. case FF_P_TYPE:
  1306. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1307. else v->mvrange = 0;
  1308. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1309. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1310. v->range_x = 1 << (v->k_x - 1);
  1311. v->range_y = 1 << (v->k_y - 1);
  1312. if (v->pq < 5) v->tt_index = 0;
  1313. else if(v->pq < 13) v->tt_index = 1;
  1314. else v->tt_index = 2;
  1315. lowquant = (v->pq > 12) ? 0 : 1;
  1316. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1317. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1318. {
  1319. int scale, shift, i;
  1320. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1321. v->lumscale = get_bits(gb, 6);
  1322. v->lumshift = get_bits(gb, 6);
  1323. /* fill lookup tables for intensity compensation */
  1324. if(!v->lumscale) {
  1325. scale = -64;
  1326. shift = (255 - v->lumshift * 2) << 6;
  1327. if(v->lumshift > 31)
  1328. shift += 128 << 6;
  1329. } else {
  1330. scale = v->lumscale + 32;
  1331. if(v->lumshift > 31)
  1332. shift = (v->lumshift - 64) << 6;
  1333. else
  1334. shift = v->lumshift << 6;
  1335. }
  1336. for(i = 0; i < 256; i++) {
  1337. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1338. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1339. }
  1340. v->use_ic = 1;
  1341. }
  1342. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1343. v->s.quarter_sample = 0;
  1344. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1345. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1346. v->s.quarter_sample = 0;
  1347. else
  1348. v->s.quarter_sample = 1;
  1349. } else
  1350. v->s.quarter_sample = 1;
  1351. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1352. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1353. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1354. || v->mv_mode == MV_PMODE_MIXED_MV)
  1355. {
  1356. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1357. if (status < 0) return -1;
  1358. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1359. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1360. } else {
  1361. v->mv_type_is_raw = 0;
  1362. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1363. }
  1364. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1365. if (status < 0) return -1;
  1366. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1367. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1368. /* Hopefully this is correct for P frames */
  1369. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1370. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1371. if (v->dquant)
  1372. {
  1373. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1374. vop_dquant_decoding(v);
  1375. }
  1376. v->ttfrm = 0; //FIXME Is that so ?
  1377. if (v->vstransform)
  1378. {
  1379. v->ttmbf = get_bits1(gb);
  1380. if (v->ttmbf)
  1381. {
  1382. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1383. }
  1384. } else {
  1385. v->ttmbf = 1;
  1386. v->ttfrm = TT_8X8;
  1387. }
  1388. break;
  1389. case FF_B_TYPE:
  1390. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1391. else v->mvrange = 0;
  1392. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1393. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1394. v->range_x = 1 << (v->k_x - 1);
  1395. v->range_y = 1 << (v->k_y - 1);
  1396. if (v->pq < 5) v->tt_index = 0;
  1397. else if(v->pq < 13) v->tt_index = 1;
  1398. else v->tt_index = 2;
  1399. lowquant = (v->pq > 12) ? 0 : 1;
  1400. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1401. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1402. v->s.mspel = v->s.quarter_sample;
  1403. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1404. if (status < 0) return -1;
  1405. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1406. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1407. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1408. if (status < 0) return -1;
  1409. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1410. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1411. v->s.mv_table_index = get_bits(gb, 2);
  1412. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1413. if (v->dquant)
  1414. {
  1415. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1416. vop_dquant_decoding(v);
  1417. }
  1418. v->ttfrm = 0;
  1419. if (v->vstransform)
  1420. {
  1421. v->ttmbf = get_bits1(gb);
  1422. if (v->ttmbf)
  1423. {
  1424. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1425. }
  1426. } else {
  1427. v->ttmbf = 1;
  1428. v->ttfrm = TT_8X8;
  1429. }
  1430. break;
  1431. }
  1432. /* AC Syntax */
  1433. v->c_ac_table_index = decode012(gb);
  1434. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1435. {
  1436. v->y_ac_table_index = decode012(gb);
  1437. }
  1438. /* DC Syntax */
  1439. v->s.dc_table_index = get_bits1(gb);
  1440. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1441. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1442. vop_dquant_decoding(v);
  1443. }
  1444. v->bi_type = 0;
  1445. if(v->s.pict_type == FF_BI_TYPE) {
  1446. v->s.pict_type = FF_B_TYPE;
  1447. v->bi_type = 1;
  1448. }
  1449. return 0;
  1450. }
  1451. /***********************************************************************/
  1452. /**
  1453. * @defgroup vc1block VC-1 Block-level functions
  1454. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1455. * @{
  1456. */
  1457. /**
  1458. * @def GET_MQUANT
  1459. * @brief Get macroblock-level quantizer scale
  1460. */
  1461. #define GET_MQUANT() \
  1462. if (v->dquantfrm) \
  1463. { \
  1464. int edges = 0; \
  1465. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1466. { \
  1467. if (v->dqbilevel) \
  1468. { \
  1469. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1470. } \
  1471. else \
  1472. { \
  1473. mqdiff = get_bits(gb, 3); \
  1474. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1475. else mquant = get_bits(gb, 5); \
  1476. } \
  1477. } \
  1478. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1479. edges = 1 << v->dqsbedge; \
  1480. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1481. edges = (3 << v->dqsbedge) % 15; \
  1482. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1483. edges = 15; \
  1484. if((edges&1) && !s->mb_x) \
  1485. mquant = v->altpq; \
  1486. if((edges&2) && s->first_slice_line) \
  1487. mquant = v->altpq; \
  1488. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1489. mquant = v->altpq; \
  1490. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1491. mquant = v->altpq; \
  1492. }
  1493. /**
  1494. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1495. * @brief Get MV differentials
  1496. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1497. * @param _dmv_x Horizontal differential for decoded MV
  1498. * @param _dmv_y Vertical differential for decoded MV
  1499. */
  1500. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1501. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1502. VC1_MV_DIFF_VLC_BITS, 2); \
  1503. if (index > 36) \
  1504. { \
  1505. mb_has_coeffs = 1; \
  1506. index -= 37; \
  1507. } \
  1508. else mb_has_coeffs = 0; \
  1509. s->mb_intra = 0; \
  1510. if (!index) { _dmv_x = _dmv_y = 0; } \
  1511. else if (index == 35) \
  1512. { \
  1513. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1514. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1515. } \
  1516. else if (index == 36) \
  1517. { \
  1518. _dmv_x = 0; \
  1519. _dmv_y = 0; \
  1520. s->mb_intra = 1; \
  1521. } \
  1522. else \
  1523. { \
  1524. index1 = index%6; \
  1525. if (!s->quarter_sample && index1 == 5) val = 1; \
  1526. else val = 0; \
  1527. if(size_table[index1] - val > 0) \
  1528. val = get_bits(gb, size_table[index1] - val); \
  1529. else val = 0; \
  1530. sign = 0 - (val&1); \
  1531. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1532. \
  1533. index1 = index/6; \
  1534. if (!s->quarter_sample && index1 == 5) val = 1; \
  1535. else val = 0; \
  1536. if(size_table[index1] - val > 0) \
  1537. val = get_bits(gb, size_table[index1] - val); \
  1538. else val = 0; \
  1539. sign = 0 - (val&1); \
  1540. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1541. }
  1542. /** Predict and set motion vector
  1543. */
  1544. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1545. {
  1546. int xy, wrap, off = 0;
  1547. int16_t *A, *B, *C;
  1548. int px, py;
  1549. int sum;
  1550. /* scale MV difference to be quad-pel */
  1551. dmv_x <<= 1 - s->quarter_sample;
  1552. dmv_y <<= 1 - s->quarter_sample;
  1553. wrap = s->b8_stride;
  1554. xy = s->block_index[n];
  1555. if(s->mb_intra){
  1556. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1557. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1558. s->current_picture.motion_val[1][xy][0] = 0;
  1559. s->current_picture.motion_val[1][xy][1] = 0;
  1560. if(mv1) { /* duplicate motion data for 1-MV block */
  1561. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1562. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1563. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1564. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1565. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1566. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1567. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1568. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1569. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1570. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1571. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1572. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1573. }
  1574. return;
  1575. }
  1576. C = s->current_picture.motion_val[0][xy - 1];
  1577. A = s->current_picture.motion_val[0][xy - wrap];
  1578. if(mv1)
  1579. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1580. else {
  1581. //in 4-MV mode different blocks have different B predictor position
  1582. switch(n){
  1583. case 0:
  1584. off = (s->mb_x > 0) ? -1 : 1;
  1585. break;
  1586. case 1:
  1587. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1588. break;
  1589. case 2:
  1590. off = 1;
  1591. break;
  1592. case 3:
  1593. off = -1;
  1594. }
  1595. }
  1596. B = s->current_picture.motion_val[0][xy - wrap + off];
  1597. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1598. if(s->mb_width == 1) {
  1599. px = A[0];
  1600. py = A[1];
  1601. } else {
  1602. px = mid_pred(A[0], B[0], C[0]);
  1603. py = mid_pred(A[1], B[1], C[1]);
  1604. }
  1605. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1606. px = C[0];
  1607. py = C[1];
  1608. } else {
  1609. px = py = 0;
  1610. }
  1611. /* Pullback MV as specified in 8.3.5.3.4 */
  1612. {
  1613. int qx, qy, X, Y;
  1614. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1615. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1616. X = (s->mb_width << 6) - 4;
  1617. Y = (s->mb_height << 6) - 4;
  1618. if(mv1) {
  1619. if(qx + px < -60) px = -60 - qx;
  1620. if(qy + py < -60) py = -60 - qy;
  1621. } else {
  1622. if(qx + px < -28) px = -28 - qx;
  1623. if(qy + py < -28) py = -28 - qy;
  1624. }
  1625. if(qx + px > X) px = X - qx;
  1626. if(qy + py > Y) py = Y - qy;
  1627. }
  1628. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1629. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1630. if(is_intra[xy - wrap])
  1631. sum = FFABS(px) + FFABS(py);
  1632. else
  1633. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1634. if(sum > 32) {
  1635. if(get_bits1(&s->gb)) {
  1636. px = A[0];
  1637. py = A[1];
  1638. } else {
  1639. px = C[0];
  1640. py = C[1];
  1641. }
  1642. } else {
  1643. if(is_intra[xy - 1])
  1644. sum = FFABS(px) + FFABS(py);
  1645. else
  1646. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1647. if(sum > 32) {
  1648. if(get_bits1(&s->gb)) {
  1649. px = A[0];
  1650. py = A[1];
  1651. } else {
  1652. px = C[0];
  1653. py = C[1];
  1654. }
  1655. }
  1656. }
  1657. }
  1658. /* store MV using signed modulus of MV range defined in 4.11 */
  1659. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1660. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1661. if(mv1) { /* duplicate motion data for 1-MV block */
  1662. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1663. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1664. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1665. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1666. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1667. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1668. }
  1669. }
  1670. /** Motion compensation for direct or interpolated blocks in B-frames
  1671. */
  1672. static void vc1_interp_mc(VC1Context *v)
  1673. {
  1674. MpegEncContext *s = &v->s;
  1675. DSPContext *dsp = &v->s.dsp;
  1676. uint8_t *srcY, *srcU, *srcV;
  1677. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1678. if(!v->s.next_picture.data[0])return;
  1679. mx = s->mv[1][0][0];
  1680. my = s->mv[1][0][1];
  1681. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1682. uvmy = (my + ((my & 3) == 3)) >> 1;
  1683. if(v->fastuvmc) {
  1684. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1685. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1686. }
  1687. srcY = s->next_picture.data[0];
  1688. srcU = s->next_picture.data[1];
  1689. srcV = s->next_picture.data[2];
  1690. src_x = s->mb_x * 16 + (mx >> 2);
  1691. src_y = s->mb_y * 16 + (my >> 2);
  1692. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1693. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1694. if(v->profile != PROFILE_ADVANCED){
  1695. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1696. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1697. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1698. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1699. }else{
  1700. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1701. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1702. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1703. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1704. }
  1705. srcY += src_y * s->linesize + src_x;
  1706. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1707. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1708. /* for grayscale we should not try to read from unknown area */
  1709. if(s->flags & CODEC_FLAG_GRAY) {
  1710. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1711. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1712. }
  1713. if(v->rangeredfrm
  1714. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1715. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1716. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1717. srcY -= s->mspel * (1 + s->linesize);
  1718. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1719. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1720. srcY = s->edge_emu_buffer;
  1721. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1722. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1723. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1724. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1725. srcU = uvbuf;
  1726. srcV = uvbuf + 16;
  1727. /* if we deal with range reduction we need to scale source blocks */
  1728. if(v->rangeredfrm) {
  1729. int i, j;
  1730. uint8_t *src, *src2;
  1731. src = srcY;
  1732. for(j = 0; j < 17 + s->mspel*2; j++) {
  1733. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1734. src += s->linesize;
  1735. }
  1736. src = srcU; src2 = srcV;
  1737. for(j = 0; j < 9; j++) {
  1738. for(i = 0; i < 9; i++) {
  1739. src[i] = ((src[i] - 128) >> 1) + 128;
  1740. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1741. }
  1742. src += s->uvlinesize;
  1743. src2 += s->uvlinesize;
  1744. }
  1745. }
  1746. srcY += s->mspel * (1 + s->linesize);
  1747. }
  1748. mx >>= 1;
  1749. my >>= 1;
  1750. dxy = ((my & 1) << 1) | (mx & 1);
  1751. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1752. if(s->flags & CODEC_FLAG_GRAY) return;
  1753. /* Chroma MC always uses qpel blilinear */
  1754. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1755. uvmx = (uvmx&3)<<1;
  1756. uvmy = (uvmy&3)<<1;
  1757. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1758. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1759. }
  1760. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1761. {
  1762. int n = bfrac;
  1763. #if B_FRACTION_DEN==256
  1764. if(inv)
  1765. n -= 256;
  1766. if(!qs)
  1767. return 2 * ((value * n + 255) >> 9);
  1768. return (value * n + 128) >> 8;
  1769. #else
  1770. if(inv)
  1771. n -= B_FRACTION_DEN;
  1772. if(!qs)
  1773. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1774. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1775. #endif
  1776. }
  1777. /** Reconstruct motion vector for B-frame and do motion compensation
  1778. */
  1779. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1780. {
  1781. if(v->use_ic) {
  1782. v->mv_mode2 = v->mv_mode;
  1783. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1784. }
  1785. if(direct) {
  1786. vc1_mc_1mv(v, 0);
  1787. vc1_interp_mc(v);
  1788. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1789. return;
  1790. }
  1791. if(mode == BMV_TYPE_INTERPOLATED) {
  1792. vc1_mc_1mv(v, 0);
  1793. vc1_interp_mc(v);
  1794. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1795. return;
  1796. }
  1797. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1798. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1799. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1800. }
  1801. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1802. {
  1803. MpegEncContext *s = &v->s;
  1804. int xy, wrap, off = 0;
  1805. int16_t *A, *B, *C;
  1806. int px, py;
  1807. int sum;
  1808. int r_x, r_y;
  1809. const uint8_t *is_intra = v->mb_type[0];
  1810. r_x = v->range_x;
  1811. r_y = v->range_y;
  1812. /* scale MV difference to be quad-pel */
  1813. dmv_x[0] <<= 1 - s->quarter_sample;
  1814. dmv_y[0] <<= 1 - s->quarter_sample;
  1815. dmv_x[1] <<= 1 - s->quarter_sample;
  1816. dmv_y[1] <<= 1 - s->quarter_sample;
  1817. wrap = s->b8_stride;
  1818. xy = s->block_index[0];
  1819. if(s->mb_intra) {
  1820. s->current_picture.motion_val[0][xy][0] =
  1821. s->current_picture.motion_val[0][xy][1] =
  1822. s->current_picture.motion_val[1][xy][0] =
  1823. s->current_picture.motion_val[1][xy][1] = 0;
  1824. return;
  1825. }
  1826. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1827. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1828. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1829. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1830. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1831. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1832. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1833. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1834. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1835. if(direct) {
  1836. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1837. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1838. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1839. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1840. return;
  1841. }
  1842. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1843. C = s->current_picture.motion_val[0][xy - 2];
  1844. A = s->current_picture.motion_val[0][xy - wrap*2];
  1845. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1846. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1847. if(!s->mb_x) C[0] = C[1] = 0;
  1848. if(!s->first_slice_line) { // predictor A is not out of bounds
  1849. if(s->mb_width == 1) {
  1850. px = A[0];
  1851. py = A[1];
  1852. } else {
  1853. px = mid_pred(A[0], B[0], C[0]);
  1854. py = mid_pred(A[1], B[1], C[1]);
  1855. }
  1856. } else if(s->mb_x) { // predictor C is not out of bounds
  1857. px = C[0];
  1858. py = C[1];
  1859. } else {
  1860. px = py = 0;
  1861. }
  1862. /* Pullback MV as specified in 8.3.5.3.4 */
  1863. {
  1864. int qx, qy, X, Y;
  1865. if(v->profile < PROFILE_ADVANCED) {
  1866. qx = (s->mb_x << 5);
  1867. qy = (s->mb_y << 5);
  1868. X = (s->mb_width << 5) - 4;
  1869. Y = (s->mb_height << 5) - 4;
  1870. if(qx + px < -28) px = -28 - qx;
  1871. if(qy + py < -28) py = -28 - qy;
  1872. if(qx + px > X) px = X - qx;
  1873. if(qy + py > Y) py = Y - qy;
  1874. } else {
  1875. qx = (s->mb_x << 6);
  1876. qy = (s->mb_y << 6);
  1877. X = (s->mb_width << 6) - 4;
  1878. Y = (s->mb_height << 6) - 4;
  1879. if(qx + px < -60) px = -60 - qx;
  1880. if(qy + py < -60) py = -60 - qy;
  1881. if(qx + px > X) px = X - qx;
  1882. if(qy + py > Y) py = Y - qy;
  1883. }
  1884. }
  1885. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1886. if(0 && !s->first_slice_line && s->mb_x) {
  1887. if(is_intra[xy - wrap])
  1888. sum = FFABS(px) + FFABS(py);
  1889. else
  1890. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1891. if(sum > 32) {
  1892. if(get_bits1(&s->gb)) {
  1893. px = A[0];
  1894. py = A[1];
  1895. } else {
  1896. px = C[0];
  1897. py = C[1];
  1898. }
  1899. } else {
  1900. if(is_intra[xy - 2])
  1901. sum = FFABS(px) + FFABS(py);
  1902. else
  1903. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1904. if(sum > 32) {
  1905. if(get_bits1(&s->gb)) {
  1906. px = A[0];
  1907. py = A[1];
  1908. } else {
  1909. px = C[0];
  1910. py = C[1];
  1911. }
  1912. }
  1913. }
  1914. }
  1915. /* store MV using signed modulus of MV range defined in 4.11 */
  1916. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1917. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1918. }
  1919. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1920. C = s->current_picture.motion_val[1][xy - 2];
  1921. A = s->current_picture.motion_val[1][xy - wrap*2];
  1922. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1923. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1924. if(!s->mb_x) C[0] = C[1] = 0;
  1925. if(!s->first_slice_line) { // predictor A is not out of bounds
  1926. if(s->mb_width == 1) {
  1927. px = A[0];
  1928. py = A[1];
  1929. } else {
  1930. px = mid_pred(A[0], B[0], C[0]);
  1931. py = mid_pred(A[1], B[1], C[1]);
  1932. }
  1933. } else if(s->mb_x) { // predictor C is not out of bounds
  1934. px = C[0];
  1935. py = C[1];
  1936. } else {
  1937. px = py = 0;
  1938. }
  1939. /* Pullback MV as specified in 8.3.5.3.4 */
  1940. {
  1941. int qx, qy, X, Y;
  1942. if(v->profile < PROFILE_ADVANCED) {
  1943. qx = (s->mb_x << 5);
  1944. qy = (s->mb_y << 5);
  1945. X = (s->mb_width << 5) - 4;
  1946. Y = (s->mb_height << 5) - 4;
  1947. if(qx + px < -28) px = -28 - qx;
  1948. if(qy + py < -28) py = -28 - qy;
  1949. if(qx + px > X) px = X - qx;
  1950. if(qy + py > Y) py = Y - qy;
  1951. } else {
  1952. qx = (s->mb_x << 6);
  1953. qy = (s->mb_y << 6);
  1954. X = (s->mb_width << 6) - 4;
  1955. Y = (s->mb_height << 6) - 4;
  1956. if(qx + px < -60) px = -60 - qx;
  1957. if(qy + py < -60) py = -60 - qy;
  1958. if(qx + px > X) px = X - qx;
  1959. if(qy + py > Y) py = Y - qy;
  1960. }
  1961. }
  1962. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1963. if(0 && !s->first_slice_line && s->mb_x) {
  1964. if(is_intra[xy - wrap])
  1965. sum = FFABS(px) + FFABS(py);
  1966. else
  1967. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1968. if(sum > 32) {
  1969. if(get_bits1(&s->gb)) {
  1970. px = A[0];
  1971. py = A[1];
  1972. } else {
  1973. px = C[0];
  1974. py = C[1];
  1975. }
  1976. } else {
  1977. if(is_intra[xy - 2])
  1978. sum = FFABS(px) + FFABS(py);
  1979. else
  1980. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1981. if(sum > 32) {
  1982. if(get_bits1(&s->gb)) {
  1983. px = A[0];
  1984. py = A[1];
  1985. } else {
  1986. px = C[0];
  1987. py = C[1];
  1988. }
  1989. }
  1990. }
  1991. }
  1992. /* store MV using signed modulus of MV range defined in 4.11 */
  1993. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1994. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1995. }
  1996. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1997. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1998. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1999. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2000. }
  2001. /** Get predicted DC value for I-frames only
  2002. * prediction dir: left=0, top=1
  2003. * @param s MpegEncContext
  2004. * @param overlap flag indicating that overlap filtering is used
  2005. * @param pq integer part of picture quantizer
  2006. * @param[in] n block index in the current MB
  2007. * @param dc_val_ptr Pointer to DC predictor
  2008. * @param dir_ptr Prediction direction for use in AC prediction
  2009. */
  2010. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2011. int16_t **dc_val_ptr, int *dir_ptr)
  2012. {
  2013. int a, b, c, wrap, pred, scale;
  2014. int16_t *dc_val;
  2015. static const uint16_t dcpred[32] = {
  2016. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2017. 114, 102, 93, 85, 79, 73, 68, 64,
  2018. 60, 57, 54, 51, 49, 47, 45, 43,
  2019. 41, 39, 38, 37, 35, 34, 33
  2020. };
  2021. /* find prediction - wmv3_dc_scale always used here in fact */
  2022. if (n < 4) scale = s->y_dc_scale;
  2023. else scale = s->c_dc_scale;
  2024. wrap = s->block_wrap[n];
  2025. dc_val= s->dc_val[0] + s->block_index[n];
  2026. /* B A
  2027. * C X
  2028. */
  2029. c = dc_val[ - 1];
  2030. b = dc_val[ - 1 - wrap];
  2031. a = dc_val[ - wrap];
  2032. if (pq < 9 || !overlap)
  2033. {
  2034. /* Set outer values */
  2035. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2036. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2037. }
  2038. else
  2039. {
  2040. /* Set outer values */
  2041. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2042. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2043. }
  2044. if (abs(a - b) <= abs(b - c)) {
  2045. pred = c;
  2046. *dir_ptr = 1;//left
  2047. } else {
  2048. pred = a;
  2049. *dir_ptr = 0;//top
  2050. }
  2051. /* update predictor */
  2052. *dc_val_ptr = &dc_val[0];
  2053. return pred;
  2054. }
  2055. /** Get predicted DC value
  2056. * prediction dir: left=0, top=1
  2057. * @param s MpegEncContext
  2058. * @param overlap flag indicating that overlap filtering is used
  2059. * @param pq integer part of picture quantizer
  2060. * @param[in] n block index in the current MB
  2061. * @param a_avail flag indicating top block availability
  2062. * @param c_avail flag indicating left block availability
  2063. * @param dc_val_ptr Pointer to DC predictor
  2064. * @param dir_ptr Prediction direction for use in AC prediction
  2065. */
  2066. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2067. int a_avail, int c_avail,
  2068. int16_t **dc_val_ptr, int *dir_ptr)
  2069. {
  2070. int a, b, c, wrap, pred, scale;
  2071. int16_t *dc_val;
  2072. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2073. int q1, q2 = 0;
  2074. /* find prediction - wmv3_dc_scale always used here in fact */
  2075. if (n < 4) scale = s->y_dc_scale;
  2076. else scale = s->c_dc_scale;
  2077. wrap = s->block_wrap[n];
  2078. dc_val= s->dc_val[0] + s->block_index[n];
  2079. /* B A
  2080. * C X
  2081. */
  2082. c = dc_val[ - 1];
  2083. b = dc_val[ - 1 - wrap];
  2084. a = dc_val[ - wrap];
  2085. /* scale predictors if needed */
  2086. q1 = s->current_picture.qscale_table[mb_pos];
  2087. if(c_avail && (n!= 1 && n!=3)) {
  2088. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2089. if(q2 && q2 != q1)
  2090. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2091. }
  2092. if(a_avail && (n!= 2 && n!=3)) {
  2093. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2094. if(q2 && q2 != q1)
  2095. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2096. }
  2097. if(a_avail && c_avail && (n!=3)) {
  2098. int off = mb_pos;
  2099. if(n != 1) off--;
  2100. if(n != 2) off -= s->mb_stride;
  2101. q2 = s->current_picture.qscale_table[off];
  2102. if(q2 && q2 != q1)
  2103. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2104. }
  2105. if(a_avail && c_avail) {
  2106. if(abs(a - b) <= abs(b - c)) {
  2107. pred = c;
  2108. *dir_ptr = 1;//left
  2109. } else {
  2110. pred = a;
  2111. *dir_ptr = 0;//top
  2112. }
  2113. } else if(a_avail) {
  2114. pred = a;
  2115. *dir_ptr = 0;//top
  2116. } else if(c_avail) {
  2117. pred = c;
  2118. *dir_ptr = 1;//left
  2119. } else {
  2120. pred = 0;
  2121. *dir_ptr = 1;//left
  2122. }
  2123. /* update predictor */
  2124. *dc_val_ptr = &dc_val[0];
  2125. return pred;
  2126. }
  2127. /** @} */ // Block group
  2128. /**
  2129. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2130. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2131. * @{
  2132. */
  2133. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2134. {
  2135. int xy, wrap, pred, a, b, c;
  2136. xy = s->block_index[n];
  2137. wrap = s->b8_stride;
  2138. /* B C
  2139. * A X
  2140. */
  2141. a = s->coded_block[xy - 1 ];
  2142. b = s->coded_block[xy - 1 - wrap];
  2143. c = s->coded_block[xy - wrap];
  2144. if (b == c) {
  2145. pred = a;
  2146. } else {
  2147. pred = c;
  2148. }
  2149. /* store value */
  2150. *coded_block_ptr = &s->coded_block[xy];
  2151. return pred;
  2152. }
  2153. /**
  2154. * Decode one AC coefficient
  2155. * @param v The VC1 context
  2156. * @param last Last coefficient
  2157. * @param skip How much zero coefficients to skip
  2158. * @param value Decoded AC coefficient value
  2159. * @param codingset set of VLC to decode data
  2160. * @see 8.1.3.4
  2161. */
  2162. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2163. {
  2164. GetBitContext *gb = &v->s.gb;
  2165. int index, escape, run = 0, level = 0, lst = 0;
  2166. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2167. if (index != vc1_ac_sizes[codingset] - 1) {
  2168. run = vc1_index_decode_table[codingset][index][0];
  2169. level = vc1_index_decode_table[codingset][index][1];
  2170. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  2171. if(get_bits1(gb))
  2172. level = -level;
  2173. } else {
  2174. escape = decode210(gb);
  2175. if (escape != 2) {
  2176. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2177. run = vc1_index_decode_table[codingset][index][0];
  2178. level = vc1_index_decode_table[codingset][index][1];
  2179. lst = index >= vc1_last_decode_table[codingset];
  2180. if(escape == 0) {
  2181. if(lst)
  2182. level += vc1_last_delta_level_table[codingset][run];
  2183. else
  2184. level += vc1_delta_level_table[codingset][run];
  2185. } else {
  2186. if(lst)
  2187. run += vc1_last_delta_run_table[codingset][level] + 1;
  2188. else
  2189. run += vc1_delta_run_table[codingset][level] + 1;
  2190. }
  2191. if(get_bits1(gb))
  2192. level = -level;
  2193. } else {
  2194. int sign;
  2195. lst = get_bits1(gb);
  2196. if(v->s.esc3_level_length == 0) {
  2197. if(v->pq < 8 || v->dquantfrm) { // table 59
  2198. v->s.esc3_level_length = get_bits(gb, 3);
  2199. if(!v->s.esc3_level_length)
  2200. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2201. } else { //table 60
  2202. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2203. }
  2204. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2205. }
  2206. run = get_bits(gb, v->s.esc3_run_length);
  2207. sign = get_bits1(gb);
  2208. level = get_bits(gb, v->s.esc3_level_length);
  2209. if(sign)
  2210. level = -level;
  2211. }
  2212. }
  2213. *last = lst;
  2214. *skip = run;
  2215. *value = level;
  2216. }
  2217. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2218. * @param v VC1Context
  2219. * @param block block to decode
  2220. * @param[in] n subblock index
  2221. * @param coded are AC coeffs present or not
  2222. * @param codingset set of VLC to decode data
  2223. */
  2224. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2225. {
  2226. GetBitContext *gb = &v->s.gb;
  2227. MpegEncContext *s = &v->s;
  2228. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2229. int run_diff, i;
  2230. int16_t *dc_val;
  2231. int16_t *ac_val, *ac_val2;
  2232. int dcdiff;
  2233. /* Get DC differential */
  2234. if (n < 4) {
  2235. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2236. } else {
  2237. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2238. }
  2239. if (dcdiff < 0){
  2240. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2241. return -1;
  2242. }
  2243. if (dcdiff)
  2244. {
  2245. if (dcdiff == 119 /* ESC index value */)
  2246. {
  2247. /* TODO: Optimize */
  2248. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2249. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2250. else dcdiff = get_bits(gb, 8);
  2251. }
  2252. else
  2253. {
  2254. if (v->pq == 1)
  2255. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2256. else if (v->pq == 2)
  2257. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2258. }
  2259. if (get_bits1(gb))
  2260. dcdiff = -dcdiff;
  2261. }
  2262. /* Prediction */
  2263. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2264. *dc_val = dcdiff;
  2265. /* Store the quantized DC coeff, used for prediction */
  2266. if (n < 4) {
  2267. block[0] = dcdiff * s->y_dc_scale;
  2268. } else {
  2269. block[0] = dcdiff * s->c_dc_scale;
  2270. }
  2271. /* Skip ? */
  2272. run_diff = 0;
  2273. i = 0;
  2274. if (!coded) {
  2275. goto not_coded;
  2276. }
  2277. //AC Decoding
  2278. i = 1;
  2279. {
  2280. int last = 0, skip, value;
  2281. const int8_t *zz_table;
  2282. int scale;
  2283. int k;
  2284. scale = v->pq * 2 + v->halfpq;
  2285. if(v->s.ac_pred) {
  2286. if(!dc_pred_dir)
  2287. zz_table = wmv1_scantable[2];
  2288. else
  2289. zz_table = wmv1_scantable[3];
  2290. } else
  2291. zz_table = wmv1_scantable[1];
  2292. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2293. ac_val2 = ac_val;
  2294. if(dc_pred_dir) //left
  2295. ac_val -= 16;
  2296. else //top
  2297. ac_val -= 16 * s->block_wrap[n];
  2298. while (!last) {
  2299. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2300. i += skip;
  2301. if(i > 63)
  2302. break;
  2303. block[zz_table[i++]] = value;
  2304. }
  2305. /* apply AC prediction if needed */
  2306. if(s->ac_pred) {
  2307. if(dc_pred_dir) { //left
  2308. for(k = 1; k < 8; k++)
  2309. block[k << 3] += ac_val[k];
  2310. } else { //top
  2311. for(k = 1; k < 8; k++)
  2312. block[k] += ac_val[k + 8];
  2313. }
  2314. }
  2315. /* save AC coeffs for further prediction */
  2316. for(k = 1; k < 8; k++) {
  2317. ac_val2[k] = block[k << 3];
  2318. ac_val2[k + 8] = block[k];
  2319. }
  2320. /* scale AC coeffs */
  2321. for(k = 1; k < 64; k++)
  2322. if(block[k]) {
  2323. block[k] *= scale;
  2324. if(!v->pquantizer)
  2325. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2326. }
  2327. if(s->ac_pred) i = 63;
  2328. }
  2329. not_coded:
  2330. if(!coded) {
  2331. int k, scale;
  2332. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2333. ac_val2 = ac_val;
  2334. scale = v->pq * 2 + v->halfpq;
  2335. memset(ac_val2, 0, 16 * 2);
  2336. if(dc_pred_dir) {//left
  2337. ac_val -= 16;
  2338. if(s->ac_pred)
  2339. memcpy(ac_val2, ac_val, 8 * 2);
  2340. } else {//top
  2341. ac_val -= 16 * s->block_wrap[n];
  2342. if(s->ac_pred)
  2343. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2344. }
  2345. /* apply AC prediction if needed */
  2346. if(s->ac_pred) {
  2347. if(dc_pred_dir) { //left
  2348. for(k = 1; k < 8; k++) {
  2349. block[k << 3] = ac_val[k] * scale;
  2350. if(!v->pquantizer && block[k << 3])
  2351. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2352. }
  2353. } else { //top
  2354. for(k = 1; k < 8; k++) {
  2355. block[k] = ac_val[k + 8] * scale;
  2356. if(!v->pquantizer && block[k])
  2357. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2358. }
  2359. }
  2360. i = 63;
  2361. }
  2362. }
  2363. s->block_last_index[n] = i;
  2364. return 0;
  2365. }
  2366. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2367. * @param v VC1Context
  2368. * @param block block to decode
  2369. * @param[in] n subblock number
  2370. * @param coded are AC coeffs present or not
  2371. * @param codingset set of VLC to decode data
  2372. * @param mquant quantizer value for this macroblock
  2373. */
  2374. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2375. {
  2376. GetBitContext *gb = &v->s.gb;
  2377. MpegEncContext *s = &v->s;
  2378. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2379. int run_diff, i;
  2380. int16_t *dc_val;
  2381. int16_t *ac_val, *ac_val2;
  2382. int dcdiff;
  2383. int a_avail = v->a_avail, c_avail = v->c_avail;
  2384. int use_pred = s->ac_pred;
  2385. int scale;
  2386. int q1, q2 = 0;
  2387. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2388. /* Get DC differential */
  2389. if (n < 4) {
  2390. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2391. } else {
  2392. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2393. }
  2394. if (dcdiff < 0){
  2395. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2396. return -1;
  2397. }
  2398. if (dcdiff)
  2399. {
  2400. if (dcdiff == 119 /* ESC index value */)
  2401. {
  2402. /* TODO: Optimize */
  2403. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2404. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2405. else dcdiff = get_bits(gb, 8);
  2406. }
  2407. else
  2408. {
  2409. if (mquant == 1)
  2410. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2411. else if (mquant == 2)
  2412. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2413. }
  2414. if (get_bits1(gb))
  2415. dcdiff = -dcdiff;
  2416. }
  2417. /* Prediction */
  2418. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2419. *dc_val = dcdiff;
  2420. /* Store the quantized DC coeff, used for prediction */
  2421. if (n < 4) {
  2422. block[0] = dcdiff * s->y_dc_scale;
  2423. } else {
  2424. block[0] = dcdiff * s->c_dc_scale;
  2425. }
  2426. /* Skip ? */
  2427. run_diff = 0;
  2428. i = 0;
  2429. //AC Decoding
  2430. i = 1;
  2431. /* check if AC is needed at all */
  2432. if(!a_avail && !c_avail) use_pred = 0;
  2433. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2434. ac_val2 = ac_val;
  2435. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2436. if(dc_pred_dir) //left
  2437. ac_val -= 16;
  2438. else //top
  2439. ac_val -= 16 * s->block_wrap[n];
  2440. q1 = s->current_picture.qscale_table[mb_pos];
  2441. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2442. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2443. if(dc_pred_dir && n==1) q2 = q1;
  2444. if(!dc_pred_dir && n==2) q2 = q1;
  2445. if(n==3) q2 = q1;
  2446. if(coded) {
  2447. int last = 0, skip, value;
  2448. const int8_t *zz_table;
  2449. int k;
  2450. if(v->s.ac_pred) {
  2451. if(!dc_pred_dir)
  2452. zz_table = wmv1_scantable[2];
  2453. else
  2454. zz_table = wmv1_scantable[3];
  2455. } else
  2456. zz_table = wmv1_scantable[1];
  2457. while (!last) {
  2458. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2459. i += skip;
  2460. if(i > 63)
  2461. break;
  2462. block[zz_table[i++]] = value;
  2463. }
  2464. /* apply AC prediction if needed */
  2465. if(use_pred) {
  2466. /* scale predictors if needed*/
  2467. if(q2 && q1!=q2) {
  2468. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2469. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2470. if(dc_pred_dir) { //left
  2471. for(k = 1; k < 8; k++)
  2472. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2473. } else { //top
  2474. for(k = 1; k < 8; k++)
  2475. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2476. }
  2477. } else {
  2478. if(dc_pred_dir) { //left
  2479. for(k = 1; k < 8; k++)
  2480. block[k << 3] += ac_val[k];
  2481. } else { //top
  2482. for(k = 1; k < 8; k++)
  2483. block[k] += ac_val[k + 8];
  2484. }
  2485. }
  2486. }
  2487. /* save AC coeffs for further prediction */
  2488. for(k = 1; k < 8; k++) {
  2489. ac_val2[k] = block[k << 3];
  2490. ac_val2[k + 8] = block[k];
  2491. }
  2492. /* scale AC coeffs */
  2493. for(k = 1; k < 64; k++)
  2494. if(block[k]) {
  2495. block[k] *= scale;
  2496. if(!v->pquantizer)
  2497. block[k] += (block[k] < 0) ? -mquant : mquant;
  2498. }
  2499. if(use_pred) i = 63;
  2500. } else { // no AC coeffs
  2501. int k;
  2502. memset(ac_val2, 0, 16 * 2);
  2503. if(dc_pred_dir) {//left
  2504. if(use_pred) {
  2505. memcpy(ac_val2, ac_val, 8 * 2);
  2506. if(q2 && q1!=q2) {
  2507. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2508. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2509. for(k = 1; k < 8; k++)
  2510. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2511. }
  2512. }
  2513. } else {//top
  2514. if(use_pred) {
  2515. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2516. if(q2 && q1!=q2) {
  2517. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2518. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2519. for(k = 1; k < 8; k++)
  2520. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2521. }
  2522. }
  2523. }
  2524. /* apply AC prediction if needed */
  2525. if(use_pred) {
  2526. if(dc_pred_dir) { //left
  2527. for(k = 1; k < 8; k++) {
  2528. block[k << 3] = ac_val2[k] * scale;
  2529. if(!v->pquantizer && block[k << 3])
  2530. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2531. }
  2532. } else { //top
  2533. for(k = 1; k < 8; k++) {
  2534. block[k] = ac_val2[k + 8] * scale;
  2535. if(!v->pquantizer && block[k])
  2536. block[k] += (block[k] < 0) ? -mquant : mquant;
  2537. }
  2538. }
  2539. i = 63;
  2540. }
  2541. }
  2542. s->block_last_index[n] = i;
  2543. return 0;
  2544. }
  2545. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2546. * @param v VC1Context
  2547. * @param block block to decode
  2548. * @param[in] n subblock index
  2549. * @param coded are AC coeffs present or not
  2550. * @param mquant block quantizer
  2551. * @param codingset set of VLC to decode data
  2552. */
  2553. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2554. {
  2555. GetBitContext *gb = &v->s.gb;
  2556. MpegEncContext *s = &v->s;
  2557. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2558. int run_diff, i;
  2559. int16_t *dc_val;
  2560. int16_t *ac_val, *ac_val2;
  2561. int dcdiff;
  2562. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2563. int a_avail = v->a_avail, c_avail = v->c_avail;
  2564. int use_pred = s->ac_pred;
  2565. int scale;
  2566. int q1, q2 = 0;
  2567. /* XXX: Guard against dumb values of mquant */
  2568. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2569. /* Set DC scale - y and c use the same */
  2570. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2571. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2572. /* Get DC differential */
  2573. if (n < 4) {
  2574. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2575. } else {
  2576. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2577. }
  2578. if (dcdiff < 0){
  2579. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2580. return -1;
  2581. }
  2582. if (dcdiff)
  2583. {
  2584. if (dcdiff == 119 /* ESC index value */)
  2585. {
  2586. /* TODO: Optimize */
  2587. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2588. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2589. else dcdiff = get_bits(gb, 8);
  2590. }
  2591. else
  2592. {
  2593. if (mquant == 1)
  2594. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2595. else if (mquant == 2)
  2596. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2597. }
  2598. if (get_bits1(gb))
  2599. dcdiff = -dcdiff;
  2600. }
  2601. /* Prediction */
  2602. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2603. *dc_val = dcdiff;
  2604. /* Store the quantized DC coeff, used for prediction */
  2605. if (n < 4) {
  2606. block[0] = dcdiff * s->y_dc_scale;
  2607. } else {
  2608. block[0] = dcdiff * s->c_dc_scale;
  2609. }
  2610. /* Skip ? */
  2611. run_diff = 0;
  2612. i = 0;
  2613. //AC Decoding
  2614. i = 1;
  2615. /* check if AC is needed at all and adjust direction if needed */
  2616. if(!a_avail) dc_pred_dir = 1;
  2617. if(!c_avail) dc_pred_dir = 0;
  2618. if(!a_avail && !c_avail) use_pred = 0;
  2619. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2620. ac_val2 = ac_val;
  2621. scale = mquant * 2 + v->halfpq;
  2622. if(dc_pred_dir) //left
  2623. ac_val -= 16;
  2624. else //top
  2625. ac_val -= 16 * s->block_wrap[n];
  2626. q1 = s->current_picture.qscale_table[mb_pos];
  2627. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2628. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2629. if(dc_pred_dir && n==1) q2 = q1;
  2630. if(!dc_pred_dir && n==2) q2 = q1;
  2631. if(n==3) q2 = q1;
  2632. if(coded) {
  2633. int last = 0, skip, value;
  2634. const int8_t *zz_table;
  2635. int k;
  2636. zz_table = wmv1_scantable[0];
  2637. while (!last) {
  2638. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2639. i += skip;
  2640. if(i > 63)
  2641. break;
  2642. block[zz_table[i++]] = value;
  2643. }
  2644. /* apply AC prediction if needed */
  2645. if(use_pred) {
  2646. /* scale predictors if needed*/
  2647. if(q2 && q1!=q2) {
  2648. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2649. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2650. if(dc_pred_dir) { //left
  2651. for(k = 1; k < 8; k++)
  2652. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2653. } else { //top
  2654. for(k = 1; k < 8; k++)
  2655. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2656. }
  2657. } else {
  2658. if(dc_pred_dir) { //left
  2659. for(k = 1; k < 8; k++)
  2660. block[k << 3] += ac_val[k];
  2661. } else { //top
  2662. for(k = 1; k < 8; k++)
  2663. block[k] += ac_val[k + 8];
  2664. }
  2665. }
  2666. }
  2667. /* save AC coeffs for further prediction */
  2668. for(k = 1; k < 8; k++) {
  2669. ac_val2[k] = block[k << 3];
  2670. ac_val2[k + 8] = block[k];
  2671. }
  2672. /* scale AC coeffs */
  2673. for(k = 1; k < 64; k++)
  2674. if(block[k]) {
  2675. block[k] *= scale;
  2676. if(!v->pquantizer)
  2677. block[k] += (block[k] < 0) ? -mquant : mquant;
  2678. }
  2679. if(use_pred) i = 63;
  2680. } else { // no AC coeffs
  2681. int k;
  2682. memset(ac_val2, 0, 16 * 2);
  2683. if(dc_pred_dir) {//left
  2684. if(use_pred) {
  2685. memcpy(ac_val2, ac_val, 8 * 2);
  2686. if(q2 && q1!=q2) {
  2687. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2688. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2689. for(k = 1; k < 8; k++)
  2690. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2691. }
  2692. }
  2693. } else {//top
  2694. if(use_pred) {
  2695. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2696. if(q2 && q1!=q2) {
  2697. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2698. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2699. for(k = 1; k < 8; k++)
  2700. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2701. }
  2702. }
  2703. }
  2704. /* apply AC prediction if needed */
  2705. if(use_pred) {
  2706. if(dc_pred_dir) { //left
  2707. for(k = 1; k < 8; k++) {
  2708. block[k << 3] = ac_val2[k] * scale;
  2709. if(!v->pquantizer && block[k << 3])
  2710. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2711. }
  2712. } else { //top
  2713. for(k = 1; k < 8; k++) {
  2714. block[k] = ac_val2[k + 8] * scale;
  2715. if(!v->pquantizer && block[k])
  2716. block[k] += (block[k] < 0) ? -mquant : mquant;
  2717. }
  2718. }
  2719. i = 63;
  2720. }
  2721. }
  2722. s->block_last_index[n] = i;
  2723. return 0;
  2724. }
  2725. /** Decode P block
  2726. */
  2727. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2728. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2729. {
  2730. MpegEncContext *s = &v->s;
  2731. GetBitContext *gb = &s->gb;
  2732. int i, j;
  2733. int subblkpat = 0;
  2734. int scale, off, idx, last, skip, value;
  2735. int ttblk = ttmb & 7;
  2736. int pat = 0;
  2737. if(ttmb == -1) {
  2738. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2739. }
  2740. if(ttblk == TT_4X4) {
  2741. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2742. }
  2743. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2744. subblkpat = decode012(gb);
  2745. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2746. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2747. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2748. }
  2749. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2750. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2751. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2752. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2753. ttblk = TT_8X4;
  2754. }
  2755. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2756. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2757. ttblk = TT_4X8;
  2758. }
  2759. switch(ttblk) {
  2760. case TT_8X8:
  2761. pat = 0xF;
  2762. i = 0;
  2763. last = 0;
  2764. while (!last) {
  2765. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2766. i += skip;
  2767. if(i > 63)
  2768. break;
  2769. idx = wmv1_scantable[0][i++];
  2770. block[idx] = value * scale;
  2771. if(!v->pquantizer)
  2772. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2773. }
  2774. if(!skip_block){
  2775. s->dsp.vc1_inv_trans_8x8(block);
  2776. s->dsp.add_pixels_clamped(block, dst, linesize);
  2777. if(apply_filter && cbp_top & 0xC)
  2778. vc1_loop_filter(dst, 1, linesize, 8, mquant);
  2779. if(apply_filter && cbp_left & 0xA)
  2780. vc1_loop_filter(dst, linesize, 1, 8, mquant);
  2781. }
  2782. break;
  2783. case TT_4X4:
  2784. pat = ~subblkpat & 0xF;
  2785. for(j = 0; j < 4; j++) {
  2786. last = subblkpat & (1 << (3 - j));
  2787. i = 0;
  2788. off = (j & 1) * 4 + (j & 2) * 16;
  2789. while (!last) {
  2790. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2791. i += skip;
  2792. if(i > 15)
  2793. break;
  2794. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2795. block[idx + off] = value * scale;
  2796. if(!v->pquantizer)
  2797. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2798. }
  2799. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2800. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2801. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2802. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, 1, linesize, 4, mquant);
  2803. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2804. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, linesize, 1, 4, mquant);
  2805. }
  2806. }
  2807. break;
  2808. case TT_8X4:
  2809. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2810. for(j = 0; j < 2; j++) {
  2811. last = subblkpat & (1 << (1 - j));
  2812. i = 0;
  2813. off = j * 32;
  2814. while (!last) {
  2815. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2816. i += skip;
  2817. if(i > 31)
  2818. break;
  2819. idx = v->zz_8x4[i++]+off;
  2820. block[idx] = value * scale;
  2821. if(!v->pquantizer)
  2822. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2823. }
  2824. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2825. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2826. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2827. vc1_loop_filter(dst + j*4*linesize, 1, linesize, 8, mquant);
  2828. if(apply_filter && cbp_left & (2 << j))
  2829. vc1_loop_filter(dst + j*4*linesize, linesize, 1, 4, mquant);
  2830. }
  2831. }
  2832. break;
  2833. case TT_4X8:
  2834. pat = ~(subblkpat*5) & 0xF;
  2835. for(j = 0; j < 2; j++) {
  2836. last = subblkpat & (1 << (1 - j));
  2837. i = 0;
  2838. off = j * 4;
  2839. while (!last) {
  2840. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2841. i += skip;
  2842. if(i > 31)
  2843. break;
  2844. idx = v->zz_4x8[i++]+off;
  2845. block[idx] = value * scale;
  2846. if(!v->pquantizer)
  2847. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2848. }
  2849. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2850. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2851. if(apply_filter && cbp_top & (2 << j))
  2852. vc1_loop_filter(dst + j*4, 1, linesize, 4, mquant);
  2853. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2854. vc1_loop_filter(dst + j*4, linesize, 1, 8, mquant);
  2855. }
  2856. }
  2857. break;
  2858. }
  2859. return pat;
  2860. }
  2861. /** @} */ // Macroblock group
  2862. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  2863. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2864. /** Decode one P-frame MB (in Simple/Main profile)
  2865. */
  2866. static int vc1_decode_p_mb(VC1Context *v)
  2867. {
  2868. MpegEncContext *s = &v->s;
  2869. GetBitContext *gb = &s->gb;
  2870. int i, j;
  2871. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2872. int cbp; /* cbp decoding stuff */
  2873. int mqdiff, mquant; /* MB quantization */
  2874. int ttmb = v->ttfrm; /* MB Transform type */
  2875. int mb_has_coeffs = 1; /* last_flag */
  2876. int dmv_x, dmv_y; /* Differential MV components */
  2877. int index, index1; /* LUT indexes */
  2878. int val, sign; /* temp values */
  2879. int first_block = 1;
  2880. int dst_idx, off;
  2881. int skipped, fourmv;
  2882. int block_cbp = 0, pat;
  2883. int apply_loop_filter;
  2884. mquant = v->pq; /* Loosy initialization */
  2885. if (v->mv_type_is_raw)
  2886. fourmv = get_bits1(gb);
  2887. else
  2888. fourmv = v->mv_type_mb_plane[mb_pos];
  2889. if (v->skip_is_raw)
  2890. skipped = get_bits1(gb);
  2891. else
  2892. skipped = v->s.mbskip_table[mb_pos];
  2893. s->dsp.clear_blocks(s->block[0]);
  2894. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2895. if (!fourmv) /* 1MV mode */
  2896. {
  2897. if (!skipped)
  2898. {
  2899. GET_MVDATA(dmv_x, dmv_y);
  2900. if (s->mb_intra) {
  2901. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2902. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2903. }
  2904. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2905. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2906. /* FIXME Set DC val for inter block ? */
  2907. if (s->mb_intra && !mb_has_coeffs)
  2908. {
  2909. GET_MQUANT();
  2910. s->ac_pred = get_bits1(gb);
  2911. cbp = 0;
  2912. }
  2913. else if (mb_has_coeffs)
  2914. {
  2915. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2916. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2917. GET_MQUANT();
  2918. }
  2919. else
  2920. {
  2921. mquant = v->pq;
  2922. cbp = 0;
  2923. }
  2924. s->current_picture.qscale_table[mb_pos] = mquant;
  2925. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2926. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2927. VC1_TTMB_VLC_BITS, 2);
  2928. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2929. dst_idx = 0;
  2930. for (i=0; i<6; i++)
  2931. {
  2932. s->dc_val[0][s->block_index[i]] = 0;
  2933. dst_idx += i >> 2;
  2934. val = ((cbp >> (5 - i)) & 1);
  2935. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2936. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2937. if(s->mb_intra) {
  2938. /* check if prediction blocks A and C are available */
  2939. v->a_avail = v->c_avail = 0;
  2940. if(i == 2 || i == 3 || !s->first_slice_line)
  2941. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2942. if(i == 1 || i == 3 || s->mb_x)
  2943. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2944. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2945. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2946. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2947. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2948. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2949. if(v->pq >= 9 && v->overlap) {
  2950. if(v->c_avail)
  2951. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2952. if(v->a_avail)
  2953. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2954. }
  2955. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2956. int left_cbp, top_cbp;
  2957. if(i & 4){
  2958. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2959. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2960. }else{
  2961. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2962. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2963. }
  2964. if(left_cbp & 0xC)
  2965. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2966. if(top_cbp & 0xA)
  2967. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2968. }
  2969. block_cbp |= 0xF << (i << 2);
  2970. } else if(val) {
  2971. int left_cbp = 0, top_cbp = 0, filter = 0;
  2972. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2973. filter = 1;
  2974. if(i & 4){
  2975. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2976. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2977. }else{
  2978. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2979. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2980. }
  2981. if(left_cbp & 0xC)
  2982. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2983. if(top_cbp & 0xA)
  2984. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2985. }
  2986. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2987. block_cbp |= pat << (i << 2);
  2988. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2989. first_block = 0;
  2990. }
  2991. }
  2992. }
  2993. else //Skipped
  2994. {
  2995. s->mb_intra = 0;
  2996. for(i = 0; i < 6; i++) {
  2997. v->mb_type[0][s->block_index[i]] = 0;
  2998. s->dc_val[0][s->block_index[i]] = 0;
  2999. }
  3000. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3001. s->current_picture.qscale_table[mb_pos] = 0;
  3002. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3003. vc1_mc_1mv(v, 0);
  3004. return 0;
  3005. }
  3006. } //1MV mode
  3007. else //4MV mode
  3008. {
  3009. if (!skipped /* unskipped MB */)
  3010. {
  3011. int intra_count = 0, coded_inter = 0;
  3012. int is_intra[6], is_coded[6];
  3013. /* Get CBPCY */
  3014. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3015. for (i=0; i<6; i++)
  3016. {
  3017. val = ((cbp >> (5 - i)) & 1);
  3018. s->dc_val[0][s->block_index[i]] = 0;
  3019. s->mb_intra = 0;
  3020. if(i < 4) {
  3021. dmv_x = dmv_y = 0;
  3022. s->mb_intra = 0;
  3023. mb_has_coeffs = 0;
  3024. if(val) {
  3025. GET_MVDATA(dmv_x, dmv_y);
  3026. }
  3027. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3028. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3029. intra_count += s->mb_intra;
  3030. is_intra[i] = s->mb_intra;
  3031. is_coded[i] = mb_has_coeffs;
  3032. }
  3033. if(i&4){
  3034. is_intra[i] = (intra_count >= 3);
  3035. is_coded[i] = val;
  3036. }
  3037. if(i == 4) vc1_mc_4mv_chroma(v);
  3038. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3039. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3040. }
  3041. // if there are no coded blocks then don't do anything more
  3042. if(!intra_count && !coded_inter) return 0;
  3043. dst_idx = 0;
  3044. GET_MQUANT();
  3045. s->current_picture.qscale_table[mb_pos] = mquant;
  3046. /* test if block is intra and has pred */
  3047. {
  3048. int intrapred = 0;
  3049. for(i=0; i<6; i++)
  3050. if(is_intra[i]) {
  3051. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3052. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3053. intrapred = 1;
  3054. break;
  3055. }
  3056. }
  3057. if(intrapred)s->ac_pred = get_bits1(gb);
  3058. else s->ac_pred = 0;
  3059. }
  3060. if (!v->ttmbf && coded_inter)
  3061. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3062. for (i=0; i<6; i++)
  3063. {
  3064. dst_idx += i >> 2;
  3065. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3066. s->mb_intra = is_intra[i];
  3067. if (is_intra[i]) {
  3068. /* check if prediction blocks A and C are available */
  3069. v->a_avail = v->c_avail = 0;
  3070. if(i == 2 || i == 3 || !s->first_slice_line)
  3071. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3072. if(i == 1 || i == 3 || s->mb_x)
  3073. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3074. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3075. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3076. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3077. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3078. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3079. if(v->pq >= 9 && v->overlap) {
  3080. if(v->c_avail)
  3081. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3082. if(v->a_avail)
  3083. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3084. }
  3085. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3086. int left_cbp, top_cbp;
  3087. if(i & 4){
  3088. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3089. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3090. }else{
  3091. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3092. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3093. }
  3094. if(left_cbp & 0xC)
  3095. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3096. if(top_cbp & 0xA)
  3097. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3098. }
  3099. block_cbp |= 0xF << (i << 2);
  3100. } else if(is_coded[i]) {
  3101. int left_cbp = 0, top_cbp = 0, filter = 0;
  3102. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3103. filter = 1;
  3104. if(i & 4){
  3105. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3106. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3107. }else{
  3108. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3109. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3110. }
  3111. if(left_cbp & 0xC)
  3112. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3113. if(top_cbp & 0xA)
  3114. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3115. }
  3116. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3117. block_cbp |= pat << (i << 2);
  3118. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3119. first_block = 0;
  3120. }
  3121. }
  3122. return 0;
  3123. }
  3124. else //Skipped MB
  3125. {
  3126. s->mb_intra = 0;
  3127. s->current_picture.qscale_table[mb_pos] = 0;
  3128. for (i=0; i<6; i++) {
  3129. v->mb_type[0][s->block_index[i]] = 0;
  3130. s->dc_val[0][s->block_index[i]] = 0;
  3131. }
  3132. for (i=0; i<4; i++)
  3133. {
  3134. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3135. vc1_mc_4mv_luma(v, i);
  3136. }
  3137. vc1_mc_4mv_chroma(v);
  3138. s->current_picture.qscale_table[mb_pos] = 0;
  3139. return 0;
  3140. }
  3141. }
  3142. v->cbp[s->mb_x] = block_cbp;
  3143. /* Should never happen */
  3144. return -1;
  3145. }
  3146. /** Decode one B-frame MB (in Main profile)
  3147. */
  3148. static void vc1_decode_b_mb(VC1Context *v)
  3149. {
  3150. MpegEncContext *s = &v->s;
  3151. GetBitContext *gb = &s->gb;
  3152. int i, j;
  3153. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3154. int cbp = 0; /* cbp decoding stuff */
  3155. int mqdiff, mquant; /* MB quantization */
  3156. int ttmb = v->ttfrm; /* MB Transform type */
  3157. int mb_has_coeffs = 0; /* last_flag */
  3158. int index, index1; /* LUT indexes */
  3159. int val, sign; /* temp values */
  3160. int first_block = 1;
  3161. int dst_idx, off;
  3162. int skipped, direct;
  3163. int dmv_x[2], dmv_y[2];
  3164. int bmvtype = BMV_TYPE_BACKWARD;
  3165. mquant = v->pq; /* Loosy initialization */
  3166. s->mb_intra = 0;
  3167. if (v->dmb_is_raw)
  3168. direct = get_bits1(gb);
  3169. else
  3170. direct = v->direct_mb_plane[mb_pos];
  3171. if (v->skip_is_raw)
  3172. skipped = get_bits1(gb);
  3173. else
  3174. skipped = v->s.mbskip_table[mb_pos];
  3175. s->dsp.clear_blocks(s->block[0]);
  3176. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3177. for(i = 0; i < 6; i++) {
  3178. v->mb_type[0][s->block_index[i]] = 0;
  3179. s->dc_val[0][s->block_index[i]] = 0;
  3180. }
  3181. s->current_picture.qscale_table[mb_pos] = 0;
  3182. if (!direct) {
  3183. if (!skipped) {
  3184. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3185. dmv_x[1] = dmv_x[0];
  3186. dmv_y[1] = dmv_y[0];
  3187. }
  3188. if(skipped || !s->mb_intra) {
  3189. bmvtype = decode012(gb);
  3190. switch(bmvtype) {
  3191. case 0:
  3192. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3193. break;
  3194. case 1:
  3195. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3196. break;
  3197. case 2:
  3198. bmvtype = BMV_TYPE_INTERPOLATED;
  3199. dmv_x[0] = dmv_y[0] = 0;
  3200. }
  3201. }
  3202. }
  3203. for(i = 0; i < 6; i++)
  3204. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3205. if (skipped) {
  3206. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3207. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3208. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3209. return;
  3210. }
  3211. if (direct) {
  3212. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3213. GET_MQUANT();
  3214. s->mb_intra = 0;
  3215. mb_has_coeffs = 0;
  3216. s->current_picture.qscale_table[mb_pos] = mquant;
  3217. if(!v->ttmbf)
  3218. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3219. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3220. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3221. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3222. } else {
  3223. if(!mb_has_coeffs && !s->mb_intra) {
  3224. /* no coded blocks - effectively skipped */
  3225. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3226. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3227. return;
  3228. }
  3229. if(s->mb_intra && !mb_has_coeffs) {
  3230. GET_MQUANT();
  3231. s->current_picture.qscale_table[mb_pos] = mquant;
  3232. s->ac_pred = get_bits1(gb);
  3233. cbp = 0;
  3234. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3235. } else {
  3236. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3237. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3238. if(!mb_has_coeffs) {
  3239. /* interpolated skipped block */
  3240. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3241. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3242. return;
  3243. }
  3244. }
  3245. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3246. if(!s->mb_intra) {
  3247. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3248. }
  3249. if(s->mb_intra)
  3250. s->ac_pred = get_bits1(gb);
  3251. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3252. GET_MQUANT();
  3253. s->current_picture.qscale_table[mb_pos] = mquant;
  3254. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3255. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3256. }
  3257. }
  3258. dst_idx = 0;
  3259. for (i=0; i<6; i++)
  3260. {
  3261. s->dc_val[0][s->block_index[i]] = 0;
  3262. dst_idx += i >> 2;
  3263. val = ((cbp >> (5 - i)) & 1);
  3264. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3265. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3266. if(s->mb_intra) {
  3267. /* check if prediction blocks A and C are available */
  3268. v->a_avail = v->c_avail = 0;
  3269. if(i == 2 || i == 3 || !s->first_slice_line)
  3270. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3271. if(i == 1 || i == 3 || s->mb_x)
  3272. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3273. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3274. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3275. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3276. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3277. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3278. } else if(val) {
  3279. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3280. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3281. first_block = 0;
  3282. }
  3283. }
  3284. }
  3285. /** Decode blocks of I-frame
  3286. */
  3287. static void vc1_decode_i_blocks(VC1Context *v)
  3288. {
  3289. int k, j;
  3290. MpegEncContext *s = &v->s;
  3291. int cbp, val;
  3292. uint8_t *coded_val;
  3293. int mb_pos;
  3294. /* select codingmode used for VLC tables selection */
  3295. switch(v->y_ac_table_index){
  3296. case 0:
  3297. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3298. break;
  3299. case 1:
  3300. v->codingset = CS_HIGH_MOT_INTRA;
  3301. break;
  3302. case 2:
  3303. v->codingset = CS_MID_RATE_INTRA;
  3304. break;
  3305. }
  3306. switch(v->c_ac_table_index){
  3307. case 0:
  3308. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3309. break;
  3310. case 1:
  3311. v->codingset2 = CS_HIGH_MOT_INTER;
  3312. break;
  3313. case 2:
  3314. v->codingset2 = CS_MID_RATE_INTER;
  3315. break;
  3316. }
  3317. /* Set DC scale - y and c use the same */
  3318. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3319. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3320. //do frame decode
  3321. s->mb_x = s->mb_y = 0;
  3322. s->mb_intra = 1;
  3323. s->first_slice_line = 1;
  3324. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3325. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3326. ff_init_block_index(s);
  3327. ff_update_block_index(s);
  3328. s->dsp.clear_blocks(s->block[0]);
  3329. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3330. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3331. s->current_picture.qscale_table[mb_pos] = v->pq;
  3332. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3333. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3334. // do actual MB decoding and displaying
  3335. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3336. v->s.ac_pred = get_bits1(&v->s.gb);
  3337. for(k = 0; k < 6; k++) {
  3338. val = ((cbp >> (5 - k)) & 1);
  3339. if (k < 4) {
  3340. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3341. val = val ^ pred;
  3342. *coded_val = val;
  3343. }
  3344. cbp |= val << (5 - k);
  3345. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3346. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3347. if(v->pq >= 9 && v->overlap) {
  3348. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3349. }
  3350. }
  3351. vc1_put_block(v, s->block);
  3352. if(v->pq >= 9 && v->overlap) {
  3353. if(s->mb_x) {
  3354. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3355. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3356. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3357. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3358. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3359. }
  3360. }
  3361. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3362. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3363. if(!s->first_slice_line) {
  3364. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3365. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3366. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3367. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3368. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3369. }
  3370. }
  3371. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3372. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3373. }
  3374. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3375. if(get_bits_count(&s->gb) > v->bits) {
  3376. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3377. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3378. return;
  3379. }
  3380. }
  3381. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3382. s->first_slice_line = 0;
  3383. }
  3384. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3385. }
  3386. /** Decode blocks of I-frame for advanced profile
  3387. */
  3388. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3389. {
  3390. int k, j;
  3391. MpegEncContext *s = &v->s;
  3392. int cbp, val;
  3393. uint8_t *coded_val;
  3394. int mb_pos;
  3395. int mquant = v->pq;
  3396. int mqdiff;
  3397. int overlap;
  3398. GetBitContext *gb = &s->gb;
  3399. /* select codingmode used for VLC tables selection */
  3400. switch(v->y_ac_table_index){
  3401. case 0:
  3402. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3403. break;
  3404. case 1:
  3405. v->codingset = CS_HIGH_MOT_INTRA;
  3406. break;
  3407. case 2:
  3408. v->codingset = CS_MID_RATE_INTRA;
  3409. break;
  3410. }
  3411. switch(v->c_ac_table_index){
  3412. case 0:
  3413. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3414. break;
  3415. case 1:
  3416. v->codingset2 = CS_HIGH_MOT_INTER;
  3417. break;
  3418. case 2:
  3419. v->codingset2 = CS_MID_RATE_INTER;
  3420. break;
  3421. }
  3422. //do frame decode
  3423. s->mb_x = s->mb_y = 0;
  3424. s->mb_intra = 1;
  3425. s->first_slice_line = 1;
  3426. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3427. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3428. ff_init_block_index(s);
  3429. ff_update_block_index(s);
  3430. s->dsp.clear_blocks(s->block[0]);
  3431. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3432. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3433. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3434. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3435. // do actual MB decoding and displaying
  3436. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3437. if(v->acpred_is_raw)
  3438. v->s.ac_pred = get_bits1(&v->s.gb);
  3439. else
  3440. v->s.ac_pred = v->acpred_plane[mb_pos];
  3441. if(v->condover == CONDOVER_SELECT) {
  3442. if(v->overflg_is_raw)
  3443. overlap = get_bits1(&v->s.gb);
  3444. else
  3445. overlap = v->over_flags_plane[mb_pos];
  3446. } else
  3447. overlap = (v->condover == CONDOVER_ALL);
  3448. GET_MQUANT();
  3449. s->current_picture.qscale_table[mb_pos] = mquant;
  3450. /* Set DC scale - y and c use the same */
  3451. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3452. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3453. for(k = 0; k < 6; k++) {
  3454. val = ((cbp >> (5 - k)) & 1);
  3455. if (k < 4) {
  3456. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3457. val = val ^ pred;
  3458. *coded_val = val;
  3459. }
  3460. cbp |= val << (5 - k);
  3461. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3462. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3463. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3464. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3465. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3466. }
  3467. vc1_put_block(v, s->block);
  3468. if(overlap) {
  3469. if(s->mb_x) {
  3470. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3471. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3472. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3473. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3474. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3475. }
  3476. }
  3477. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3478. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3479. if(!s->first_slice_line) {
  3480. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3481. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3482. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3483. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3484. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3485. }
  3486. }
  3487. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3488. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3489. }
  3490. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3491. if(get_bits_count(&s->gb) > v->bits) {
  3492. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3493. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3494. return;
  3495. }
  3496. }
  3497. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3498. s->first_slice_line = 0;
  3499. }
  3500. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3501. }
  3502. static void vc1_decode_p_blocks(VC1Context *v)
  3503. {
  3504. MpegEncContext *s = &v->s;
  3505. /* select codingmode used for VLC tables selection */
  3506. switch(v->c_ac_table_index){
  3507. case 0:
  3508. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3509. break;
  3510. case 1:
  3511. v->codingset = CS_HIGH_MOT_INTRA;
  3512. break;
  3513. case 2:
  3514. v->codingset = CS_MID_RATE_INTRA;
  3515. break;
  3516. }
  3517. switch(v->c_ac_table_index){
  3518. case 0:
  3519. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3520. break;
  3521. case 1:
  3522. v->codingset2 = CS_HIGH_MOT_INTER;
  3523. break;
  3524. case 2:
  3525. v->codingset2 = CS_MID_RATE_INTER;
  3526. break;
  3527. }
  3528. s->first_slice_line = 1;
  3529. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3530. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3531. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3532. ff_init_block_index(s);
  3533. ff_update_block_index(s);
  3534. s->dsp.clear_blocks(s->block[0]);
  3535. vc1_decode_p_mb(v);
  3536. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3537. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3538. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3539. return;
  3540. }
  3541. }
  3542. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3543. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3544. s->first_slice_line = 0;
  3545. }
  3546. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3547. }
  3548. static void vc1_decode_b_blocks(VC1Context *v)
  3549. {
  3550. MpegEncContext *s = &v->s;
  3551. /* select codingmode used for VLC tables selection */
  3552. switch(v->c_ac_table_index){
  3553. case 0:
  3554. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3555. break;
  3556. case 1:
  3557. v->codingset = CS_HIGH_MOT_INTRA;
  3558. break;
  3559. case 2:
  3560. v->codingset = CS_MID_RATE_INTRA;
  3561. break;
  3562. }
  3563. switch(v->c_ac_table_index){
  3564. case 0:
  3565. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3566. break;
  3567. case 1:
  3568. v->codingset2 = CS_HIGH_MOT_INTER;
  3569. break;
  3570. case 2:
  3571. v->codingset2 = CS_MID_RATE_INTER;
  3572. break;
  3573. }
  3574. s->first_slice_line = 1;
  3575. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3576. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3577. ff_init_block_index(s);
  3578. ff_update_block_index(s);
  3579. s->dsp.clear_blocks(s->block[0]);
  3580. vc1_decode_b_mb(v);
  3581. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3582. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3583. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3584. return;
  3585. }
  3586. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[s->mb_x + s->mb_y *s->mb_stride]);
  3587. }
  3588. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3589. s->first_slice_line = 0;
  3590. }
  3591. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3592. }
  3593. static void vc1_decode_skip_blocks(VC1Context *v)
  3594. {
  3595. MpegEncContext *s = &v->s;
  3596. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3597. s->first_slice_line = 1;
  3598. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3599. s->mb_x = 0;
  3600. ff_init_block_index(s);
  3601. ff_update_block_index(s);
  3602. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3603. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3604. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3605. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3606. s->first_slice_line = 0;
  3607. }
  3608. s->pict_type = FF_P_TYPE;
  3609. }
  3610. static void vc1_decode_blocks(VC1Context *v)
  3611. {
  3612. v->s.esc3_level_length = 0;
  3613. if(v->x8_type){
  3614. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3615. }else{
  3616. switch(v->s.pict_type) {
  3617. case FF_I_TYPE:
  3618. if(v->profile == PROFILE_ADVANCED)
  3619. vc1_decode_i_blocks_adv(v);
  3620. else
  3621. vc1_decode_i_blocks(v);
  3622. break;
  3623. case FF_P_TYPE:
  3624. if(v->p_frame_skipped)
  3625. vc1_decode_skip_blocks(v);
  3626. else
  3627. vc1_decode_p_blocks(v);
  3628. break;
  3629. case FF_B_TYPE:
  3630. if(v->bi_type){
  3631. if(v->profile == PROFILE_ADVANCED)
  3632. vc1_decode_i_blocks_adv(v);
  3633. else
  3634. vc1_decode_i_blocks(v);
  3635. }else
  3636. vc1_decode_b_blocks(v);
  3637. break;
  3638. }
  3639. }
  3640. }
  3641. /** Find VC-1 marker in buffer
  3642. * @return position where next marker starts or end of buffer if no marker found
  3643. */
  3644. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3645. {
  3646. uint32_t mrk = 0xFFFFFFFF;
  3647. if(end-src < 4) return end;
  3648. while(src < end){
  3649. mrk = (mrk << 8) | *src++;
  3650. if(IS_MARKER(mrk))
  3651. return src-4;
  3652. }
  3653. return end;
  3654. }
  3655. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3656. {
  3657. int dsize = 0, i;
  3658. if(size < 4){
  3659. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3660. return size;
  3661. }
  3662. for(i = 0; i < size; i++, src++) {
  3663. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3664. dst[dsize++] = src[1];
  3665. src++;
  3666. i++;
  3667. } else
  3668. dst[dsize++] = *src;
  3669. }
  3670. return dsize;
  3671. }
  3672. /** Initialize a VC1/WMV3 decoder
  3673. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3674. * @todo TODO: Decypher remaining bits in extra_data
  3675. */
  3676. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3677. {
  3678. VC1Context *v = avctx->priv_data;
  3679. MpegEncContext *s = &v->s;
  3680. GetBitContext gb;
  3681. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3682. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3683. avctx->pix_fmt = PIX_FMT_YUV420P;
  3684. else
  3685. avctx->pix_fmt = PIX_FMT_GRAY8;
  3686. v->s.avctx = avctx;
  3687. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3688. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3689. if(avctx->idct_algo==FF_IDCT_AUTO){
  3690. avctx->idct_algo=FF_IDCT_WMV2;
  3691. }
  3692. if(ff_h263_decode_init(avctx) < 0)
  3693. return -1;
  3694. if (vc1_init_common(v) < 0) return -1;
  3695. avctx->coded_width = avctx->width;
  3696. avctx->coded_height = avctx->height;
  3697. if (avctx->codec_id == CODEC_ID_WMV3)
  3698. {
  3699. int count = 0;
  3700. // looks like WMV3 has a sequence header stored in the extradata
  3701. // advanced sequence header may be before the first frame
  3702. // the last byte of the extradata is a version number, 1 for the
  3703. // samples we can decode
  3704. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3705. if (decode_sequence_header(avctx, &gb) < 0)
  3706. return -1;
  3707. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3708. if (count>0)
  3709. {
  3710. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3711. count, get_bits(&gb, count));
  3712. }
  3713. else if (count < 0)
  3714. {
  3715. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3716. }
  3717. } else { // VC1/WVC1
  3718. const uint8_t *start = avctx->extradata;
  3719. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3720. const uint8_t *next;
  3721. int size, buf2_size;
  3722. uint8_t *buf2 = NULL;
  3723. int seq_initialized = 0, ep_initialized = 0;
  3724. if(avctx->extradata_size < 16) {
  3725. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3726. return -1;
  3727. }
  3728. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3729. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3730. next = start;
  3731. for(; next < end; start = next){
  3732. next = find_next_marker(start + 4, end);
  3733. size = next - start - 4;
  3734. if(size <= 0) continue;
  3735. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3736. init_get_bits(&gb, buf2, buf2_size * 8);
  3737. switch(AV_RB32(start)){
  3738. case VC1_CODE_SEQHDR:
  3739. if(decode_sequence_header(avctx, &gb) < 0){
  3740. av_free(buf2);
  3741. return -1;
  3742. }
  3743. seq_initialized = 1;
  3744. break;
  3745. case VC1_CODE_ENTRYPOINT:
  3746. if(decode_entry_point(avctx, &gb) < 0){
  3747. av_free(buf2);
  3748. return -1;
  3749. }
  3750. ep_initialized = 1;
  3751. break;
  3752. }
  3753. }
  3754. av_free(buf2);
  3755. if(!seq_initialized || !ep_initialized){
  3756. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3757. return -1;
  3758. }
  3759. }
  3760. avctx->has_b_frames= !!(avctx->max_b_frames);
  3761. s->low_delay = !avctx->has_b_frames;
  3762. s->mb_width = (avctx->coded_width+15)>>4;
  3763. s->mb_height = (avctx->coded_height+15)>>4;
  3764. /* Allocate mb bitplanes */
  3765. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3766. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3767. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3768. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3769. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3770. v->cbp = v->cbp_base + s->mb_stride;
  3771. /* allocate block type info in that way so it could be used with s->block_index[] */
  3772. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3773. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3774. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3775. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3776. /* Init coded blocks info */
  3777. if (v->profile == PROFILE_ADVANCED)
  3778. {
  3779. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3780. // return -1;
  3781. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3782. // return -1;
  3783. }
  3784. ff_intrax8_common_init(&v->x8,s);
  3785. return 0;
  3786. }
  3787. /** Decode a VC1/WMV3 frame
  3788. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3789. */
  3790. static int vc1_decode_frame(AVCodecContext *avctx,
  3791. void *data, int *data_size,
  3792. const uint8_t *buf, int buf_size)
  3793. {
  3794. VC1Context *v = avctx->priv_data;
  3795. MpegEncContext *s = &v->s;
  3796. AVFrame *pict = data;
  3797. uint8_t *buf2 = NULL;
  3798. const uint8_t *buf_start = buf;
  3799. /* no supplementary picture */
  3800. if (buf_size == 0) {
  3801. /* special case for last picture */
  3802. if (s->low_delay==0 && s->next_picture_ptr) {
  3803. *pict= *(AVFrame*)s->next_picture_ptr;
  3804. s->next_picture_ptr= NULL;
  3805. *data_size = sizeof(AVFrame);
  3806. }
  3807. return 0;
  3808. }
  3809. /* We need to set current_picture_ptr before reading the header,
  3810. * otherwise we cannot store anything in there. */
  3811. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3812. int i= ff_find_unused_picture(s, 0);
  3813. s->current_picture_ptr= &s->picture[i];
  3814. }
  3815. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3816. if (v->profile < PROFILE_ADVANCED)
  3817. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3818. else
  3819. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3820. }
  3821. //for advanced profile we may need to parse and unescape data
  3822. if (avctx->codec_id == CODEC_ID_VC1) {
  3823. int buf_size2 = 0;
  3824. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3825. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3826. const uint8_t *start, *end, *next;
  3827. int size;
  3828. next = buf;
  3829. for(start = buf, end = buf + buf_size; next < end; start = next){
  3830. next = find_next_marker(start + 4, end);
  3831. size = next - start - 4;
  3832. if(size <= 0) continue;
  3833. switch(AV_RB32(start)){
  3834. case VC1_CODE_FRAME:
  3835. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3836. buf_start = start;
  3837. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3838. break;
  3839. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3840. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3841. init_get_bits(&s->gb, buf2, buf_size2*8);
  3842. decode_entry_point(avctx, &s->gb);
  3843. break;
  3844. case VC1_CODE_SLICE:
  3845. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3846. av_free(buf2);
  3847. return -1;
  3848. }
  3849. }
  3850. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3851. const uint8_t *divider;
  3852. divider = find_next_marker(buf, buf + buf_size);
  3853. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3854. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3855. av_free(buf2);
  3856. return -1;
  3857. }
  3858. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3859. // TODO
  3860. av_free(buf2);return -1;
  3861. }else{
  3862. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3863. }
  3864. init_get_bits(&s->gb, buf2, buf_size2*8);
  3865. } else
  3866. init_get_bits(&s->gb, buf, buf_size*8);
  3867. // do parse frame header
  3868. if(v->profile < PROFILE_ADVANCED) {
  3869. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3870. av_free(buf2);
  3871. return -1;
  3872. }
  3873. } else {
  3874. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3875. av_free(buf2);
  3876. return -1;
  3877. }
  3878. }
  3879. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3880. av_free(buf2);
  3881. return -1;
  3882. }
  3883. // for hurry_up==5
  3884. s->current_picture.pict_type= s->pict_type;
  3885. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3886. /* skip B-frames if we don't have reference frames */
  3887. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3888. av_free(buf2);
  3889. return -1;//buf_size;
  3890. }
  3891. /* skip b frames if we are in a hurry */
  3892. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3893. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3894. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3895. || avctx->skip_frame >= AVDISCARD_ALL) {
  3896. av_free(buf2);
  3897. return buf_size;
  3898. }
  3899. /* skip everything if we are in a hurry>=5 */
  3900. if(avctx->hurry_up>=5) {
  3901. av_free(buf2);
  3902. return -1;//buf_size;
  3903. }
  3904. if(s->next_p_frame_damaged){
  3905. if(s->pict_type==FF_B_TYPE)
  3906. return buf_size;
  3907. else
  3908. s->next_p_frame_damaged=0;
  3909. }
  3910. if(MPV_frame_start(s, avctx) < 0) {
  3911. av_free(buf2);
  3912. return -1;
  3913. }
  3914. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3915. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3916. if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
  3917. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3918. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3919. else {
  3920. ff_er_frame_start(s);
  3921. v->bits = buf_size * 8;
  3922. vc1_decode_blocks(v);
  3923. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3924. // if(get_bits_count(&s->gb) > buf_size * 8)
  3925. // return -1;
  3926. ff_er_frame_end(s);
  3927. }
  3928. MPV_frame_end(s);
  3929. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3930. assert(s->current_picture.pict_type == s->pict_type);
  3931. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3932. *pict= *(AVFrame*)s->current_picture_ptr;
  3933. } else if (s->last_picture_ptr != NULL) {
  3934. *pict= *(AVFrame*)s->last_picture_ptr;
  3935. }
  3936. if(s->last_picture_ptr || s->low_delay){
  3937. *data_size = sizeof(AVFrame);
  3938. ff_print_debug_info(s, pict);
  3939. }
  3940. /* Return the Picture timestamp as the frame number */
  3941. /* we subtract 1 because it is added on utils.c */
  3942. avctx->frame_number = s->picture_number - 1;
  3943. av_free(buf2);
  3944. return buf_size;
  3945. }
  3946. /** Close a VC1/WMV3 decoder
  3947. * @warning Initial try at using MpegEncContext stuff
  3948. */
  3949. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3950. {
  3951. VC1Context *v = avctx->priv_data;
  3952. av_freep(&v->hrd_rate);
  3953. av_freep(&v->hrd_buffer);
  3954. MPV_common_end(&v->s);
  3955. av_freep(&v->mv_type_mb_plane);
  3956. av_freep(&v->direct_mb_plane);
  3957. av_freep(&v->acpred_plane);
  3958. av_freep(&v->over_flags_plane);
  3959. av_freep(&v->mb_type_base);
  3960. av_freep(&v->cbp_base);
  3961. ff_intrax8_common_end(&v->x8);
  3962. return 0;
  3963. }
  3964. AVCodec vc1_decoder = {
  3965. "vc1",
  3966. CODEC_TYPE_VIDEO,
  3967. CODEC_ID_VC1,
  3968. sizeof(VC1Context),
  3969. vc1_decode_init,
  3970. NULL,
  3971. vc1_decode_end,
  3972. vc1_decode_frame,
  3973. CODEC_CAP_DELAY,
  3974. NULL,
  3975. .flush = ff_mpeg_flush,
  3976. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3977. .pix_fmts = ff_pixfmt_list_420
  3978. };
  3979. AVCodec wmv3_decoder = {
  3980. "wmv3",
  3981. CODEC_TYPE_VIDEO,
  3982. CODEC_ID_WMV3,
  3983. sizeof(VC1Context),
  3984. vc1_decode_init,
  3985. NULL,
  3986. vc1_decode_end,
  3987. vc1_decode_frame,
  3988. CODEC_CAP_DELAY,
  3989. NULL,
  3990. .flush = ff_mpeg_flush,
  3991. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3992. .pix_fmts = ff_pixfmt_list_420
  3993. };
  3994. #if CONFIG_WMV3_VDPAU_DECODER
  3995. AVCodec wmv3_vdpau_decoder = {
  3996. "wmv3_vdpau",
  3997. CODEC_TYPE_VIDEO,
  3998. CODEC_ID_WMV3,
  3999. sizeof(VC1Context),
  4000. vc1_decode_init,
  4001. NULL,
  4002. vc1_decode_end,
  4003. vc1_decode_frame,
  4004. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  4005. NULL,
  4006. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  4007. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  4008. };
  4009. #endif
  4010. #if CONFIG_VC1_VDPAU_DECODER
  4011. AVCodec vc1_vdpau_decoder = {
  4012. "vc1_vdpau",
  4013. CODEC_TYPE_VIDEO,
  4014. CODEC_ID_VC1,
  4015. sizeof(VC1Context),
  4016. vc1_decode_init,
  4017. NULL,
  4018. vc1_decode_end,
  4019. vc1_decode_frame,
  4020. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  4021. NULL,
  4022. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  4023. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  4024. };
  4025. #endif