ra144.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. /*
  2. * Real Audio 1.0 (14.4K)
  3. *
  4. * Copyright (c) 2008 Vitor Sessak
  5. * Copyright (c) 2003 Nick Kurshev
  6. * Based on public domain decoder at http://www.honeypot.net/audio
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "ra144.h"
  27. #include "celp_filters.h"
  28. #define NBLOCKS 4 ///< number of subblocks within a block
  29. #define BLOCKSIZE 40 ///< subblock size in 16-bit words
  30. #define BUFFERSIZE 146 ///< the size of the adaptive codebook
  31. typedef struct {
  32. unsigned int old_energy; ///< previous frame energy
  33. unsigned int lpc_tables[2][10];
  34. /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame
  35. * and lpc_coef[1] of the previous one. */
  36. unsigned int *lpc_coef[2];
  37. unsigned int lpc_refl_rms[2];
  38. /** The current subblock padded by the last 10 values of the previous one. */
  39. int16_t curr_sblock[50];
  40. /** Adaptive codebook, its size is two units bigger to avoid a
  41. * buffer overflow. */
  42. uint16_t adapt_cb[146+2];
  43. } RA144Context;
  44. static av_cold int ra144_decode_init(AVCodecContext * avctx)
  45. {
  46. RA144Context *ractx = avctx->priv_data;
  47. ractx->lpc_coef[0] = ractx->lpc_tables[0];
  48. ractx->lpc_coef[1] = ractx->lpc_tables[1];
  49. avctx->sample_fmt = SAMPLE_FMT_S16;
  50. return 0;
  51. }
  52. /**
  53. * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
  54. * odd way to make the output identical to the binary decoder.
  55. */
  56. static int t_sqrt(unsigned int x)
  57. {
  58. int s = 2;
  59. while (x > 0xfff) {
  60. s++;
  61. x >>= 2;
  62. }
  63. return ff_sqrt(x << 20) << s;
  64. }
  65. /**
  66. * Evaluate the LPC filter coefficients from the reflection coefficients.
  67. * Does the inverse of the eval_refl() function.
  68. */
  69. static void eval_coefs(int *coefs, const int *refl)
  70. {
  71. int buffer[10];
  72. int *b1 = buffer;
  73. int *b2 = coefs;
  74. int i, j;
  75. for (i=0; i < 10; i++) {
  76. b1[i] = refl[i] << 4;
  77. for (j=0; j < i; j++)
  78. b1[j] = ((refl[i] * b2[i-j-1]) >> 12) + b2[j];
  79. FFSWAP(int *, b1, b2);
  80. }
  81. for (i=0; i < 10; i++)
  82. coefs[i] >>= 4;
  83. }
  84. /**
  85. * Copy the last offset values of *source to *target. If those values are not
  86. * enough to fill the target buffer, fill it with another copy of those values.
  87. */
  88. static void copy_and_dup(int16_t *target, const int16_t *source, int offset)
  89. {
  90. source += BUFFERSIZE - offset;
  91. memcpy(target, source, FFMIN(BLOCKSIZE, offset)*sizeof(*target));
  92. if (offset < BLOCKSIZE)
  93. memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target));
  94. }
  95. /** inverse root mean square */
  96. static int irms(const int16_t *data)
  97. {
  98. unsigned int i, sum = 0;
  99. for (i=0; i < BLOCKSIZE; i++)
  100. sum += data[i] * data[i];
  101. if (sum == 0)
  102. return 0; /* OOPS - division by zero */
  103. return 0x20000000 / (t_sqrt(sum) >> 8);
  104. }
  105. static void add_wav(int16_t *dest, int n, int skip_first, int *m,
  106. const int16_t *s1, const int8_t *s2, const int8_t *s3)
  107. {
  108. int i;
  109. int v[3];
  110. v[0] = 0;
  111. for (i=!skip_first; i<3; i++)
  112. v[i] = (gain_val_tab[n][i] * m[i]) >> gain_exp_tab[n];
  113. if (v[0]) {
  114. for (i=0; i < BLOCKSIZE; i++)
  115. dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
  116. } else {
  117. for (i=0; i < BLOCKSIZE; i++)
  118. dest[i] = ( s2[i]*v[1] + s3[i]*v[2]) >> 12;
  119. }
  120. }
  121. static unsigned int rescale_rms(unsigned int rms, unsigned int energy)
  122. {
  123. return (rms * energy) >> 10;
  124. }
  125. static unsigned int rms(const int *data)
  126. {
  127. int i;
  128. unsigned int res = 0x10000;
  129. int b = 10;
  130. for (i=0; i < 10; i++) {
  131. res = (((0x1000000 - data[i]*data[i]) >> 12) * res) >> 12;
  132. if (res == 0)
  133. return 0;
  134. while (res <= 0x3fff) {
  135. b++;
  136. res <<= 2;
  137. }
  138. }
  139. return t_sqrt(res) >> b;
  140. }
  141. static void do_output_subblock(RA144Context *ractx, const uint16_t *lpc_coefs,
  142. int gval, GetBitContext *gb)
  143. {
  144. uint16_t buffer_a[40];
  145. uint16_t *block;
  146. int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
  147. int gain = get_bits(gb, 8);
  148. int cb1_idx = get_bits(gb, 7);
  149. int cb2_idx = get_bits(gb, 7);
  150. int m[3];
  151. if (cba_idx) {
  152. cba_idx += BLOCKSIZE/2 - 1;
  153. copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx);
  154. m[0] = (irms(buffer_a) * gval) >> 12;
  155. } else {
  156. m[0] = 0;
  157. }
  158. m[1] = (cb1_base[cb1_idx] * gval) >> 8;
  159. m[2] = (cb2_base[cb2_idx] * gval) >> 8;
  160. memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
  161. (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb));
  162. block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
  163. add_wav(block, gain, cba_idx, m, cba_idx? buffer_a: NULL,
  164. cb1_vects[cb1_idx], cb2_vects[cb2_idx]);
  165. memcpy(ractx->curr_sblock, ractx->curr_sblock + 40,
  166. 10*sizeof(*ractx->curr_sblock));
  167. if (ff_celp_lp_synthesis_filter(ractx->curr_sblock + 10, lpc_coefs,
  168. block, BLOCKSIZE, 10, 1, 0xfff))
  169. memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock));
  170. }
  171. static void int_to_int16(int16_t *out, const int *inp)
  172. {
  173. int i;
  174. for (i=0; i < 30; i++)
  175. *out++ = *inp++;
  176. }
  177. /**
  178. * Evaluate the reflection coefficients from the filter coefficients.
  179. * Does the inverse of the eval_coefs() function.
  180. *
  181. * @return 1 if one of the reflection coefficients is greater than
  182. * 4095, 0 if not.
  183. */
  184. static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx)
  185. {
  186. int b, i, j;
  187. int buffer1[10];
  188. int buffer2[10];
  189. int *bp1 = buffer1;
  190. int *bp2 = buffer2;
  191. for (i=0; i < 10; i++)
  192. buffer2[i] = coefs[i];
  193. refl[9] = bp2[9];
  194. if ((unsigned) bp2[9] + 0x1000 > 0x1fff) {
  195. av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
  196. return 1;
  197. }
  198. for (i=8; i >= 0; i--) {
  199. b = 0x1000-((bp2[i+1] * bp2[i+1]) >> 12);
  200. if (!b)
  201. b = -2;
  202. for (j=0; j <= i; j++)
  203. bp1[j] = ((bp2[j] - ((refl[i+1] * bp2[i-j]) >> 12)) * (0x1000000 / b)) >> 12;
  204. if ((unsigned) bp1[i] + 0x1000 > 0x1fff)
  205. return 1;
  206. refl[i] = bp1[i];
  207. FFSWAP(int *, bp1, bp2);
  208. }
  209. return 0;
  210. }
  211. static int interp(RA144Context *ractx, int16_t *out, int a,
  212. int copyold, int energy)
  213. {
  214. int work[10];
  215. int b = NBLOCKS - a;
  216. int i;
  217. // Interpolate block coefficients from the this frame's forth block and
  218. // last frame's forth block.
  219. for (i=0; i<30; i++)
  220. out[i] = (a * ractx->lpc_coef[0][i] + b * ractx->lpc_coef[1][i])>> 2;
  221. if (eval_refl(work, out, ractx)) {
  222. // The interpolated coefficients are unstable, copy either new or old
  223. // coefficients.
  224. int_to_int16(out, ractx->lpc_coef[copyold]);
  225. return rescale_rms(ractx->lpc_refl_rms[copyold], energy);
  226. } else {
  227. return rescale_rms(rms(work), energy);
  228. }
  229. }
  230. /** Uncompress one block (20 bytes -> 160*2 bytes). */
  231. static int ra144_decode_frame(AVCodecContext * avctx, void *vdata,
  232. int *data_size, const uint8_t *buf, int buf_size)
  233. {
  234. static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
  235. unsigned int refl_rms[4]; // RMS of the reflection coefficients
  236. uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
  237. unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame
  238. int i, j;
  239. int16_t *data = vdata;
  240. unsigned int energy;
  241. RA144Context *ractx = avctx->priv_data;
  242. GetBitContext gb;
  243. if (*data_size < 2*160)
  244. return -1;
  245. if(buf_size < 20) {
  246. av_log(avctx, AV_LOG_ERROR,
  247. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  248. *data_size = 0;
  249. return buf_size;
  250. }
  251. init_get_bits(&gb, buf, 20 * 8);
  252. for (i=0; i<10; i++)
  253. lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])];
  254. eval_coefs(ractx->lpc_coef[0], lpc_refl);
  255. ractx->lpc_refl_rms[0] = rms(lpc_refl);
  256. energy = energy_tab[get_bits(&gb, 5)];
  257. refl_rms[0] = interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
  258. refl_rms[1] = interp(ractx, block_coefs[1], 2, energy <= ractx->old_energy,
  259. t_sqrt(energy*ractx->old_energy) >> 12);
  260. refl_rms[2] = interp(ractx, block_coefs[2], 3, 0, energy);
  261. refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy);
  262. int_to_int16(block_coefs[3], ractx->lpc_coef[0]);
  263. for (i=0; i < 4; i++) {
  264. do_output_subblock(ractx, block_coefs[i], refl_rms[i], &gb);
  265. for (j=0; j < BLOCKSIZE; j++)
  266. *data++ = av_clip_int16(ractx->curr_sblock[j + 10] << 2);
  267. }
  268. ractx->old_energy = energy;
  269. ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
  270. FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
  271. *data_size = 2*160;
  272. return 20;
  273. }
  274. AVCodec ra_144_decoder =
  275. {
  276. "real_144",
  277. CODEC_TYPE_AUDIO,
  278. CODEC_ID_RA_144,
  279. sizeof(RA144Context),
  280. ra144_decode_init,
  281. NULL,
  282. NULL,
  283. ra144_decode_frame,
  284. .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
  285. };