mpegaudioenc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806
  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/mpegaudio.c
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "avcodec.h"
  26. #include "bitstream.h"
  27. #undef CONFIG_MPEGAUDIO_HP
  28. #define CONFIG_MPEGAUDIO_HP 0
  29. #include "mpegaudio.h"
  30. /* currently, cannot change these constants (need to modify
  31. quantization stage) */
  32. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  33. #define SAMPLES_BUF_SIZE 4096
  34. typedef struct MpegAudioContext {
  35. PutBitContext pb;
  36. int nb_channels;
  37. int freq, bit_rate;
  38. int lsf; /* 1 if mpeg2 low bitrate selected */
  39. int bitrate_index; /* bit rate */
  40. int freq_index;
  41. int frame_size; /* frame size, in bits, without padding */
  42. int64_t nb_samples; /* total number of samples encoded */
  43. /* padding computation */
  44. int frame_frac, frame_frac_incr, do_padding;
  45. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  46. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  47. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  48. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  49. /* code to group 3 scale factors */
  50. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  51. int sblimit; /* number of used subbands */
  52. const unsigned char *alloc_table;
  53. } MpegAudioContext;
  54. /* define it to use floats in quantization (I don't like floats !) */
  55. //#define USE_FLOATS
  56. #include "mpegaudiodata.h"
  57. #include "mpegaudiotab.h"
  58. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  59. {
  60. MpegAudioContext *s = avctx->priv_data;
  61. int freq = avctx->sample_rate;
  62. int bitrate = avctx->bit_rate;
  63. int channels = avctx->channels;
  64. int i, v, table;
  65. float a;
  66. if (channels <= 0 || channels > 2){
  67. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  68. return -1;
  69. }
  70. bitrate = bitrate / 1000;
  71. s->nb_channels = channels;
  72. s->freq = freq;
  73. s->bit_rate = bitrate * 1000;
  74. avctx->frame_size = MPA_FRAME_SIZE;
  75. /* encoding freq */
  76. s->lsf = 0;
  77. for(i=0;i<3;i++) {
  78. if (ff_mpa_freq_tab[i] == freq)
  79. break;
  80. if ((ff_mpa_freq_tab[i] / 2) == freq) {
  81. s->lsf = 1;
  82. break;
  83. }
  84. }
  85. if (i == 3){
  86. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  87. return -1;
  88. }
  89. s->freq_index = i;
  90. /* encoding bitrate & frequency */
  91. for(i=0;i<15;i++) {
  92. if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  93. break;
  94. }
  95. if (i == 15){
  96. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  97. return -1;
  98. }
  99. s->bitrate_index = i;
  100. /* compute total header size & pad bit */
  101. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  102. s->frame_size = ((int)a) * 8;
  103. /* frame fractional size to compute padding */
  104. s->frame_frac = 0;
  105. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  106. /* select the right allocation table */
  107. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  108. /* number of used subbands */
  109. s->sblimit = ff_mpa_sblimit_table[table];
  110. s->alloc_table = ff_mpa_alloc_tables[table];
  111. #ifdef DEBUG
  112. av_log(avctx, AV_LOG_DEBUG, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  113. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  114. #endif
  115. for(i=0;i<s->nb_channels;i++)
  116. s->samples_offset[i] = 0;
  117. for(i=0;i<257;i++) {
  118. int v;
  119. v = ff_mpa_enwindow[i];
  120. #if WFRAC_BITS != 16
  121. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  122. #endif
  123. filter_bank[i] = v;
  124. if ((i & 63) != 0)
  125. v = -v;
  126. if (i != 0)
  127. filter_bank[512 - i] = v;
  128. }
  129. for(i=0;i<64;i++) {
  130. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  131. if (v <= 0)
  132. v = 1;
  133. scale_factor_table[i] = v;
  134. #ifdef USE_FLOATS
  135. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  136. #else
  137. #define P 15
  138. scale_factor_shift[i] = 21 - P - (i / 3);
  139. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  140. #endif
  141. }
  142. for(i=0;i<128;i++) {
  143. v = i - 64;
  144. if (v <= -3)
  145. v = 0;
  146. else if (v < 0)
  147. v = 1;
  148. else if (v == 0)
  149. v = 2;
  150. else if (v < 3)
  151. v = 3;
  152. else
  153. v = 4;
  154. scale_diff_table[i] = v;
  155. }
  156. for(i=0;i<17;i++) {
  157. v = ff_mpa_quant_bits[i];
  158. if (v < 0)
  159. v = -v;
  160. else
  161. v = v * 3;
  162. total_quant_bits[i] = 12 * v;
  163. }
  164. avctx->coded_frame= avcodec_alloc_frame();
  165. avctx->coded_frame->key_frame= 1;
  166. return 0;
  167. }
  168. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  169. static void idct32(int *out, int *tab)
  170. {
  171. int i, j;
  172. int *t, *t1, xr;
  173. const int *xp = costab32;
  174. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  175. t = tab + 30;
  176. t1 = tab + 2;
  177. do {
  178. t[0] += t[-4];
  179. t[1] += t[1 - 4];
  180. t -= 4;
  181. } while (t != t1);
  182. t = tab + 28;
  183. t1 = tab + 4;
  184. do {
  185. t[0] += t[-8];
  186. t[1] += t[1-8];
  187. t[2] += t[2-8];
  188. t[3] += t[3-8];
  189. t -= 8;
  190. } while (t != t1);
  191. t = tab;
  192. t1 = tab + 32;
  193. do {
  194. t[ 3] = -t[ 3];
  195. t[ 6] = -t[ 6];
  196. t[11] = -t[11];
  197. t[12] = -t[12];
  198. t[13] = -t[13];
  199. t[15] = -t[15];
  200. t += 16;
  201. } while (t != t1);
  202. t = tab;
  203. t1 = tab + 8;
  204. do {
  205. int x1, x2, x3, x4;
  206. x3 = MUL(t[16], FIX(SQRT2*0.5));
  207. x4 = t[0] - x3;
  208. x3 = t[0] + x3;
  209. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  210. x1 = MUL((t[8] - x2), xp[0]);
  211. x2 = MUL((t[8] + x2), xp[1]);
  212. t[ 0] = x3 + x1;
  213. t[ 8] = x4 - x2;
  214. t[16] = x4 + x2;
  215. t[24] = x3 - x1;
  216. t++;
  217. } while (t != t1);
  218. xp += 2;
  219. t = tab;
  220. t1 = tab + 4;
  221. do {
  222. xr = MUL(t[28],xp[0]);
  223. t[28] = (t[0] - xr);
  224. t[0] = (t[0] + xr);
  225. xr = MUL(t[4],xp[1]);
  226. t[ 4] = (t[24] - xr);
  227. t[24] = (t[24] + xr);
  228. xr = MUL(t[20],xp[2]);
  229. t[20] = (t[8] - xr);
  230. t[ 8] = (t[8] + xr);
  231. xr = MUL(t[12],xp[3]);
  232. t[12] = (t[16] - xr);
  233. t[16] = (t[16] + xr);
  234. t++;
  235. } while (t != t1);
  236. xp += 4;
  237. for (i = 0; i < 4; i++) {
  238. xr = MUL(tab[30-i*4],xp[0]);
  239. tab[30-i*4] = (tab[i*4] - xr);
  240. tab[ i*4] = (tab[i*4] + xr);
  241. xr = MUL(tab[ 2+i*4],xp[1]);
  242. tab[ 2+i*4] = (tab[28-i*4] - xr);
  243. tab[28-i*4] = (tab[28-i*4] + xr);
  244. xr = MUL(tab[31-i*4],xp[0]);
  245. tab[31-i*4] = (tab[1+i*4] - xr);
  246. tab[ 1+i*4] = (tab[1+i*4] + xr);
  247. xr = MUL(tab[ 3+i*4],xp[1]);
  248. tab[ 3+i*4] = (tab[29-i*4] - xr);
  249. tab[29-i*4] = (tab[29-i*4] + xr);
  250. xp += 2;
  251. }
  252. t = tab + 30;
  253. t1 = tab + 1;
  254. do {
  255. xr = MUL(t1[0], *xp);
  256. t1[0] = (t[0] - xr);
  257. t[0] = (t[0] + xr);
  258. t -= 2;
  259. t1 += 2;
  260. xp++;
  261. } while (t >= tab);
  262. for(i=0;i<32;i++) {
  263. out[i] = tab[bitinv32[i]];
  264. }
  265. }
  266. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  267. static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
  268. {
  269. short *p, *q;
  270. int sum, offset, i, j;
  271. int tmp[64];
  272. int tmp1[32];
  273. int *out;
  274. // print_pow1(samples, 1152);
  275. offset = s->samples_offset[ch];
  276. out = &s->sb_samples[ch][0][0][0];
  277. for(j=0;j<36;j++) {
  278. /* 32 samples at once */
  279. for(i=0;i<32;i++) {
  280. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  281. samples += incr;
  282. }
  283. /* filter */
  284. p = s->samples_buf[ch] + offset;
  285. q = filter_bank;
  286. /* maxsum = 23169 */
  287. for(i=0;i<64;i++) {
  288. sum = p[0*64] * q[0*64];
  289. sum += p[1*64] * q[1*64];
  290. sum += p[2*64] * q[2*64];
  291. sum += p[3*64] * q[3*64];
  292. sum += p[4*64] * q[4*64];
  293. sum += p[5*64] * q[5*64];
  294. sum += p[6*64] * q[6*64];
  295. sum += p[7*64] * q[7*64];
  296. tmp[i] = sum;
  297. p++;
  298. q++;
  299. }
  300. tmp1[0] = tmp[16] >> WSHIFT;
  301. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  302. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  303. idct32(out, tmp1);
  304. /* advance of 32 samples */
  305. offset -= 32;
  306. out += 32;
  307. /* handle the wrap around */
  308. if (offset < 0) {
  309. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  310. s->samples_buf[ch], (512 - 32) * 2);
  311. offset = SAMPLES_BUF_SIZE - 512;
  312. }
  313. }
  314. s->samples_offset[ch] = offset;
  315. // print_pow(s->sb_samples, 1152);
  316. }
  317. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  318. unsigned char scale_factors[SBLIMIT][3],
  319. int sb_samples[3][12][SBLIMIT],
  320. int sblimit)
  321. {
  322. int *p, vmax, v, n, i, j, k, code;
  323. int index, d1, d2;
  324. unsigned char *sf = &scale_factors[0][0];
  325. for(j=0;j<sblimit;j++) {
  326. for(i=0;i<3;i++) {
  327. /* find the max absolute value */
  328. p = &sb_samples[i][0][j];
  329. vmax = abs(*p);
  330. for(k=1;k<12;k++) {
  331. p += SBLIMIT;
  332. v = abs(*p);
  333. if (v > vmax)
  334. vmax = v;
  335. }
  336. /* compute the scale factor index using log 2 computations */
  337. if (vmax > 1) {
  338. n = av_log2(vmax);
  339. /* n is the position of the MSB of vmax. now
  340. use at most 2 compares to find the index */
  341. index = (21 - n) * 3 - 3;
  342. if (index >= 0) {
  343. while (vmax <= scale_factor_table[index+1])
  344. index++;
  345. } else {
  346. index = 0; /* very unlikely case of overflow */
  347. }
  348. } else {
  349. index = 62; /* value 63 is not allowed */
  350. }
  351. #if 0
  352. printf("%2d:%d in=%x %x %d\n",
  353. j, i, vmax, scale_factor_table[index], index);
  354. #endif
  355. /* store the scale factor */
  356. assert(index >=0 && index <= 63);
  357. sf[i] = index;
  358. }
  359. /* compute the transmission factor : look if the scale factors
  360. are close enough to each other */
  361. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  362. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  363. /* handle the 25 cases */
  364. switch(d1 * 5 + d2) {
  365. case 0*5+0:
  366. case 0*5+4:
  367. case 3*5+4:
  368. case 4*5+0:
  369. case 4*5+4:
  370. code = 0;
  371. break;
  372. case 0*5+1:
  373. case 0*5+2:
  374. case 4*5+1:
  375. case 4*5+2:
  376. code = 3;
  377. sf[2] = sf[1];
  378. break;
  379. case 0*5+3:
  380. case 4*5+3:
  381. code = 3;
  382. sf[1] = sf[2];
  383. break;
  384. case 1*5+0:
  385. case 1*5+4:
  386. case 2*5+4:
  387. code = 1;
  388. sf[1] = sf[0];
  389. break;
  390. case 1*5+1:
  391. case 1*5+2:
  392. case 2*5+0:
  393. case 2*5+1:
  394. case 2*5+2:
  395. code = 2;
  396. sf[1] = sf[2] = sf[0];
  397. break;
  398. case 2*5+3:
  399. case 3*5+3:
  400. code = 2;
  401. sf[0] = sf[1] = sf[2];
  402. break;
  403. case 3*5+0:
  404. case 3*5+1:
  405. case 3*5+2:
  406. code = 2;
  407. sf[0] = sf[2] = sf[1];
  408. break;
  409. case 1*5+3:
  410. code = 2;
  411. if (sf[0] > sf[2])
  412. sf[0] = sf[2];
  413. sf[1] = sf[2] = sf[0];
  414. break;
  415. default:
  416. assert(0); //cannot happen
  417. code = 0; /* kill warning */
  418. }
  419. #if 0
  420. printf("%d: %2d %2d %2d %d %d -> %d\n", j,
  421. sf[0], sf[1], sf[2], d1, d2, code);
  422. #endif
  423. scale_code[j] = code;
  424. sf += 3;
  425. }
  426. }
  427. /* The most important function : psycho acoustic module. In this
  428. encoder there is basically none, so this is the worst you can do,
  429. but also this is the simpler. */
  430. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  431. {
  432. int i;
  433. for(i=0;i<s->sblimit;i++) {
  434. smr[i] = (int)(fixed_smr[i] * 10);
  435. }
  436. }
  437. #define SB_NOTALLOCATED 0
  438. #define SB_ALLOCATED 1
  439. #define SB_NOMORE 2
  440. /* Try to maximize the smr while using a number of bits inferior to
  441. the frame size. I tried to make the code simpler, faster and
  442. smaller than other encoders :-) */
  443. static void compute_bit_allocation(MpegAudioContext *s,
  444. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  445. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  446. int *padding)
  447. {
  448. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  449. int incr;
  450. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  451. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  452. const unsigned char *alloc;
  453. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  454. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  455. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  456. /* compute frame size and padding */
  457. max_frame_size = s->frame_size;
  458. s->frame_frac += s->frame_frac_incr;
  459. if (s->frame_frac >= 65536) {
  460. s->frame_frac -= 65536;
  461. s->do_padding = 1;
  462. max_frame_size += 8;
  463. } else {
  464. s->do_padding = 0;
  465. }
  466. /* compute the header + bit alloc size */
  467. current_frame_size = 32;
  468. alloc = s->alloc_table;
  469. for(i=0;i<s->sblimit;i++) {
  470. incr = alloc[0];
  471. current_frame_size += incr * s->nb_channels;
  472. alloc += 1 << incr;
  473. }
  474. for(;;) {
  475. /* look for the subband with the largest signal to mask ratio */
  476. max_sb = -1;
  477. max_ch = -1;
  478. max_smr = INT_MIN;
  479. for(ch=0;ch<s->nb_channels;ch++) {
  480. for(i=0;i<s->sblimit;i++) {
  481. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  482. max_smr = smr[ch][i];
  483. max_sb = i;
  484. max_ch = ch;
  485. }
  486. }
  487. }
  488. #if 0
  489. printf("current=%d max=%d max_sb=%d alloc=%d\n",
  490. current_frame_size, max_frame_size, max_sb,
  491. bit_alloc[max_sb]);
  492. #endif
  493. if (max_sb < 0)
  494. break;
  495. /* find alloc table entry (XXX: not optimal, should use
  496. pointer table) */
  497. alloc = s->alloc_table;
  498. for(i=0;i<max_sb;i++) {
  499. alloc += 1 << alloc[0];
  500. }
  501. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  502. /* nothing was coded for this band: add the necessary bits */
  503. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  504. incr += total_quant_bits[alloc[1]];
  505. } else {
  506. /* increments bit allocation */
  507. b = bit_alloc[max_ch][max_sb];
  508. incr = total_quant_bits[alloc[b + 1]] -
  509. total_quant_bits[alloc[b]];
  510. }
  511. if (current_frame_size + incr <= max_frame_size) {
  512. /* can increase size */
  513. b = ++bit_alloc[max_ch][max_sb];
  514. current_frame_size += incr;
  515. /* decrease smr by the resolution we added */
  516. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  517. /* max allocation size reached ? */
  518. if (b == ((1 << alloc[0]) - 1))
  519. subband_status[max_ch][max_sb] = SB_NOMORE;
  520. else
  521. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  522. } else {
  523. /* cannot increase the size of this subband */
  524. subband_status[max_ch][max_sb] = SB_NOMORE;
  525. }
  526. }
  527. *padding = max_frame_size - current_frame_size;
  528. assert(*padding >= 0);
  529. #if 0
  530. for(i=0;i<s->sblimit;i++) {
  531. printf("%d ", bit_alloc[i]);
  532. }
  533. printf("\n");
  534. #endif
  535. }
  536. /*
  537. * Output the mpeg audio layer 2 frame. Note how the code is small
  538. * compared to other encoders :-)
  539. */
  540. static void encode_frame(MpegAudioContext *s,
  541. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  542. int padding)
  543. {
  544. int i, j, k, l, bit_alloc_bits, b, ch;
  545. unsigned char *sf;
  546. int q[3];
  547. PutBitContext *p = &s->pb;
  548. /* header */
  549. put_bits(p, 12, 0xfff);
  550. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  551. put_bits(p, 2, 4-2); /* layer 2 */
  552. put_bits(p, 1, 1); /* no error protection */
  553. put_bits(p, 4, s->bitrate_index);
  554. put_bits(p, 2, s->freq_index);
  555. put_bits(p, 1, s->do_padding); /* use padding */
  556. put_bits(p, 1, 0); /* private_bit */
  557. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  558. put_bits(p, 2, 0); /* mode_ext */
  559. put_bits(p, 1, 0); /* no copyright */
  560. put_bits(p, 1, 1); /* original */
  561. put_bits(p, 2, 0); /* no emphasis */
  562. /* bit allocation */
  563. j = 0;
  564. for(i=0;i<s->sblimit;i++) {
  565. bit_alloc_bits = s->alloc_table[j];
  566. for(ch=0;ch<s->nb_channels;ch++) {
  567. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  568. }
  569. j += 1 << bit_alloc_bits;
  570. }
  571. /* scale codes */
  572. for(i=0;i<s->sblimit;i++) {
  573. for(ch=0;ch<s->nb_channels;ch++) {
  574. if (bit_alloc[ch][i])
  575. put_bits(p, 2, s->scale_code[ch][i]);
  576. }
  577. }
  578. /* scale factors */
  579. for(i=0;i<s->sblimit;i++) {
  580. for(ch=0;ch<s->nb_channels;ch++) {
  581. if (bit_alloc[ch][i]) {
  582. sf = &s->scale_factors[ch][i][0];
  583. switch(s->scale_code[ch][i]) {
  584. case 0:
  585. put_bits(p, 6, sf[0]);
  586. put_bits(p, 6, sf[1]);
  587. put_bits(p, 6, sf[2]);
  588. break;
  589. case 3:
  590. case 1:
  591. put_bits(p, 6, sf[0]);
  592. put_bits(p, 6, sf[2]);
  593. break;
  594. case 2:
  595. put_bits(p, 6, sf[0]);
  596. break;
  597. }
  598. }
  599. }
  600. }
  601. /* quantization & write sub band samples */
  602. for(k=0;k<3;k++) {
  603. for(l=0;l<12;l+=3) {
  604. j = 0;
  605. for(i=0;i<s->sblimit;i++) {
  606. bit_alloc_bits = s->alloc_table[j];
  607. for(ch=0;ch<s->nb_channels;ch++) {
  608. b = bit_alloc[ch][i];
  609. if (b) {
  610. int qindex, steps, m, sample, bits;
  611. /* we encode 3 sub band samples of the same sub band at a time */
  612. qindex = s->alloc_table[j+b];
  613. steps = ff_mpa_quant_steps[qindex];
  614. for(m=0;m<3;m++) {
  615. sample = s->sb_samples[ch][k][l + m][i];
  616. /* divide by scale factor */
  617. #ifdef USE_FLOATS
  618. {
  619. float a;
  620. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  621. q[m] = (int)((a + 1.0) * steps * 0.5);
  622. }
  623. #else
  624. {
  625. int q1, e, shift, mult;
  626. e = s->scale_factors[ch][i][k];
  627. shift = scale_factor_shift[e];
  628. mult = scale_factor_mult[e];
  629. /* normalize to P bits */
  630. if (shift < 0)
  631. q1 = sample << (-shift);
  632. else
  633. q1 = sample >> shift;
  634. q1 = (q1 * mult) >> P;
  635. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  636. }
  637. #endif
  638. if (q[m] >= steps)
  639. q[m] = steps - 1;
  640. assert(q[m] >= 0 && q[m] < steps);
  641. }
  642. bits = ff_mpa_quant_bits[qindex];
  643. if (bits < 0) {
  644. /* group the 3 values to save bits */
  645. put_bits(p, -bits,
  646. q[0] + steps * (q[1] + steps * q[2]));
  647. #if 0
  648. printf("%d: gr1 %d\n",
  649. i, q[0] + steps * (q[1] + steps * q[2]));
  650. #endif
  651. } else {
  652. #if 0
  653. printf("%d: gr3 %d %d %d\n",
  654. i, q[0], q[1], q[2]);
  655. #endif
  656. put_bits(p, bits, q[0]);
  657. put_bits(p, bits, q[1]);
  658. put_bits(p, bits, q[2]);
  659. }
  660. }
  661. }
  662. /* next subband in alloc table */
  663. j += 1 << bit_alloc_bits;
  664. }
  665. }
  666. }
  667. /* padding */
  668. for(i=0;i<padding;i++)
  669. put_bits(p, 1, 0);
  670. /* flush */
  671. flush_put_bits(p);
  672. }
  673. static int MPA_encode_frame(AVCodecContext *avctx,
  674. unsigned char *frame, int buf_size, void *data)
  675. {
  676. MpegAudioContext *s = avctx->priv_data;
  677. short *samples = data;
  678. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  679. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  680. int padding, i;
  681. for(i=0;i<s->nb_channels;i++) {
  682. filter(s, i, samples + i, s->nb_channels);
  683. }
  684. for(i=0;i<s->nb_channels;i++) {
  685. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  686. s->sb_samples[i], s->sblimit);
  687. }
  688. for(i=0;i<s->nb_channels;i++) {
  689. psycho_acoustic_model(s, smr[i]);
  690. }
  691. compute_bit_allocation(s, smr, bit_alloc, &padding);
  692. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
  693. encode_frame(s, bit_alloc, padding);
  694. s->nb_samples += MPA_FRAME_SIZE;
  695. return pbBufPtr(&s->pb) - s->pb.buf;
  696. }
  697. static av_cold int MPA_encode_close(AVCodecContext *avctx)
  698. {
  699. av_freep(&avctx->coded_frame);
  700. return 0;
  701. }
  702. AVCodec mp2_encoder = {
  703. "mp2",
  704. CODEC_TYPE_AUDIO,
  705. CODEC_ID_MP2,
  706. sizeof(MpegAudioContext),
  707. MPA_encode_init,
  708. MPA_encode_frame,
  709. MPA_encode_close,
  710. NULL,
  711. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  712. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  713. };
  714. #undef FIX