lpc.c 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. /**
  2. * LPC utility code
  3. * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/lls.h"
  22. #include "dsputil.h"
  23. #define LPC_USE_DOUBLE
  24. #include "lpc.h"
  25. /**
  26. * Quantize LPC coefficients
  27. */
  28. static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
  29. int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
  30. {
  31. int i;
  32. double cmax, error;
  33. int32_t qmax;
  34. int sh;
  35. /* define maximum levels */
  36. qmax = (1 << (precision - 1)) - 1;
  37. /* find maximum coefficient value */
  38. cmax = 0.0;
  39. for(i=0; i<order; i++) {
  40. cmax= FFMAX(cmax, fabs(lpc_in[i]));
  41. }
  42. /* if maximum value quantizes to zero, return all zeros */
  43. if(cmax * (1 << max_shift) < 1.0) {
  44. *shift = zero_shift;
  45. memset(lpc_out, 0, sizeof(int32_t) * order);
  46. return;
  47. }
  48. /* calculate level shift which scales max coeff to available bits */
  49. sh = max_shift;
  50. while((cmax * (1 << sh) > qmax) && (sh > 0)) {
  51. sh--;
  52. }
  53. /* since negative shift values are unsupported in decoder, scale down
  54. coefficients instead */
  55. if(sh == 0 && cmax > qmax) {
  56. double scale = ((double)qmax) / cmax;
  57. for(i=0; i<order; i++) {
  58. lpc_in[i] *= scale;
  59. }
  60. }
  61. /* output quantized coefficients and level shift */
  62. error=0;
  63. for(i=0; i<order; i++) {
  64. error -= lpc_in[i] * (1 << sh);
  65. lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
  66. error -= lpc_out[i];
  67. }
  68. *shift = sh;
  69. }
  70. static int estimate_best_order(double *ref, int min_order, int max_order)
  71. {
  72. int i, est;
  73. est = min_order;
  74. for(i=max_order-1; i>=min_order-1; i--) {
  75. if(ref[i] > 0.10) {
  76. est = i+1;
  77. break;
  78. }
  79. }
  80. return est;
  81. }
  82. /**
  83. * Calculate LPC coefficients for multiple orders
  84. *
  85. * @param use_lpc LPC method for determining coefficients
  86. * 0 = LPC with fixed pre-defined coeffs
  87. * 1 = LPC with coeffs determined by Levinson-Durbin recursion
  88. * 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes.
  89. */
  90. int ff_lpc_calc_coefs(DSPContext *s,
  91. const int32_t *samples, int blocksize, int min_order,
  92. int max_order, int precision,
  93. int32_t coefs[][MAX_LPC_ORDER], int *shift, int use_lpc,
  94. int omethod, int max_shift, int zero_shift)
  95. {
  96. double autoc[MAX_LPC_ORDER+1];
  97. double ref[MAX_LPC_ORDER];
  98. double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
  99. int i, j, pass;
  100. int opt_order;
  101. assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && use_lpc > 0);
  102. if(use_lpc == 1){
  103. s->flac_compute_autocorr(samples, blocksize, max_order, autoc);
  104. compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
  105. for(i=0; i<max_order; i++)
  106. ref[i] = fabs(lpc[i][i]);
  107. }else{
  108. LLSModel m[2];
  109. double var[MAX_LPC_ORDER+1], av_uninit(weight);
  110. for(pass=0; pass<use_lpc-1; pass++){
  111. av_init_lls(&m[pass&1], max_order);
  112. weight=0;
  113. for(i=max_order; i<blocksize; i++){
  114. for(j=0; j<=max_order; j++)
  115. var[j]= samples[i-j];
  116. if(pass){
  117. double eval, inv, rinv;
  118. eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
  119. eval= (512>>pass) + fabs(eval - var[0]);
  120. inv = 1/eval;
  121. rinv = sqrt(inv);
  122. for(j=0; j<=max_order; j++)
  123. var[j] *= rinv;
  124. weight += inv;
  125. }else
  126. weight++;
  127. av_update_lls(&m[pass&1], var, 1.0);
  128. }
  129. av_solve_lls(&m[pass&1], 0.001, 0);
  130. }
  131. for(i=0; i<max_order; i++){
  132. for(j=0; j<max_order; j++)
  133. lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
  134. ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
  135. }
  136. for(i=max_order-1; i>0; i--)
  137. ref[i] = ref[i-1] - ref[i];
  138. }
  139. opt_order = max_order;
  140. if(omethod == ORDER_METHOD_EST) {
  141. opt_order = estimate_best_order(ref, min_order, max_order);
  142. i = opt_order-1;
  143. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  144. } else {
  145. for(i=min_order-1; i<max_order; i++) {
  146. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  147. }
  148. }
  149. return opt_order;
  150. }