flashsvenc.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. /*
  2. * Flash Screen Video encoder
  3. * Copyright (C) 2004 Alex Beregszaszi
  4. * Copyright (C) 2006 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /* Encoding development sponsored by http://fh-campuswien.ac.at */
  23. /**
  24. * @file libavcodec/flashsvenc.c
  25. * Flash Screen Video encoder
  26. * @author Alex Beregszaszi
  27. * @author Benjamin Larsson
  28. */
  29. /* Bitstream description
  30. * The picture is divided into blocks that are zlib-compressed.
  31. *
  32. * The decoder is fed complete frames, the frameheader contains:
  33. * 4bits of block width
  34. * 12bits of frame width
  35. * 4bits of block height
  36. * 12bits of frame height
  37. *
  38. * Directly after the header are the compressed blocks. The blocks
  39. * have their compressed size represented with 16bits in the beginig.
  40. * If the size = 0 then the block is unchanged from the previous frame.
  41. * All blocks are decompressed until the buffer is consumed.
  42. *
  43. * Encoding ideas, a basic encoder would just use a fixed block size.
  44. * Block sizes can be multipels of 16, from 16 to 256. The blocks don't
  45. * have to be quadratic. A brute force search with a set of different
  46. * block sizes should give a better result than to just use a fixed size.
  47. */
  48. /* TODO:
  49. * Don't reencode the frame in brute force mode if the frame is a dupe. Speed up.
  50. * Make the difference check faster.
  51. */
  52. #include <stdio.h>
  53. #include <stdlib.h>
  54. #include <zlib.h>
  55. #include "avcodec.h"
  56. #include "bitstream.h"
  57. #include "bytestream.h"
  58. typedef struct FlashSVContext {
  59. AVCodecContext *avctx;
  60. uint8_t *previous_frame;
  61. AVFrame frame;
  62. int image_width, image_height;
  63. int block_width, block_height;
  64. uint8_t* tmpblock;
  65. uint8_t* encbuffer;
  66. int block_size;
  67. z_stream zstream;
  68. int last_key_frame;
  69. } FlashSVContext;
  70. static int copy_region_enc(uint8_t *sptr, uint8_t *dptr,
  71. int dx, int dy, int h, int w, int stride, uint8_t *pfptr) {
  72. int i,j;
  73. uint8_t *nsptr;
  74. uint8_t *npfptr;
  75. int diff = 0;
  76. for (i = dx+h; i > dx; i--) {
  77. nsptr = sptr+(i*stride)+dy*3;
  78. npfptr = pfptr+(i*stride)+dy*3;
  79. for (j=0 ; j<w*3 ; j++) {
  80. diff |=npfptr[j]^nsptr[j];
  81. dptr[j] = nsptr[j];
  82. }
  83. dptr += w*3;
  84. }
  85. if (diff)
  86. return 1;
  87. return 0;
  88. }
  89. static av_cold int flashsv_encode_init(AVCodecContext *avctx)
  90. {
  91. FlashSVContext *s = avctx->priv_data;
  92. s->avctx = avctx;
  93. if ((avctx->width > 4095) || (avctx->height > 4095)) {
  94. av_log(avctx, AV_LOG_ERROR, "Input dimensions too large, input must be max 4096x4096 !\n");
  95. return -1;
  96. }
  97. if (avcodec_check_dimensions(avctx, avctx->width, avctx->height) < 0) {
  98. return -1;
  99. }
  100. // Needed if zlib unused or init aborted before deflateInit
  101. memset(&(s->zstream), 0, sizeof(z_stream));
  102. s->last_key_frame=0;
  103. s->image_width = avctx->width;
  104. s->image_height = avctx->height;
  105. s->tmpblock = av_mallocz(3*256*256);
  106. s->encbuffer = av_mallocz(s->image_width*s->image_height*3);
  107. if (!s->tmpblock || !s->encbuffer) {
  108. av_log(avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  109. return -1;
  110. }
  111. return 0;
  112. }
  113. static int encode_bitstream(FlashSVContext *s, AVFrame *p, uint8_t *buf, int buf_size,
  114. int block_width, int block_height, uint8_t *previous_frame, int* I_frame) {
  115. PutBitContext pb;
  116. int h_blocks, v_blocks, h_part, v_part, i, j;
  117. int buf_pos, res;
  118. int pred_blocks = 0;
  119. init_put_bits(&pb, buf, buf_size*8);
  120. put_bits(&pb, 4, (block_width/16)-1);
  121. put_bits(&pb, 12, s->image_width);
  122. put_bits(&pb, 4, (block_height/16)-1);
  123. put_bits(&pb, 12, s->image_height);
  124. flush_put_bits(&pb);
  125. buf_pos=4;
  126. h_blocks = s->image_width / block_width;
  127. h_part = s->image_width % block_width;
  128. v_blocks = s->image_height / block_height;
  129. v_part = s->image_height % block_height;
  130. /* loop over all block columns */
  131. for (j = 0; j < v_blocks + (v_part?1:0); j++)
  132. {
  133. int hp = j*block_height; // horiz position in frame
  134. int hs = (j<v_blocks)?block_height:v_part; // size of block
  135. /* loop over all block rows */
  136. for (i = 0; i < h_blocks + (h_part?1:0); i++)
  137. {
  138. int wp = i*block_width; // vert position in frame
  139. int ws = (i<h_blocks)?block_width:h_part; // size of block
  140. int ret=Z_OK;
  141. uint8_t *ptr;
  142. ptr = buf+buf_pos;
  143. //copy the block to the temp buffer before compression (if it differs from the previous frame's block)
  144. res = copy_region_enc(p->data[0], s->tmpblock, s->image_height-(hp+hs+1), wp, hs, ws, p->linesize[0], previous_frame);
  145. if (res || *I_frame) {
  146. unsigned long zsize;
  147. zsize = 3*block_width*block_height;
  148. ret = compress2(ptr+2, &zsize, s->tmpblock, 3*ws*hs, 9);
  149. //ret = deflateReset(&(s->zstream));
  150. if (ret != Z_OK)
  151. av_log(s->avctx, AV_LOG_ERROR, "error while compressing block %dx%d\n", i, j);
  152. bytestream_put_be16(&ptr,(unsigned int)zsize);
  153. buf_pos += zsize+2;
  154. //av_log(avctx, AV_LOG_ERROR, "buf_pos = %d\n", buf_pos);
  155. } else {
  156. pred_blocks++;
  157. bytestream_put_be16(&ptr,0);
  158. buf_pos += 2;
  159. }
  160. }
  161. }
  162. if (pred_blocks)
  163. *I_frame = 0;
  164. else
  165. *I_frame = 1;
  166. return buf_pos;
  167. }
  168. static int flashsv_encode_frame(AVCodecContext *avctx, uint8_t *buf, int buf_size, void *data)
  169. {
  170. FlashSVContext * const s = avctx->priv_data;
  171. AVFrame *pict = data;
  172. AVFrame * const p = &s->frame;
  173. uint8_t *pfptr;
  174. int res;
  175. int I_frame = 0;
  176. int opt_w, opt_h;
  177. *p = *pict;
  178. /* First frame needs to be a keyframe */
  179. if (avctx->frame_number == 0) {
  180. s->previous_frame = av_mallocz(FFABS(p->linesize[0])*s->image_height);
  181. if (!s->previous_frame) {
  182. av_log(avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  183. return -1;
  184. }
  185. I_frame = 1;
  186. }
  187. if (p->linesize[0] < 0)
  188. pfptr = s->previous_frame - ((s->image_height-1) * p->linesize[0]);
  189. else
  190. pfptr = s->previous_frame;
  191. /* Check the placement of keyframes */
  192. if (avctx->gop_size > 0) {
  193. if (avctx->frame_number >= s->last_key_frame + avctx->gop_size) {
  194. I_frame = 1;
  195. }
  196. }
  197. opt_w=4;
  198. opt_h=4;
  199. if (buf_size < s->image_width*s->image_height*3) {
  200. //Conservative upper bound check for compressed data
  201. av_log(avctx, AV_LOG_ERROR, "buf_size %d < %d\n", buf_size, s->image_width*s->image_height*3);
  202. return -1;
  203. }
  204. res = encode_bitstream(s, p, buf, buf_size, opt_w*16, opt_h*16, pfptr, &I_frame);
  205. //save the current frame
  206. if(p->linesize[0] > 0)
  207. memcpy(s->previous_frame, p->data[0], s->image_height*p->linesize[0]);
  208. else
  209. memcpy(s->previous_frame, p->data[0] + p->linesize[0] * (s->image_height-1), s->image_height*FFABS(p->linesize[0]));
  210. //mark the frame type so the muxer can mux it correctly
  211. if (I_frame) {
  212. p->pict_type = FF_I_TYPE;
  213. p->key_frame = 1;
  214. s->last_key_frame = avctx->frame_number;
  215. av_log(avctx, AV_LOG_DEBUG, "Inserting key frame at frame %d\n",avctx->frame_number);
  216. } else {
  217. p->pict_type = FF_P_TYPE;
  218. p->key_frame = 0;
  219. }
  220. avctx->coded_frame = p;
  221. return res;
  222. }
  223. static av_cold int flashsv_encode_end(AVCodecContext *avctx)
  224. {
  225. FlashSVContext *s = avctx->priv_data;
  226. deflateEnd(&(s->zstream));
  227. av_free(s->encbuffer);
  228. av_free(s->previous_frame);
  229. av_free(s->tmpblock);
  230. return 0;
  231. }
  232. AVCodec flashsv_encoder = {
  233. "flashsv",
  234. CODEC_TYPE_VIDEO,
  235. CODEC_ID_FLASHSV,
  236. sizeof(FlashSVContext),
  237. flashsv_encode_init,
  238. flashsv_encode_frame,
  239. flashsv_encode_end,
  240. .pix_fmts = (enum PixelFormat[]){PIX_FMT_BGR24, PIX_FMT_NONE},
  241. .long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video"),
  242. };