dnxhdenc.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. *
  5. * VC-3 encoder funded by the British Broadcasting Corporation
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. //#define DEBUG
  24. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "dnxhdenc.h"
  29. int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow);
  30. #define LAMBDA_FRAC_BITS 10
  31. static av_always_inline void dnxhd_get_pixels_8x4(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  32. {
  33. int i;
  34. for (i = 0; i < 4; i++) {
  35. block[0] = pixels[0]; block[1] = pixels[1];
  36. block[2] = pixels[2]; block[3] = pixels[3];
  37. block[4] = pixels[4]; block[5] = pixels[5];
  38. block[6] = pixels[6]; block[7] = pixels[7];
  39. pixels += line_size;
  40. block += 8;
  41. }
  42. memcpy(block , block- 8, sizeof(*block)*8);
  43. memcpy(block+ 8, block-16, sizeof(*block)*8);
  44. memcpy(block+16, block-24, sizeof(*block)*8);
  45. memcpy(block+24, block-32, sizeof(*block)*8);
  46. }
  47. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  48. {
  49. int i, j, level, run;
  50. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  51. CHECKED_ALLOCZ(ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes));
  52. CHECKED_ALLOCZ(ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits));
  53. CHECKED_ALLOCZ(ctx->run_codes, 63*2);
  54. CHECKED_ALLOCZ(ctx->run_bits, 63);
  55. ctx->vlc_codes += max_level*2;
  56. ctx->vlc_bits += max_level*2;
  57. for (level = -max_level; level < max_level; level++) {
  58. for (run = 0; run < 2; run++) {
  59. int index = (level<<1)|run;
  60. int sign, offset = 0, alevel = level;
  61. MASK_ABS(sign, alevel);
  62. if (alevel > 64) {
  63. offset = (alevel-1)>>6;
  64. alevel -= offset<<6;
  65. }
  66. for (j = 0; j < 257; j++) {
  67. if (ctx->cid_table->ac_level[j] == alevel &&
  68. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  69. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  70. assert(!ctx->vlc_codes[index]);
  71. if (alevel) {
  72. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  73. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  74. } else {
  75. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  76. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  77. }
  78. break;
  79. }
  80. }
  81. assert(!alevel || j < 257);
  82. if (offset) {
  83. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  84. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  85. }
  86. }
  87. }
  88. for (i = 0; i < 62; i++) {
  89. int run = ctx->cid_table->run[i];
  90. assert(run < 63);
  91. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  92. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  93. }
  94. return 0;
  95. fail:
  96. return -1;
  97. }
  98. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  99. {
  100. // init first elem to 1 to avoid div by 0 in convert_matrix
  101. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  102. int qscale, i;
  103. CHECKED_ALLOCZ(ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int));
  104. CHECKED_ALLOCZ(ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int));
  105. CHECKED_ALLOCZ(ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t));
  106. CHECKED_ALLOCZ(ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t));
  107. for (i = 1; i < 64; i++) {
  108. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  109. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  110. }
  111. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  112. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  113. for (i = 1; i < 64; i++) {
  114. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  115. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  116. }
  117. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  118. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  119. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  120. for (i = 0; i < 64; i++) {
  121. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  122. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  123. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  124. }
  125. }
  126. return 0;
  127. fail:
  128. return -1;
  129. }
  130. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  131. {
  132. CHECKED_ALLOCZ(ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry));
  133. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  134. CHECKED_ALLOCZ(ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry));
  135. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4) * 8;
  136. ctx->qscale = 1;
  137. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  138. return 0;
  139. fail:
  140. return -1;
  141. }
  142. static int dnxhd_encode_init(AVCodecContext *avctx)
  143. {
  144. DNXHDEncContext *ctx = avctx->priv_data;
  145. int i, index;
  146. ctx->cid = ff_dnxhd_find_cid(avctx);
  147. if (!ctx->cid || avctx->pix_fmt != PIX_FMT_YUV422P) {
  148. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  149. return -1;
  150. }
  151. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  152. index = ff_dnxhd_get_cid_table(ctx->cid);
  153. ctx->cid_table = &ff_dnxhd_cid_table[index];
  154. ctx->m.avctx = avctx;
  155. ctx->m.mb_intra = 1;
  156. ctx->m.h263_aic = 1;
  157. ctx->get_pixels_8x4_sym = dnxhd_get_pixels_8x4;
  158. dsputil_init(&ctx->m.dsp, avctx);
  159. ff_dct_common_init(&ctx->m);
  160. #if HAVE_MMX
  161. ff_dnxhd_init_mmx(ctx);
  162. #endif
  163. if (!ctx->m.dct_quantize)
  164. ctx->m.dct_quantize = dct_quantize_c;
  165. ctx->m.mb_height = (avctx->height + 15) / 16;
  166. ctx->m.mb_width = (avctx->width + 15) / 16;
  167. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  168. ctx->interlaced = 1;
  169. ctx->m.mb_height /= 2;
  170. }
  171. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  172. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  173. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  174. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  175. return -1;
  176. if (dnxhd_init_vlc(ctx) < 0)
  177. return -1;
  178. if (dnxhd_init_rc(ctx) < 0)
  179. return -1;
  180. CHECKED_ALLOCZ(ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t));
  181. CHECKED_ALLOCZ(ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t));
  182. CHECKED_ALLOCZ(ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t));
  183. ctx->frame.key_frame = 1;
  184. ctx->frame.pict_type = FF_I_TYPE;
  185. ctx->m.avctx->coded_frame = &ctx->frame;
  186. if (avctx->thread_count > MAX_THREADS || (avctx->thread_count > ctx->m.mb_height)) {
  187. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  188. return -1;
  189. }
  190. ctx->thread[0] = ctx;
  191. for (i = 1; i < avctx->thread_count; i++) {
  192. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  193. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  194. }
  195. for (i = 0; i < avctx->thread_count; i++) {
  196. ctx->thread[i]->m.start_mb_y = (ctx->m.mb_height*(i ) + avctx->thread_count/2) / avctx->thread_count;
  197. ctx->thread[i]->m.end_mb_y = (ctx->m.mb_height*(i+1) + avctx->thread_count/2) / avctx->thread_count;
  198. }
  199. return 0;
  200. fail: //for CHECKED_ALLOCZ
  201. return -1;
  202. }
  203. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  204. {
  205. DNXHDEncContext *ctx = avctx->priv_data;
  206. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  207. memcpy(buf, header_prefix, 5);
  208. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  209. buf[6] = 0x80; // crc flag off
  210. buf[7] = 0xa0; // reserved
  211. AV_WB16(buf + 0x18, avctx->height); // ALPF
  212. AV_WB16(buf + 0x1a, avctx->width); // SPL
  213. AV_WB16(buf + 0x1d, avctx->height); // NAL
  214. buf[0x21] = 0x38; // FIXME 8 bit per comp
  215. buf[0x22] = 0x88 + (ctx->frame.interlaced_frame<<2);
  216. AV_WB32(buf + 0x28, ctx->cid); // CID
  217. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  218. buf[0x5f] = 0x01; // UDL
  219. buf[0x167] = 0x02; // reserved
  220. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  221. buf[0x16d] = ctx->m.mb_height; // Ns
  222. buf[0x16f] = 0x10; // reserved
  223. ctx->msip = buf + 0x170;
  224. return 0;
  225. }
  226. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  227. {
  228. int nbits;
  229. if (diff < 0) {
  230. nbits = av_log2_16bit(-2*diff);
  231. diff--;
  232. } else {
  233. nbits = av_log2_16bit(2*diff);
  234. }
  235. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  236. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  237. }
  238. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  239. {
  240. int last_non_zero = 0;
  241. int slevel, i, j;
  242. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  243. ctx->m.last_dc[n] = block[0];
  244. for (i = 1; i <= last_index; i++) {
  245. j = ctx->m.intra_scantable.permutated[i];
  246. slevel = block[j];
  247. if (slevel) {
  248. int run_level = i - last_non_zero - 1;
  249. int rlevel = (slevel<<1)|!!run_level;
  250. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  251. if (run_level)
  252. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  253. last_non_zero = i;
  254. }
  255. }
  256. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  257. }
  258. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  259. {
  260. const uint8_t *weight_matrix;
  261. int level;
  262. int i;
  263. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  264. for (i = 1; i <= last_index; i++) {
  265. int j = ctx->m.intra_scantable.permutated[i];
  266. level = block[j];
  267. if (level) {
  268. if (level < 0) {
  269. level = (1-2*level) * qscale * weight_matrix[i];
  270. if (weight_matrix[i] != 32)
  271. level += 32;
  272. level >>= 6;
  273. level = -level;
  274. } else {
  275. level = (2*level+1) * qscale * weight_matrix[i];
  276. if (weight_matrix[i] != 32)
  277. level += 32;
  278. level >>= 6;
  279. }
  280. block[j] = level;
  281. }
  282. }
  283. }
  284. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  285. {
  286. int score = 0;
  287. int i;
  288. for (i = 0; i < 64; i++)
  289. score += (block[i]-qblock[i])*(block[i]-qblock[i]);
  290. return score;
  291. }
  292. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  293. {
  294. int last_non_zero = 0;
  295. int bits = 0;
  296. int i, j, level;
  297. for (i = 1; i <= last_index; i++) {
  298. j = ctx->m.intra_scantable.permutated[i];
  299. level = block[j];
  300. if (level) {
  301. int run_level = i - last_non_zero - 1;
  302. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  303. last_non_zero = i;
  304. }
  305. }
  306. return bits;
  307. }
  308. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  309. {
  310. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << 4);
  311. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  312. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  313. DSPContext *dsp = &ctx->m.dsp;
  314. dsp->get_pixels(ctx->blocks[0], ptr_y , ctx->m.linesize);
  315. dsp->get_pixels(ctx->blocks[1], ptr_y + 8, ctx->m.linesize);
  316. dsp->get_pixels(ctx->blocks[2], ptr_u , ctx->m.uvlinesize);
  317. dsp->get_pixels(ctx->blocks[3], ptr_v , ctx->m.uvlinesize);
  318. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  319. if (ctx->interlaced) {
  320. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  321. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  322. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  323. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  324. } else {
  325. dsp->clear_block(ctx->blocks[4]); dsp->clear_block(ctx->blocks[5]);
  326. dsp->clear_block(ctx->blocks[6]); dsp->clear_block(ctx->blocks[7]);
  327. }
  328. } else {
  329. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  330. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  331. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  332. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  333. }
  334. }
  335. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  336. {
  337. if (i&2) {
  338. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  339. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  340. return 1 + (i&1);
  341. } else {
  342. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  343. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  344. return 0;
  345. }
  346. }
  347. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg)
  348. {
  349. DNXHDEncContext *ctx = *(void**)arg;
  350. int mb_y, mb_x;
  351. int qscale = ctx->thread[0]->qscale;
  352. for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
  353. ctx->m.last_dc[0] =
  354. ctx->m.last_dc[1] =
  355. ctx->m.last_dc[2] = 1024;
  356. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  357. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  358. int ssd = 0;
  359. int ac_bits = 0;
  360. int dc_bits = 0;
  361. int i;
  362. dnxhd_get_blocks(ctx, mb_x, mb_y);
  363. for (i = 0; i < 8; i++) {
  364. DECLARE_ALIGNED_16(DCTELEM, block[64]);
  365. DCTELEM *src_block = ctx->blocks[i];
  366. int overflow, nbits, diff, last_index;
  367. int n = dnxhd_switch_matrix(ctx, i);
  368. memcpy(block, src_block, sizeof(block));
  369. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  370. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  371. diff = block[0] - ctx->m.last_dc[n];
  372. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  373. else nbits = av_log2_16bit( 2*diff);
  374. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  375. ctx->m.last_dc[n] = block[0];
  376. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  377. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  378. ctx->m.dsp.idct(block);
  379. ssd += dnxhd_ssd_block(block, src_block);
  380. }
  381. }
  382. ctx->mb_rc[qscale][mb].ssd = ssd;
  383. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  384. }
  385. }
  386. return 0;
  387. }
  388. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg)
  389. {
  390. DNXHDEncContext *ctx = *(void**)arg;
  391. int mb_y, mb_x;
  392. for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
  393. ctx->m.last_dc[0] =
  394. ctx->m.last_dc[1] =
  395. ctx->m.last_dc[2] = 1024;
  396. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  397. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  398. int qscale = ctx->mb_qscale[mb];
  399. int i;
  400. put_bits(&ctx->m.pb, 12, qscale<<1);
  401. dnxhd_get_blocks(ctx, mb_x, mb_y);
  402. for (i = 0; i < 8; i++) {
  403. DCTELEM *block = ctx->blocks[i];
  404. int last_index, overflow;
  405. int n = dnxhd_switch_matrix(ctx, i);
  406. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  407. //START_TIMER;
  408. dnxhd_encode_block(ctx, block, last_index, n);
  409. //STOP_TIMER("encode_block");
  410. }
  411. }
  412. if (put_bits_count(&ctx->m.pb)&31)
  413. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  414. }
  415. flush_put_bits(&ctx->m.pb);
  416. return 0;
  417. }
  418. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx, uint8_t *buf)
  419. {
  420. int mb_y, mb_x;
  421. int i, offset = 0;
  422. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  423. int thread_size = 0;
  424. for (mb_y = ctx->thread[i]->m.start_mb_y; mb_y < ctx->thread[i]->m.end_mb_y; mb_y++) {
  425. ctx->slice_size[mb_y] = 0;
  426. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  427. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  428. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  429. }
  430. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  431. ctx->slice_size[mb_y] >>= 3;
  432. thread_size += ctx->slice_size[mb_y];
  433. }
  434. init_put_bits(&ctx->thread[i]->m.pb, buf + 640 + offset, thread_size);
  435. offset += thread_size;
  436. }
  437. }
  438. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg)
  439. {
  440. DNXHDEncContext *ctx = *(void**)arg;
  441. int mb_y, mb_x;
  442. for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
  443. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  444. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  445. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize) + (mb_x<<4);
  446. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  447. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8;
  448. ctx->mb_cmp[mb].value = varc;
  449. ctx->mb_cmp[mb].mb = mb;
  450. }
  451. }
  452. return 0;
  453. }
  454. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  455. {
  456. int lambda, up_step, down_step;
  457. int last_lower = INT_MAX, last_higher = 0;
  458. int x, y, q;
  459. for (q = 1; q < avctx->qmax; q++) {
  460. ctx->qscale = q;
  461. avctx->execute(avctx, dnxhd_calc_bits_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*));
  462. }
  463. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  464. lambda = ctx->lambda;
  465. for (;;) {
  466. int bits = 0;
  467. int end = 0;
  468. if (lambda == last_higher) {
  469. lambda++;
  470. end = 1; // need to set final qscales/bits
  471. }
  472. for (y = 0; y < ctx->m.mb_height; y++) {
  473. for (x = 0; x < ctx->m.mb_width; x++) {
  474. unsigned min = UINT_MAX;
  475. int qscale = 1;
  476. int mb = y*ctx->m.mb_width+x;
  477. for (q = 1; q < avctx->qmax; q++) {
  478. unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  479. if (score < min) {
  480. min = score;
  481. qscale = q;
  482. }
  483. }
  484. bits += ctx->mb_rc[qscale][mb].bits;
  485. ctx->mb_qscale[mb] = qscale;
  486. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  487. }
  488. bits = (bits+31)&~31; // padding
  489. if (bits > ctx->frame_bits)
  490. break;
  491. }
  492. //dprintf(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  493. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  494. if (end) {
  495. if (bits > ctx->frame_bits)
  496. return -1;
  497. break;
  498. }
  499. if (bits < ctx->frame_bits) {
  500. last_lower = FFMIN(lambda, last_lower);
  501. if (last_higher != 0)
  502. lambda = (lambda+last_higher)>>1;
  503. else
  504. lambda -= down_step;
  505. down_step *= 5; // XXX tune ?
  506. up_step = 1<<LAMBDA_FRAC_BITS;
  507. lambda = FFMAX(1, lambda);
  508. if (lambda == last_lower)
  509. break;
  510. } else {
  511. last_higher = FFMAX(lambda, last_higher);
  512. if (last_lower != INT_MAX)
  513. lambda = (lambda+last_lower)>>1;
  514. else
  515. lambda += up_step;
  516. up_step *= 5;
  517. down_step = 1<<LAMBDA_FRAC_BITS;
  518. }
  519. }
  520. //dprintf(ctx->m.avctx, "out lambda %d\n", lambda);
  521. ctx->lambda = lambda;
  522. return 0;
  523. }
  524. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  525. {
  526. int bits = 0;
  527. int up_step = 1;
  528. int down_step = 1;
  529. int last_higher = 0;
  530. int last_lower = INT_MAX;
  531. int qscale;
  532. int x, y;
  533. qscale = ctx->qscale;
  534. for (;;) {
  535. bits = 0;
  536. ctx->qscale = qscale;
  537. // XXX avoid recalculating bits
  538. ctx->m.avctx->execute(ctx->m.avctx, dnxhd_calc_bits_thread, (void**)&ctx->thread[0], NULL, ctx->m.avctx->thread_count, sizeof(void*));
  539. for (y = 0; y < ctx->m.mb_height; y++) {
  540. for (x = 0; x < ctx->m.mb_width; x++)
  541. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  542. bits = (bits+31)&~31; // padding
  543. if (bits > ctx->frame_bits)
  544. break;
  545. }
  546. //dprintf(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  547. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  548. if (bits < ctx->frame_bits) {
  549. if (qscale == 1)
  550. return 1;
  551. if (last_higher == qscale - 1) {
  552. qscale = last_higher;
  553. break;
  554. }
  555. last_lower = FFMIN(qscale, last_lower);
  556. if (last_higher != 0)
  557. qscale = (qscale+last_higher)>>1;
  558. else
  559. qscale -= down_step++;
  560. if (qscale < 1)
  561. qscale = 1;
  562. up_step = 1;
  563. } else {
  564. if (last_lower == qscale + 1)
  565. break;
  566. last_higher = FFMAX(qscale, last_higher);
  567. if (last_lower != INT_MAX)
  568. qscale = (qscale+last_lower)>>1;
  569. else
  570. qscale += up_step++;
  571. down_step = 1;
  572. if (qscale >= ctx->m.avctx->qmax)
  573. return -1;
  574. }
  575. }
  576. //dprintf(ctx->m.avctx, "out qscale %d\n", qscale);
  577. ctx->qscale = qscale;
  578. return 0;
  579. }
  580. static int dnxhd_rc_cmp(const void *a, const void *b)
  581. {
  582. return ((const RCCMPEntry *)b)->value - ((const RCCMPEntry *)a)->value;
  583. }
  584. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  585. {
  586. int max_bits = 0;
  587. int ret, x, y;
  588. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  589. return -1;
  590. for (y = 0; y < ctx->m.mb_height; y++) {
  591. for (x = 0; x < ctx->m.mb_width; x++) {
  592. int mb = y*ctx->m.mb_width+x;
  593. int delta_bits;
  594. ctx->mb_qscale[mb] = ctx->qscale;
  595. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  596. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  597. if (!RC_VARIANCE) {
  598. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  599. ctx->mb_cmp[mb].mb = mb;
  600. ctx->mb_cmp[mb].value = delta_bits ?
  601. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  602. : INT_MIN; //avoid increasing qscale
  603. }
  604. }
  605. max_bits += 31; //worst padding
  606. }
  607. if (!ret) {
  608. if (RC_VARIANCE)
  609. avctx->execute(avctx, dnxhd_mb_var_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*));
  610. qsort(ctx->mb_cmp, ctx->m.mb_num, sizeof(RCEntry), dnxhd_rc_cmp);
  611. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  612. int mb = ctx->mb_cmp[x].mb;
  613. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  614. ctx->mb_qscale[mb] = ctx->qscale+1;
  615. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  616. }
  617. }
  618. return 0;
  619. }
  620. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  621. {
  622. int i;
  623. for (i = 0; i < 3; i++) {
  624. ctx->frame.data[i] = frame->data[i];
  625. ctx->frame.linesize[i] = frame->linesize[i];
  626. }
  627. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  628. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  629. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  630. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  631. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  632. }
  633. ctx->frame.interlaced_frame = frame->interlaced_frame;
  634. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  635. }
  636. static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, const void *data)
  637. {
  638. DNXHDEncContext *ctx = avctx->priv_data;
  639. int first_field = 1;
  640. int offset, i, ret;
  641. if (buf_size < ctx->cid_table->frame_size) {
  642. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  643. return -1;
  644. }
  645. dnxhd_load_picture(ctx, data);
  646. encode_coding_unit:
  647. for (i = 0; i < 3; i++) {
  648. ctx->src[i] = ctx->frame.data[i];
  649. if (ctx->interlaced && ctx->cur_field)
  650. ctx->src[i] += ctx->frame.linesize[i];
  651. }
  652. dnxhd_write_header(avctx, buf);
  653. if (avctx->mb_decision == FF_MB_DECISION_RD)
  654. ret = dnxhd_encode_rdo(avctx, ctx);
  655. else
  656. ret = dnxhd_encode_fast(avctx, ctx);
  657. if (ret < 0) {
  658. av_log(avctx, AV_LOG_ERROR, "picture could not fit ratecontrol constraints\n");
  659. return -1;
  660. }
  661. dnxhd_setup_threads_slices(ctx, buf);
  662. offset = 0;
  663. for (i = 0; i < ctx->m.mb_height; i++) {
  664. AV_WB32(ctx->msip + i * 4, offset);
  665. offset += ctx->slice_size[i];
  666. assert(!(ctx->slice_size[i] & 3));
  667. }
  668. avctx->execute(avctx, dnxhd_encode_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*));
  669. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  670. if (ctx->interlaced && first_field) {
  671. first_field = 0;
  672. ctx->cur_field ^= 1;
  673. buf += ctx->cid_table->coding_unit_size;
  674. buf_size -= ctx->cid_table->coding_unit_size;
  675. goto encode_coding_unit;
  676. }
  677. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  678. return ctx->cid_table->frame_size;
  679. }
  680. static int dnxhd_encode_end(AVCodecContext *avctx)
  681. {
  682. DNXHDEncContext *ctx = avctx->priv_data;
  683. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  684. int i;
  685. av_free(ctx->vlc_codes-max_level*2);
  686. av_free(ctx->vlc_bits -max_level*2);
  687. av_freep(&ctx->run_codes);
  688. av_freep(&ctx->run_bits);
  689. av_freep(&ctx->mb_bits);
  690. av_freep(&ctx->mb_qscale);
  691. av_freep(&ctx->mb_rc);
  692. av_freep(&ctx->mb_cmp);
  693. av_freep(&ctx->slice_size);
  694. av_freep(&ctx->qmatrix_c);
  695. av_freep(&ctx->qmatrix_l);
  696. av_freep(&ctx->qmatrix_c16);
  697. av_freep(&ctx->qmatrix_l16);
  698. for (i = 1; i < avctx->thread_count; i++)
  699. av_freep(&ctx->thread[i]);
  700. return 0;
  701. }
  702. AVCodec dnxhd_encoder = {
  703. "dnxhd",
  704. CODEC_TYPE_VIDEO,
  705. CODEC_ID_DNXHD,
  706. sizeof(DNXHDEncContext),
  707. dnxhd_encode_init,
  708. dnxhd_encode_picture,
  709. dnxhd_encode_end,
  710. .pix_fmts = (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_NONE},
  711. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  712. };