cavs.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/cavs.c
  23. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
  24. * @author Stefan Gehrer <stefan.gehrer@gmx.de>
  25. */
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "golomb.h"
  29. #include "mathops.h"
  30. #include "cavs.h"
  31. #include "cavsdata.h"
  32. /*****************************************************************************
  33. *
  34. * in-loop deblocking filter
  35. *
  36. ****************************************************************************/
  37. static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b) {
  38. if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
  39. return 2;
  40. if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
  41. return 1;
  42. if(b){
  43. mvP += MV_BWD_OFFS;
  44. mvQ += MV_BWD_OFFS;
  45. if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
  46. return 1;
  47. }else{
  48. if(mvP->ref != mvQ->ref)
  49. return 1;
  50. }
  51. return 0;
  52. }
  53. #define SET_PARAMS \
  54. alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \
  55. beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \
  56. tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
  57. /**
  58. * in-loop deblocking filter for a single macroblock
  59. *
  60. * boundary strength (bs) mapping:
  61. *
  62. * --4---5--
  63. * 0 2 |
  64. * | 6 | 7 |
  65. * 1 3 |
  66. * ---------
  67. *
  68. */
  69. void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type) {
  70. DECLARE_ALIGNED_8(uint8_t, bs[8]);
  71. int qp_avg, alpha, beta, tc;
  72. int i;
  73. /* save un-deblocked lines */
  74. h->topleft_border_y = h->top_border_y[h->mbx*16+15];
  75. h->topleft_border_u = h->top_border_u[h->mbx*10+8];
  76. h->topleft_border_v = h->top_border_v[h->mbx*10+8];
  77. memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
  78. memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8);
  79. memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8);
  80. for(i=0;i<8;i++) {
  81. h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride);
  82. h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride);
  83. h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
  84. h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
  85. }
  86. if(!h->loop_filter_disable) {
  87. /* determine bs */
  88. if(mb_type == I_8X8)
  89. *((uint64_t *)bs) = 0x0202020202020202ULL;
  90. else{
  91. *((uint64_t *)bs) = 0;
  92. if(ff_cavs_partition_flags[mb_type] & SPLITV){
  93. bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  94. bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  95. }
  96. if(ff_cavs_partition_flags[mb_type] & SPLITH){
  97. bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  98. bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  99. }
  100. bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  101. bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  102. bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  103. bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  104. }
  105. if( *((uint64_t *)bs) ) {
  106. if(h->flags & A_AVAIL) {
  107. qp_avg = (h->qp + h->left_qp + 1) >> 1;
  108. SET_PARAMS;
  109. h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
  110. h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
  111. h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
  112. }
  113. qp_avg = h->qp;
  114. SET_PARAMS;
  115. h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
  116. h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
  117. bs[6],bs[7]);
  118. if(h->flags & B_AVAIL) {
  119. qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
  120. SET_PARAMS;
  121. h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
  122. h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
  123. h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
  124. }
  125. }
  126. }
  127. h->left_qp = h->qp;
  128. h->top_qp[h->mbx] = h->qp;
  129. }
  130. #undef SET_PARAMS
  131. /*****************************************************************************
  132. *
  133. * spatial intra prediction
  134. *
  135. ****************************************************************************/
  136. void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
  137. uint8_t **left, int block) {
  138. int i;
  139. switch(block) {
  140. case 0:
  141. *left = h->left_border_y;
  142. h->left_border_y[0] = h->left_border_y[1];
  143. memset(&h->left_border_y[17],h->left_border_y[16],9);
  144. memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
  145. top[17] = top[16];
  146. top[0] = top[1];
  147. if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
  148. h->left_border_y[0] = top[0] = h->topleft_border_y;
  149. break;
  150. case 1:
  151. *left = h->intern_border_y;
  152. for(i=0;i<8;i++)
  153. h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride);
  154. memset(&h->intern_border_y[9],h->intern_border_y[8],9);
  155. h->intern_border_y[0] = h->intern_border_y[1];
  156. memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
  157. if(h->flags & C_AVAIL)
  158. memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
  159. else
  160. memset(&top[9],top[8],9);
  161. top[17] = top[16];
  162. top[0] = top[1];
  163. if(h->flags & B_AVAIL)
  164. h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7];
  165. break;
  166. case 2:
  167. *left = &h->left_border_y[8];
  168. memcpy(&top[1],h->cy + 7*h->l_stride,16);
  169. top[17] = top[16];
  170. top[0] = top[1];
  171. if(h->flags & A_AVAIL)
  172. top[0] = h->left_border_y[8];
  173. break;
  174. case 3:
  175. *left = &h->intern_border_y[8];
  176. for(i=0;i<8;i++)
  177. h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride);
  178. memset(&h->intern_border_y[17],h->intern_border_y[16],9);
  179. memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
  180. memset(&top[9],top[8],9);
  181. break;
  182. }
  183. }
  184. void ff_cavs_load_intra_pred_chroma(AVSContext *h) {
  185. /* extend borders by one pixel */
  186. h->left_border_u[9] = h->left_border_u[8];
  187. h->left_border_v[9] = h->left_border_v[8];
  188. h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
  189. h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
  190. if(h->mbx && h->mby) {
  191. h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
  192. h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
  193. } else {
  194. h->left_border_u[0] = h->left_border_u[1];
  195. h->left_border_v[0] = h->left_border_v[1];
  196. h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
  197. h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
  198. }
  199. }
  200. static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  201. int y;
  202. uint64_t a = AV_RN64(&top[1]);
  203. for(y=0;y<8;y++) {
  204. *((uint64_t *)(d+y*stride)) = a;
  205. }
  206. }
  207. static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  208. int y;
  209. uint64_t a;
  210. for(y=0;y<8;y++) {
  211. a = left[y+1] * 0x0101010101010101ULL;
  212. *((uint64_t *)(d+y*stride)) = a;
  213. }
  214. }
  215. static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  216. int y;
  217. uint64_t a = 0x8080808080808080ULL;
  218. for(y=0;y<8;y++)
  219. *((uint64_t *)(d+y*stride)) = a;
  220. }
  221. static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  222. int x,y,ia;
  223. int ih = 0;
  224. int iv = 0;
  225. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  226. for(x=0; x<4; x++) {
  227. ih += (x+1)*(top[5+x]-top[3-x]);
  228. iv += (x+1)*(left[5+x]-left[3-x]);
  229. }
  230. ia = (top[8]+left[8])<<4;
  231. ih = (17*ih+16)>>5;
  232. iv = (17*iv+16)>>5;
  233. for(y=0; y<8; y++)
  234. for(x=0; x<8; x++)
  235. d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
  236. }
  237. #define LOWPASS(ARRAY,INDEX) \
  238. (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
  239. static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  240. int x,y;
  241. for(y=0; y<8; y++)
  242. for(x=0; x<8; x++)
  243. d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
  244. }
  245. static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  246. int x,y;
  247. for(y=0; y<8; y++)
  248. for(x=0; x<8; x++)
  249. d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
  250. }
  251. static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  252. int x,y;
  253. for(y=0; y<8; y++)
  254. for(x=0; x<8; x++)
  255. if(x==y)
  256. d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
  257. else if(x>y)
  258. d[y*stride+x] = LOWPASS(top,x-y);
  259. else
  260. d[y*stride+x] = LOWPASS(left,y-x);
  261. }
  262. static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  263. int x,y;
  264. for(y=0; y<8; y++)
  265. for(x=0; x<8; x++)
  266. d[y*stride+x] = LOWPASS(left,y+1);
  267. }
  268. static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  269. int x,y;
  270. for(y=0; y<8; y++)
  271. for(x=0; x<8; x++)
  272. d[y*stride+x] = LOWPASS(top,x+1);
  273. }
  274. #undef LOWPASS
  275. void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv) {
  276. /* save pred modes before they get modified */
  277. h->pred_mode_Y[3] = h->pred_mode_Y[5];
  278. h->pred_mode_Y[6] = h->pred_mode_Y[8];
  279. h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
  280. h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
  281. /* modify pred modes according to availability of neighbour samples */
  282. if(!(h->flags & A_AVAIL)) {
  283. modify_pred(ff_left_modifier_l, &h->pred_mode_Y[4] );
  284. modify_pred(ff_left_modifier_l, &h->pred_mode_Y[7] );
  285. modify_pred(ff_left_modifier_c, pred_mode_uv );
  286. }
  287. if(!(h->flags & B_AVAIL)) {
  288. modify_pred(ff_top_modifier_l, &h->pred_mode_Y[4] );
  289. modify_pred(ff_top_modifier_l, &h->pred_mode_Y[5] );
  290. modify_pred(ff_top_modifier_c, pred_mode_uv );
  291. }
  292. }
  293. /*****************************************************************************
  294. *
  295. * motion compensation
  296. *
  297. ****************************************************************************/
  298. static inline void mc_dir_part(AVSContext *h,Picture *pic,int square,
  299. int chroma_height,int delta,int list,uint8_t *dest_y,
  300. uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
  301. int src_y_offset,qpel_mc_func *qpix_op,
  302. h264_chroma_mc_func chroma_op,cavs_vector *mv){
  303. MpegEncContext * const s = &h->s;
  304. const int mx= mv->x + src_x_offset*8;
  305. const int my= mv->y + src_y_offset*8;
  306. const int luma_xy= (mx&3) + ((my&3)<<2);
  307. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride;
  308. uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride;
  309. uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride;
  310. int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  311. int extra_height= extra_width;
  312. int emu=0;
  313. const int full_mx= mx>>2;
  314. const int full_my= my>>2;
  315. const int pic_width = 16*h->mb_width;
  316. const int pic_height = 16*h->mb_height;
  317. if(!pic->data[0])
  318. return;
  319. if(mx&7) extra_width -= 3;
  320. if(my&7) extra_height -= 3;
  321. if( full_mx < 0-extra_width
  322. || full_my < 0-extra_height
  323. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  324. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  325. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
  326. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  327. src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
  328. emu=1;
  329. }
  330. qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
  331. if(!square){
  332. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride);
  333. }
  334. if(emu){
  335. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
  336. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  337. src_cb= s->edge_emu_buffer;
  338. }
  339. chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
  340. if(emu){
  341. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
  342. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  343. src_cr= s->edge_emu_buffer;
  344. }
  345. chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
  346. }
  347. static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta,
  348. uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
  349. int x_offset, int y_offset,qpel_mc_func *qpix_put,
  350. h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
  351. h264_chroma_mc_func chroma_avg, cavs_vector *mv){
  352. qpel_mc_func *qpix_op= qpix_put;
  353. h264_chroma_mc_func chroma_op= chroma_put;
  354. dest_y += 2*x_offset + 2*y_offset*h->l_stride;
  355. dest_cb += x_offset + y_offset*h->c_stride;
  356. dest_cr += x_offset + y_offset*h->c_stride;
  357. x_offset += 8*h->mbx;
  358. y_offset += 8*h->mby;
  359. if(mv->ref >= 0){
  360. Picture *ref= &h->DPB[mv->ref];
  361. mc_dir_part(h, ref, square, chroma_height, delta, 0,
  362. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  363. qpix_op, chroma_op, mv);
  364. qpix_op= qpix_avg;
  365. chroma_op= chroma_avg;
  366. }
  367. if((mv+MV_BWD_OFFS)->ref >= 0){
  368. Picture *ref= &h->DPB[0];
  369. mc_dir_part(h, ref, square, chroma_height, delta, 1,
  370. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  371. qpix_op, chroma_op, mv+MV_BWD_OFFS);
  372. }
  373. }
  374. void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type) {
  375. if(ff_cavs_partition_flags[mb_type] == 0){ // 16x16
  376. mc_part_std(h, 1, 8, 0, h->cy, h->cu, h->cv, 0, 0,
  377. h->s.dsp.put_cavs_qpel_pixels_tab[0],
  378. h->s.dsp.put_h264_chroma_pixels_tab[0],
  379. h->s.dsp.avg_cavs_qpel_pixels_tab[0],
  380. h->s.dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
  381. }else{
  382. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0,
  383. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  384. h->s.dsp.put_h264_chroma_pixels_tab[1],
  385. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  386. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
  387. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0,
  388. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  389. h->s.dsp.put_h264_chroma_pixels_tab[1],
  390. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  391. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
  392. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4,
  393. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  394. h->s.dsp.put_h264_chroma_pixels_tab[1],
  395. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  396. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
  397. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4,
  398. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  399. h->s.dsp.put_h264_chroma_pixels_tab[1],
  400. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  401. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
  402. }
  403. }
  404. /*****************************************************************************
  405. *
  406. * motion vector prediction
  407. *
  408. ****************************************************************************/
  409. static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp) {
  410. int den = h->scale_den[src->ref];
  411. *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
  412. *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
  413. }
  414. static inline void mv_pred_median(AVSContext *h, cavs_vector *mvP,
  415. cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC) {
  416. int ax, ay, bx, by, cx, cy;
  417. int len_ab, len_bc, len_ca, len_mid;
  418. /* scale candidates according to their temporal span */
  419. scale_mv(h, &ax, &ay, mvA, mvP->dist);
  420. scale_mv(h, &bx, &by, mvB, mvP->dist);
  421. scale_mv(h, &cx, &cy, mvC, mvP->dist);
  422. /* find the geometrical median of the three candidates */
  423. len_ab = abs(ax - bx) + abs(ay - by);
  424. len_bc = abs(bx - cx) + abs(by - cy);
  425. len_ca = abs(cx - ax) + abs(cy - ay);
  426. len_mid = mid_pred(len_ab, len_bc, len_ca);
  427. if(len_mid == len_ab) {
  428. mvP->x = cx;
  429. mvP->y = cy;
  430. } else if(len_mid == len_bc) {
  431. mvP->x = ax;
  432. mvP->y = ay;
  433. } else {
  434. mvP->x = bx;
  435. mvP->y = by;
  436. }
  437. }
  438. void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
  439. enum cavs_mv_pred mode, enum cavs_block size, int ref) {
  440. cavs_vector *mvP = &h->mv[nP];
  441. cavs_vector *mvA = &h->mv[nP-1];
  442. cavs_vector *mvB = &h->mv[nP-4];
  443. cavs_vector *mvC = &h->mv[nC];
  444. const cavs_vector *mvP2 = NULL;
  445. mvP->ref = ref;
  446. mvP->dist = h->dist[mvP->ref];
  447. if(mvC->ref == NOT_AVAIL)
  448. mvC = &h->mv[nP-5]; // set to top-left (mvD)
  449. if((mode == MV_PRED_PSKIP) &&
  450. ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
  451. ((mvA->x | mvA->y | mvA->ref) == 0) ||
  452. ((mvB->x | mvB->y | mvB->ref) == 0) )) {
  453. mvP2 = &ff_cavs_un_mv;
  454. /* if there is only one suitable candidate, take it */
  455. } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
  456. mvP2= mvA;
  457. } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
  458. mvP2= mvB;
  459. } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
  460. mvP2= mvC;
  461. } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
  462. mvP2= mvA;
  463. } else if(mode == MV_PRED_TOP && mvB->ref == ref){
  464. mvP2= mvB;
  465. } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
  466. mvP2= mvC;
  467. }
  468. if(mvP2){
  469. mvP->x = mvP2->x;
  470. mvP->y = mvP2->y;
  471. }else
  472. mv_pred_median(h, mvP, mvA, mvB, mvC);
  473. if(mode < MV_PRED_PSKIP) {
  474. mvP->x += get_se_golomb(&h->s.gb);
  475. mvP->y += get_se_golomb(&h->s.gb);
  476. }
  477. set_mvs(mvP,size);
  478. }
  479. /*****************************************************************************
  480. *
  481. * macroblock level
  482. *
  483. ****************************************************************************/
  484. /**
  485. * initialise predictors for motion vectors and intra prediction
  486. */
  487. void ff_cavs_init_mb(AVSContext *h) {
  488. int i;
  489. /* copy predictors from top line (MB B and C) into cache */
  490. for(i=0;i<3;i++) {
  491. h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
  492. h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
  493. }
  494. h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
  495. h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
  496. /* clear top predictors if MB B is not available */
  497. if(!(h->flags & B_AVAIL)) {
  498. h->mv[MV_FWD_B2] = ff_cavs_un_mv;
  499. h->mv[MV_FWD_B3] = ff_cavs_un_mv;
  500. h->mv[MV_BWD_B2] = ff_cavs_un_mv;
  501. h->mv[MV_BWD_B3] = ff_cavs_un_mv;
  502. h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
  503. h->flags &= ~(C_AVAIL|D_AVAIL);
  504. } else if(h->mbx) {
  505. h->flags |= D_AVAIL;
  506. }
  507. if(h->mbx == h->mb_width-1) //MB C not available
  508. h->flags &= ~C_AVAIL;
  509. /* clear top-right predictors if MB C is not available */
  510. if(!(h->flags & C_AVAIL)) {
  511. h->mv[MV_FWD_C2] = ff_cavs_un_mv;
  512. h->mv[MV_BWD_C2] = ff_cavs_un_mv;
  513. }
  514. /* clear top-left predictors if MB D is not available */
  515. if(!(h->flags & D_AVAIL)) {
  516. h->mv[MV_FWD_D3] = ff_cavs_un_mv;
  517. h->mv[MV_BWD_D3] = ff_cavs_un_mv;
  518. }
  519. }
  520. /**
  521. * save predictors for later macroblocks and increase
  522. * macroblock address
  523. * @returns 0 if end of frame is reached, 1 otherwise
  524. */
  525. int ff_cavs_next_mb(AVSContext *h) {
  526. int i;
  527. h->flags |= A_AVAIL;
  528. h->cy += 16;
  529. h->cu += 8;
  530. h->cv += 8;
  531. /* copy mvs as predictors to the left */
  532. for(i=0;i<=20;i+=4)
  533. h->mv[i] = h->mv[i+2];
  534. /* copy bottom mvs from cache to top line */
  535. h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
  536. h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
  537. h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
  538. h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
  539. /* next MB address */
  540. h->mbidx++;
  541. h->mbx++;
  542. if(h->mbx == h->mb_width) { //new mb line
  543. h->flags = B_AVAIL|C_AVAIL;
  544. /* clear left pred_modes */
  545. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  546. /* clear left mv predictors */
  547. for(i=0;i<=20;i+=4)
  548. h->mv[i] = ff_cavs_un_mv;
  549. h->mbx = 0;
  550. h->mby++;
  551. /* re-calculate sample pointers */
  552. h->cy = h->picture.data[0] + h->mby*16*h->l_stride;
  553. h->cu = h->picture.data[1] + h->mby*8*h->c_stride;
  554. h->cv = h->picture.data[2] + h->mby*8*h->c_stride;
  555. if(h->mby == h->mb_height) { //frame end
  556. return 0;
  557. }
  558. }
  559. return 1;
  560. }
  561. /*****************************************************************************
  562. *
  563. * frame level
  564. *
  565. ****************************************************************************/
  566. void ff_cavs_init_pic(AVSContext *h) {
  567. int i;
  568. /* clear some predictors */
  569. for(i=0;i<=20;i+=4)
  570. h->mv[i] = ff_cavs_un_mv;
  571. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  572. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  573. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  574. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  575. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  576. h->cy = h->picture.data[0];
  577. h->cu = h->picture.data[1];
  578. h->cv = h->picture.data[2];
  579. h->l_stride = h->picture.linesize[0];
  580. h->c_stride = h->picture.linesize[1];
  581. h->luma_scan[2] = 8*h->l_stride;
  582. h->luma_scan[3] = 8*h->l_stride+8;
  583. h->mbx = h->mby = h->mbidx = 0;
  584. h->flags = 0;
  585. }
  586. /*****************************************************************************
  587. *
  588. * headers and interface
  589. *
  590. ****************************************************************************/
  591. /**
  592. * some predictions require data from the top-neighbouring macroblock.
  593. * this data has to be stored for one complete row of macroblocks
  594. * and this storage space is allocated here
  595. */
  596. void ff_cavs_init_top_lines(AVSContext *h) {
  597. /* alloc top line of predictors */
  598. h->top_qp = av_malloc( h->mb_width);
  599. h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
  600. h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
  601. h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
  602. h->top_border_y = av_malloc((h->mb_width+1)*16);
  603. h->top_border_u = av_malloc((h->mb_width)*10);
  604. h->top_border_v = av_malloc((h->mb_width)*10);
  605. /* alloc space for co-located MVs and types */
  606. h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(cavs_vector));
  607. h->col_type_base = av_malloc(h->mb_width*h->mb_height);
  608. h->block = av_mallocz(64*sizeof(DCTELEM));
  609. }
  610. av_cold int ff_cavs_init(AVCodecContext *avctx) {
  611. AVSContext *h = avctx->priv_data;
  612. MpegEncContext * const s = &h->s;
  613. MPV_decode_defaults(s);
  614. s->avctx = avctx;
  615. avctx->pix_fmt= PIX_FMT_YUV420P;
  616. h->luma_scan[0] = 0;
  617. h->luma_scan[1] = 8;
  618. h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
  619. h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
  620. h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
  621. h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
  622. h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
  623. h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
  624. h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
  625. h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
  626. h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
  627. h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
  628. h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
  629. h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
  630. h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
  631. h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
  632. h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
  633. h->mv[ 7] = ff_cavs_un_mv;
  634. h->mv[19] = ff_cavs_un_mv;
  635. return 0;
  636. }
  637. av_cold int ff_cavs_end(AVCodecContext *avctx) {
  638. AVSContext *h = avctx->priv_data;
  639. av_free(h->top_qp);
  640. av_free(h->top_mv[0]);
  641. av_free(h->top_mv[1]);
  642. av_free(h->top_pred_Y);
  643. av_free(h->top_border_y);
  644. av_free(h->top_border_u);
  645. av_free(h->top_border_v);
  646. av_free(h->col_mv);
  647. av_free(h->col_type_base);
  648. av_free(h->block);
  649. return 0;
  650. }