ac3enc.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369
  1. /*
  2. * The simplest AC-3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/ac3enc.c
  23. * The simplest AC-3 encoder.
  24. */
  25. //#define DEBUG
  26. //#define DEBUG_BITALLOC
  27. #include "libavutil/crc.h"
  28. #include "avcodec.h"
  29. #include "bitstream.h"
  30. #include "ac3.h"
  31. typedef struct AC3EncodeContext {
  32. PutBitContext pb;
  33. int nb_channels;
  34. int nb_all_channels;
  35. int lfe_channel;
  36. int bit_rate;
  37. unsigned int sample_rate;
  38. unsigned int bitstream_id;
  39. unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
  40. unsigned int frame_size; /* current frame size in words */
  41. unsigned int bits_written;
  42. unsigned int samples_written;
  43. int sr_shift;
  44. unsigned int frame_size_code;
  45. unsigned int sr_code; /* frequency */
  46. unsigned int channel_mode;
  47. int lfe;
  48. unsigned int bitstream_mode;
  49. short last_samples[AC3_MAX_CHANNELS][256];
  50. unsigned int chbwcod[AC3_MAX_CHANNELS];
  51. int nb_coefs[AC3_MAX_CHANNELS];
  52. /* bitrate allocation control */
  53. int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
  54. AC3BitAllocParameters bit_alloc;
  55. int coarse_snr_offset;
  56. int fast_gain_code[AC3_MAX_CHANNELS];
  57. int fine_snr_offset[AC3_MAX_CHANNELS];
  58. /* mantissa encoding */
  59. int mant1_cnt, mant2_cnt, mant4_cnt;
  60. } AC3EncodeContext;
  61. static int16_t costab[64];
  62. static int16_t sintab[64];
  63. static int16_t xcos1[128];
  64. static int16_t xsin1[128];
  65. #define MDCT_NBITS 9
  66. #define N (1 << MDCT_NBITS)
  67. /* new exponents are sent if their Norm 1 exceed this number */
  68. #define EXP_DIFF_THRESHOLD 1000
  69. static inline int16_t fix15(float a)
  70. {
  71. int v;
  72. v = (int)(a * (float)(1 << 15));
  73. if (v < -32767)
  74. v = -32767;
  75. else if (v > 32767)
  76. v = 32767;
  77. return v;
  78. }
  79. typedef struct IComplex {
  80. short re,im;
  81. } IComplex;
  82. static av_cold void fft_init(int ln)
  83. {
  84. int i, n;
  85. float alpha;
  86. n = 1 << ln;
  87. for(i=0;i<(n/2);i++) {
  88. alpha = 2 * M_PI * (float)i / (float)n;
  89. costab[i] = fix15(cos(alpha));
  90. sintab[i] = fix15(sin(alpha));
  91. }
  92. }
  93. /* butter fly op */
  94. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  95. {\
  96. int ax, ay, bx, by;\
  97. bx=pre1;\
  98. by=pim1;\
  99. ax=qre1;\
  100. ay=qim1;\
  101. pre = (bx + ax) >> 1;\
  102. pim = (by + ay) >> 1;\
  103. qre = (bx - ax) >> 1;\
  104. qim = (by - ay) >> 1;\
  105. }
  106. #define MUL16(a,b) ((a) * (b))
  107. #define CMUL(pre, pim, are, aim, bre, bim) \
  108. {\
  109. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
  110. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
  111. }
  112. /* do a 2^n point complex fft on 2^ln points. */
  113. static void fft(IComplex *z, int ln)
  114. {
  115. int j, l, np, np2;
  116. int nblocks, nloops;
  117. register IComplex *p,*q;
  118. int tmp_re, tmp_im;
  119. np = 1 << ln;
  120. /* reverse */
  121. for(j=0;j<np;j++) {
  122. int k = ff_reverse[j] >> (8 - ln);
  123. if (k < j)
  124. FFSWAP(IComplex, z[k], z[j]);
  125. }
  126. /* pass 0 */
  127. p=&z[0];
  128. j=(np >> 1);
  129. do {
  130. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  131. p[0].re, p[0].im, p[1].re, p[1].im);
  132. p+=2;
  133. } while (--j != 0);
  134. /* pass 1 */
  135. p=&z[0];
  136. j=np >> 2;
  137. do {
  138. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  139. p[0].re, p[0].im, p[2].re, p[2].im);
  140. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  141. p[1].re, p[1].im, p[3].im, -p[3].re);
  142. p+=4;
  143. } while (--j != 0);
  144. /* pass 2 .. ln-1 */
  145. nblocks = np >> 3;
  146. nloops = 1 << 2;
  147. np2 = np >> 1;
  148. do {
  149. p = z;
  150. q = z + nloops;
  151. for (j = 0; j < nblocks; ++j) {
  152. BF(p->re, p->im, q->re, q->im,
  153. p->re, p->im, q->re, q->im);
  154. p++;
  155. q++;
  156. for(l = nblocks; l < np2; l += nblocks) {
  157. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  158. BF(p->re, p->im, q->re, q->im,
  159. p->re, p->im, tmp_re, tmp_im);
  160. p++;
  161. q++;
  162. }
  163. p += nloops;
  164. q += nloops;
  165. }
  166. nblocks = nblocks >> 1;
  167. nloops = nloops << 1;
  168. } while (nblocks != 0);
  169. }
  170. /* do a 512 point mdct */
  171. static void mdct512(int32_t *out, int16_t *in)
  172. {
  173. int i, re, im, re1, im1;
  174. int16_t rot[N];
  175. IComplex x[N/4];
  176. /* shift to simplify computations */
  177. for(i=0;i<N/4;i++)
  178. rot[i] = -in[i + 3*N/4];
  179. for(i=N/4;i<N;i++)
  180. rot[i] = in[i - N/4];
  181. /* pre rotation */
  182. for(i=0;i<N/4;i++) {
  183. re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
  184. im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
  185. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  186. }
  187. fft(x, MDCT_NBITS - 2);
  188. /* post rotation */
  189. for(i=0;i<N/4;i++) {
  190. re = x[i].re;
  191. im = x[i].im;
  192. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  193. out[2*i] = im1;
  194. out[N/2-1-2*i] = re1;
  195. }
  196. }
  197. /* XXX: use another norm ? */
  198. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  199. {
  200. int sum, i;
  201. sum = 0;
  202. for(i=0;i<n;i++) {
  203. sum += abs(exp1[i] - exp2[i]);
  204. }
  205. return sum;
  206. }
  207. static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  208. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  209. int ch, int is_lfe)
  210. {
  211. int i, j;
  212. int exp_diff;
  213. /* estimate if the exponent variation & decide if they should be
  214. reused in the next frame */
  215. exp_strategy[0][ch] = EXP_NEW;
  216. for(i=1;i<NB_BLOCKS;i++) {
  217. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
  218. #ifdef DEBUG
  219. av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
  220. #endif
  221. if (exp_diff > EXP_DIFF_THRESHOLD)
  222. exp_strategy[i][ch] = EXP_NEW;
  223. else
  224. exp_strategy[i][ch] = EXP_REUSE;
  225. }
  226. if (is_lfe)
  227. return;
  228. /* now select the encoding strategy type : if exponents are often
  229. recoded, we use a coarse encoding */
  230. i = 0;
  231. while (i < NB_BLOCKS) {
  232. j = i + 1;
  233. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  234. j++;
  235. switch(j - i) {
  236. case 1:
  237. exp_strategy[i][ch] = EXP_D45;
  238. break;
  239. case 2:
  240. case 3:
  241. exp_strategy[i][ch] = EXP_D25;
  242. break;
  243. default:
  244. exp_strategy[i][ch] = EXP_D15;
  245. break;
  246. }
  247. i = j;
  248. }
  249. }
  250. /* set exp[i] to min(exp[i], exp1[i]) */
  251. static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
  252. {
  253. int i;
  254. for(i=0;i<n;i++) {
  255. if (exp1[i] < exp[i])
  256. exp[i] = exp1[i];
  257. }
  258. }
  259. /* update the exponents so that they are the ones the decoder will
  260. decode. Return the number of bits used to code the exponents */
  261. static int encode_exp(uint8_t encoded_exp[N/2],
  262. uint8_t exp[N/2],
  263. int nb_exps,
  264. int exp_strategy)
  265. {
  266. int group_size, nb_groups, i, j, k, exp_min;
  267. uint8_t exp1[N/2];
  268. switch(exp_strategy) {
  269. case EXP_D15:
  270. group_size = 1;
  271. break;
  272. case EXP_D25:
  273. group_size = 2;
  274. break;
  275. default:
  276. case EXP_D45:
  277. group_size = 4;
  278. break;
  279. }
  280. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  281. /* for each group, compute the minimum exponent */
  282. exp1[0] = exp[0]; /* DC exponent is handled separately */
  283. k = 1;
  284. for(i=1;i<=nb_groups;i++) {
  285. exp_min = exp[k];
  286. assert(exp_min >= 0 && exp_min <= 24);
  287. for(j=1;j<group_size;j++) {
  288. if (exp[k+j] < exp_min)
  289. exp_min = exp[k+j];
  290. }
  291. exp1[i] = exp_min;
  292. k += group_size;
  293. }
  294. /* constraint for DC exponent */
  295. if (exp1[0] > 15)
  296. exp1[0] = 15;
  297. /* Decrease the delta between each groups to within 2
  298. * so that they can be differentially encoded */
  299. for (i=1;i<=nb_groups;i++)
  300. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  301. for (i=nb_groups-1;i>=0;i--)
  302. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  303. /* now we have the exponent values the decoder will see */
  304. encoded_exp[0] = exp1[0];
  305. k = 1;
  306. for(i=1;i<=nb_groups;i++) {
  307. for(j=0;j<group_size;j++) {
  308. encoded_exp[k+j] = exp1[i];
  309. }
  310. k += group_size;
  311. }
  312. #if defined(DEBUG)
  313. av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
  314. for(i=0;i<=nb_groups * group_size;i++) {
  315. av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
  316. }
  317. av_log(NULL, AV_LOG_DEBUG, "\n");
  318. #endif
  319. return 4 + (nb_groups / 3) * 7;
  320. }
  321. /* return the size in bits taken by the mantissa */
  322. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  323. {
  324. int bits, mant, i;
  325. bits = 0;
  326. for(i=0;i<nb_coefs;i++) {
  327. mant = m[i];
  328. switch(mant) {
  329. case 0:
  330. /* nothing */
  331. break;
  332. case 1:
  333. /* 3 mantissa in 5 bits */
  334. if (s->mant1_cnt == 0)
  335. bits += 5;
  336. if (++s->mant1_cnt == 3)
  337. s->mant1_cnt = 0;
  338. break;
  339. case 2:
  340. /* 3 mantissa in 7 bits */
  341. if (s->mant2_cnt == 0)
  342. bits += 7;
  343. if (++s->mant2_cnt == 3)
  344. s->mant2_cnt = 0;
  345. break;
  346. case 3:
  347. bits += 3;
  348. break;
  349. case 4:
  350. /* 2 mantissa in 7 bits */
  351. if (s->mant4_cnt == 0)
  352. bits += 7;
  353. if (++s->mant4_cnt == 2)
  354. s->mant4_cnt = 0;
  355. break;
  356. case 14:
  357. bits += 14;
  358. break;
  359. case 15:
  360. bits += 16;
  361. break;
  362. default:
  363. bits += mant - 1;
  364. break;
  365. }
  366. }
  367. return bits;
  368. }
  369. static void bit_alloc_masking(AC3EncodeContext *s,
  370. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  371. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  372. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  373. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
  374. {
  375. int blk, ch;
  376. int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  377. for(blk=0; blk<NB_BLOCKS; blk++) {
  378. for(ch=0;ch<s->nb_all_channels;ch++) {
  379. if(exp_strategy[blk][ch] == EXP_REUSE) {
  380. memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t));
  381. memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
  382. } else {
  383. ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
  384. s->nb_coefs[ch],
  385. psd[blk][ch], band_psd[blk][ch]);
  386. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
  387. 0, s->nb_coefs[ch],
  388. ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
  389. ch == s->lfe_channel,
  390. DBA_NONE, 0, NULL, NULL, NULL,
  391. mask[blk][ch]);
  392. }
  393. }
  394. }
  395. }
  396. static int bit_alloc(AC3EncodeContext *s,
  397. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
  398. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  399. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  400. int frame_bits, int coarse_snr_offset, int fine_snr_offset)
  401. {
  402. int i, ch;
  403. int snr_offset;
  404. snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
  405. /* compute size */
  406. for(i=0;i<NB_BLOCKS;i++) {
  407. s->mant1_cnt = 0;
  408. s->mant2_cnt = 0;
  409. s->mant4_cnt = 0;
  410. for(ch=0;ch<s->nb_all_channels;ch++) {
  411. ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
  412. s->nb_coefs[ch], snr_offset,
  413. s->bit_alloc.floor, ff_ac3_bap_tab,
  414. bap[i][ch]);
  415. frame_bits += compute_mantissa_size(s, bap[i][ch],
  416. s->nb_coefs[ch]);
  417. }
  418. }
  419. #if 0
  420. printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
  421. coarse_snr_offset, fine_snr_offset, frame_bits,
  422. 16 * s->frame_size - ((frame_bits + 7) & ~7));
  423. #endif
  424. return 16 * s->frame_size - frame_bits;
  425. }
  426. #define SNR_INC1 4
  427. static int compute_bit_allocation(AC3EncodeContext *s,
  428. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  429. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  430. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  431. int frame_bits)
  432. {
  433. int i, ch;
  434. int coarse_snr_offset, fine_snr_offset;
  435. uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  436. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  437. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  438. static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  439. /* init default parameters */
  440. s->slow_decay_code = 2;
  441. s->fast_decay_code = 1;
  442. s->slow_gain_code = 1;
  443. s->db_per_bit_code = 2;
  444. s->floor_code = 4;
  445. for(ch=0;ch<s->nb_all_channels;ch++)
  446. s->fast_gain_code[ch] = 4;
  447. /* compute real values */
  448. s->bit_alloc.sr_code = s->sr_code;
  449. s->bit_alloc.sr_shift = s->sr_shift;
  450. s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift;
  451. s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift;
  452. s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
  453. s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
  454. s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
  455. /* header size */
  456. frame_bits += 65;
  457. // if (s->channel_mode == 2)
  458. // frame_bits += 2;
  459. frame_bits += frame_bits_inc[s->channel_mode];
  460. /* audio blocks */
  461. for(i=0;i<NB_BLOCKS;i++) {
  462. frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  463. if (s->channel_mode == AC3_CHMODE_STEREO) {
  464. frame_bits++; /* rematstr */
  465. if(i==0) frame_bits += 4;
  466. }
  467. frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
  468. if (s->lfe)
  469. frame_bits++; /* lfeexpstr */
  470. for(ch=0;ch<s->nb_channels;ch++) {
  471. if (exp_strategy[i][ch] != EXP_REUSE)
  472. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  473. }
  474. frame_bits++; /* baie */
  475. frame_bits++; /* snr */
  476. frame_bits += 2; /* delta / skip */
  477. }
  478. frame_bits++; /* cplinu for block 0 */
  479. /* bit alloc info */
  480. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  481. /* csnroffset[6] */
  482. /* (fsnoffset[4] + fgaincod[4]) * c */
  483. frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
  484. /* auxdatae, crcrsv */
  485. frame_bits += 2;
  486. /* CRC */
  487. frame_bits += 16;
  488. /* calculate psd and masking curve before doing bit allocation */
  489. bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
  490. /* now the big work begins : do the bit allocation. Modify the snr
  491. offset until we can pack everything in the requested frame size */
  492. coarse_snr_offset = s->coarse_snr_offset;
  493. while (coarse_snr_offset >= 0 &&
  494. bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
  495. coarse_snr_offset -= SNR_INC1;
  496. if (coarse_snr_offset < 0) {
  497. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  498. return -1;
  499. }
  500. while ((coarse_snr_offset + SNR_INC1) <= 63 &&
  501. bit_alloc(s, mask, psd, bap1, frame_bits,
  502. coarse_snr_offset + SNR_INC1, 0) >= 0) {
  503. coarse_snr_offset += SNR_INC1;
  504. memcpy(bap, bap1, sizeof(bap1));
  505. }
  506. while ((coarse_snr_offset + 1) <= 63 &&
  507. bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
  508. coarse_snr_offset++;
  509. memcpy(bap, bap1, sizeof(bap1));
  510. }
  511. fine_snr_offset = 0;
  512. while ((fine_snr_offset + SNR_INC1) <= 15 &&
  513. bit_alloc(s, mask, psd, bap1, frame_bits,
  514. coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
  515. fine_snr_offset += SNR_INC1;
  516. memcpy(bap, bap1, sizeof(bap1));
  517. }
  518. while ((fine_snr_offset + 1) <= 15 &&
  519. bit_alloc(s, mask, psd, bap1, frame_bits,
  520. coarse_snr_offset, fine_snr_offset + 1) >= 0) {
  521. fine_snr_offset++;
  522. memcpy(bap, bap1, sizeof(bap1));
  523. }
  524. s->coarse_snr_offset = coarse_snr_offset;
  525. for(ch=0;ch<s->nb_all_channels;ch++)
  526. s->fine_snr_offset[ch] = fine_snr_offset;
  527. #if defined(DEBUG_BITALLOC)
  528. {
  529. int j;
  530. for(i=0;i<6;i++) {
  531. for(ch=0;ch<s->nb_all_channels;ch++) {
  532. printf("Block #%d Ch%d:\n", i, ch);
  533. printf("bap=");
  534. for(j=0;j<s->nb_coefs[ch];j++) {
  535. printf("%d ",bap[i][ch][j]);
  536. }
  537. printf("\n");
  538. }
  539. }
  540. }
  541. #endif
  542. return 0;
  543. }
  544. static av_cold int AC3_encode_init(AVCodecContext *avctx)
  545. {
  546. int freq = avctx->sample_rate;
  547. int bitrate = avctx->bit_rate;
  548. int channels = avctx->channels;
  549. AC3EncodeContext *s = avctx->priv_data;
  550. int i, j, ch;
  551. float alpha;
  552. int bw_code;
  553. static const uint8_t channel_mode_defs[6] = {
  554. 0x01, /* C */
  555. 0x02, /* L R */
  556. 0x03, /* L C R */
  557. 0x06, /* L R SL SR */
  558. 0x07, /* L C R SL SR */
  559. 0x07, /* L C R SL SR (+LFE) */
  560. };
  561. avctx->frame_size = AC3_FRAME_SIZE;
  562. ac3_common_init();
  563. /* number of channels */
  564. if (channels < 1 || channels > 6)
  565. return -1;
  566. s->channel_mode = channel_mode_defs[channels - 1];
  567. s->lfe = (channels == 6) ? 1 : 0;
  568. s->nb_all_channels = channels;
  569. s->nb_channels = channels > 5 ? 5 : channels;
  570. s->lfe_channel = s->lfe ? 5 : -1;
  571. /* frequency */
  572. for(i=0;i<3;i++) {
  573. for(j=0;j<3;j++)
  574. if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
  575. goto found;
  576. }
  577. return -1;
  578. found:
  579. s->sample_rate = freq;
  580. s->sr_shift = i;
  581. s->sr_code = j;
  582. s->bitstream_id = 8 + s->sr_shift;
  583. s->bitstream_mode = 0; /* complete main audio service */
  584. /* bitrate & frame size */
  585. for(i=0;i<19;i++) {
  586. if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate)
  587. break;
  588. }
  589. if (i == 19)
  590. return -1;
  591. s->bit_rate = bitrate;
  592. s->frame_size_code = i << 1;
  593. s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code];
  594. s->bits_written = 0;
  595. s->samples_written = 0;
  596. s->frame_size = s->frame_size_min;
  597. /* bit allocation init */
  598. if(avctx->cutoff) {
  599. /* calculate bandwidth based on user-specified cutoff frequency */
  600. int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
  601. int fbw_coeffs = cutoff * 512 / s->sample_rate;
  602. bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
  603. } else {
  604. /* use default bandwidth setting */
  605. /* XXX: should compute the bandwidth according to the frame
  606. size, so that we avoid annoying high frequency artifacts */
  607. bw_code = 50;
  608. }
  609. for(ch=0;ch<s->nb_channels;ch++) {
  610. /* bandwidth for each channel */
  611. s->chbwcod[ch] = bw_code;
  612. s->nb_coefs[ch] = bw_code * 3 + 73;
  613. }
  614. if (s->lfe) {
  615. s->nb_coefs[s->lfe_channel] = 7; /* fixed */
  616. }
  617. /* initial snr offset */
  618. s->coarse_snr_offset = 40;
  619. /* mdct init */
  620. fft_init(MDCT_NBITS - 2);
  621. for(i=0;i<N/4;i++) {
  622. alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
  623. xcos1[i] = fix15(-cos(alpha));
  624. xsin1[i] = fix15(-sin(alpha));
  625. }
  626. avctx->coded_frame= avcodec_alloc_frame();
  627. avctx->coded_frame->key_frame= 1;
  628. return 0;
  629. }
  630. /* output the AC-3 frame header */
  631. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  632. {
  633. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  634. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  635. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  636. put_bits(&s->pb, 2, s->sr_code);
  637. put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
  638. put_bits(&s->pb, 5, s->bitstream_id);
  639. put_bits(&s->pb, 3, s->bitstream_mode);
  640. put_bits(&s->pb, 3, s->channel_mode);
  641. if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
  642. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  643. if (s->channel_mode & 0x04)
  644. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  645. if (s->channel_mode == AC3_CHMODE_STEREO)
  646. put_bits(&s->pb, 2, 0); /* surround not indicated */
  647. put_bits(&s->pb, 1, s->lfe); /* LFE */
  648. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  649. put_bits(&s->pb, 1, 0); /* no compression control word */
  650. put_bits(&s->pb, 1, 0); /* no lang code */
  651. put_bits(&s->pb, 1, 0); /* no audio production info */
  652. put_bits(&s->pb, 1, 0); /* no copyright */
  653. put_bits(&s->pb, 1, 1); /* original bitstream */
  654. put_bits(&s->pb, 1, 0); /* no time code 1 */
  655. put_bits(&s->pb, 1, 0); /* no time code 2 */
  656. put_bits(&s->pb, 1, 0); /* no additional bit stream info */
  657. }
  658. /* symetric quantization on 'levels' levels */
  659. static inline int sym_quant(int c, int e, int levels)
  660. {
  661. int v;
  662. if (c >= 0) {
  663. v = (levels * (c << e)) >> 24;
  664. v = (v + 1) >> 1;
  665. v = (levels >> 1) + v;
  666. } else {
  667. v = (levels * ((-c) << e)) >> 24;
  668. v = (v + 1) >> 1;
  669. v = (levels >> 1) - v;
  670. }
  671. assert (v >= 0 && v < levels);
  672. return v;
  673. }
  674. /* asymetric quantization on 2^qbits levels */
  675. static inline int asym_quant(int c, int e, int qbits)
  676. {
  677. int lshift, m, v;
  678. lshift = e + qbits - 24;
  679. if (lshift >= 0)
  680. v = c << lshift;
  681. else
  682. v = c >> (-lshift);
  683. /* rounding */
  684. v = (v + 1) >> 1;
  685. m = (1 << (qbits-1));
  686. if (v >= m)
  687. v = m - 1;
  688. assert(v >= -m);
  689. return v & ((1 << qbits)-1);
  690. }
  691. /* Output one audio block. There are NB_BLOCKS audio blocks in one AC-3
  692. frame */
  693. static void output_audio_block(AC3EncodeContext *s,
  694. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  695. uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
  696. uint8_t bap[AC3_MAX_CHANNELS][N/2],
  697. int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
  698. int8_t global_exp[AC3_MAX_CHANNELS],
  699. int block_num)
  700. {
  701. int ch, nb_groups, group_size, i, baie, rbnd;
  702. uint8_t *p;
  703. uint16_t qmant[AC3_MAX_CHANNELS][N/2];
  704. int exp0, exp1;
  705. int mant1_cnt, mant2_cnt, mant4_cnt;
  706. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  707. int delta0, delta1, delta2;
  708. for(ch=0;ch<s->nb_channels;ch++)
  709. put_bits(&s->pb, 1, 0); /* 512 point MDCT */
  710. for(ch=0;ch<s->nb_channels;ch++)
  711. put_bits(&s->pb, 1, 1); /* no dither */
  712. put_bits(&s->pb, 1, 0); /* no dynamic range */
  713. if (block_num == 0) {
  714. /* for block 0, even if no coupling, we must say it. This is a
  715. waste of bit :-) */
  716. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  717. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  718. } else {
  719. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  720. }
  721. if (s->channel_mode == AC3_CHMODE_STEREO)
  722. {
  723. if(block_num==0)
  724. {
  725. /* first block must define rematrixing (rematstr) */
  726. put_bits(&s->pb, 1, 1);
  727. /* dummy rematrixing rematflg(1:4)=0 */
  728. for (rbnd=0;rbnd<4;rbnd++)
  729. put_bits(&s->pb, 1, 0);
  730. }
  731. else
  732. {
  733. /* no matrixing (but should be used in the future) */
  734. put_bits(&s->pb, 1, 0);
  735. }
  736. }
  737. #if defined(DEBUG)
  738. {
  739. static int count = 0;
  740. av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
  741. }
  742. #endif
  743. /* exponent strategy */
  744. for(ch=0;ch<s->nb_channels;ch++) {
  745. put_bits(&s->pb, 2, exp_strategy[ch]);
  746. }
  747. if (s->lfe) {
  748. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  749. }
  750. for(ch=0;ch<s->nb_channels;ch++) {
  751. if (exp_strategy[ch] != EXP_REUSE)
  752. put_bits(&s->pb, 6, s->chbwcod[ch]);
  753. }
  754. /* exponents */
  755. for (ch = 0; ch < s->nb_all_channels; ch++) {
  756. switch(exp_strategy[ch]) {
  757. case EXP_REUSE:
  758. continue;
  759. case EXP_D15:
  760. group_size = 1;
  761. break;
  762. case EXP_D25:
  763. group_size = 2;
  764. break;
  765. default:
  766. case EXP_D45:
  767. group_size = 4;
  768. break;
  769. }
  770. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  771. p = encoded_exp[ch];
  772. /* first exponent */
  773. exp1 = *p++;
  774. put_bits(&s->pb, 4, exp1);
  775. /* next ones are delta encoded */
  776. for(i=0;i<nb_groups;i++) {
  777. /* merge three delta in one code */
  778. exp0 = exp1;
  779. exp1 = p[0];
  780. p += group_size;
  781. delta0 = exp1 - exp0 + 2;
  782. exp0 = exp1;
  783. exp1 = p[0];
  784. p += group_size;
  785. delta1 = exp1 - exp0 + 2;
  786. exp0 = exp1;
  787. exp1 = p[0];
  788. p += group_size;
  789. delta2 = exp1 - exp0 + 2;
  790. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  791. }
  792. if (ch != s->lfe_channel)
  793. put_bits(&s->pb, 2, 0); /* no gain range info */
  794. }
  795. /* bit allocation info */
  796. baie = (block_num == 0);
  797. put_bits(&s->pb, 1, baie);
  798. if (baie) {
  799. put_bits(&s->pb, 2, s->slow_decay_code);
  800. put_bits(&s->pb, 2, s->fast_decay_code);
  801. put_bits(&s->pb, 2, s->slow_gain_code);
  802. put_bits(&s->pb, 2, s->db_per_bit_code);
  803. put_bits(&s->pb, 3, s->floor_code);
  804. }
  805. /* snr offset */
  806. put_bits(&s->pb, 1, baie); /* always present with bai */
  807. if (baie) {
  808. put_bits(&s->pb, 6, s->coarse_snr_offset);
  809. for(ch=0;ch<s->nb_all_channels;ch++) {
  810. put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
  811. put_bits(&s->pb, 3, s->fast_gain_code[ch]);
  812. }
  813. }
  814. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  815. put_bits(&s->pb, 1, 0); /* no data to skip */
  816. /* mantissa encoding : we use two passes to handle the grouping. A
  817. one pass method may be faster, but it would necessitate to
  818. modify the output stream. */
  819. /* first pass: quantize */
  820. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  821. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  822. for (ch = 0; ch < s->nb_all_channels; ch++) {
  823. int b, c, e, v;
  824. for(i=0;i<s->nb_coefs[ch];i++) {
  825. c = mdct_coefs[ch][i];
  826. e = encoded_exp[ch][i] - global_exp[ch];
  827. b = bap[ch][i];
  828. switch(b) {
  829. case 0:
  830. v = 0;
  831. break;
  832. case 1:
  833. v = sym_quant(c, e, 3);
  834. switch(mant1_cnt) {
  835. case 0:
  836. qmant1_ptr = &qmant[ch][i];
  837. v = 9 * v;
  838. mant1_cnt = 1;
  839. break;
  840. case 1:
  841. *qmant1_ptr += 3 * v;
  842. mant1_cnt = 2;
  843. v = 128;
  844. break;
  845. default:
  846. *qmant1_ptr += v;
  847. mant1_cnt = 0;
  848. v = 128;
  849. break;
  850. }
  851. break;
  852. case 2:
  853. v = sym_quant(c, e, 5);
  854. switch(mant2_cnt) {
  855. case 0:
  856. qmant2_ptr = &qmant[ch][i];
  857. v = 25 * v;
  858. mant2_cnt = 1;
  859. break;
  860. case 1:
  861. *qmant2_ptr += 5 * v;
  862. mant2_cnt = 2;
  863. v = 128;
  864. break;
  865. default:
  866. *qmant2_ptr += v;
  867. mant2_cnt = 0;
  868. v = 128;
  869. break;
  870. }
  871. break;
  872. case 3:
  873. v = sym_quant(c, e, 7);
  874. break;
  875. case 4:
  876. v = sym_quant(c, e, 11);
  877. switch(mant4_cnt) {
  878. case 0:
  879. qmant4_ptr = &qmant[ch][i];
  880. v = 11 * v;
  881. mant4_cnt = 1;
  882. break;
  883. default:
  884. *qmant4_ptr += v;
  885. mant4_cnt = 0;
  886. v = 128;
  887. break;
  888. }
  889. break;
  890. case 5:
  891. v = sym_quant(c, e, 15);
  892. break;
  893. case 14:
  894. v = asym_quant(c, e, 14);
  895. break;
  896. case 15:
  897. v = asym_quant(c, e, 16);
  898. break;
  899. default:
  900. v = asym_quant(c, e, b - 1);
  901. break;
  902. }
  903. qmant[ch][i] = v;
  904. }
  905. }
  906. /* second pass : output the values */
  907. for (ch = 0; ch < s->nb_all_channels; ch++) {
  908. int b, q;
  909. for(i=0;i<s->nb_coefs[ch];i++) {
  910. q = qmant[ch][i];
  911. b = bap[ch][i];
  912. switch(b) {
  913. case 0:
  914. break;
  915. case 1:
  916. if (q != 128)
  917. put_bits(&s->pb, 5, q);
  918. break;
  919. case 2:
  920. if (q != 128)
  921. put_bits(&s->pb, 7, q);
  922. break;
  923. case 3:
  924. put_bits(&s->pb, 3, q);
  925. break;
  926. case 4:
  927. if (q != 128)
  928. put_bits(&s->pb, 7, q);
  929. break;
  930. case 14:
  931. put_bits(&s->pb, 14, q);
  932. break;
  933. case 15:
  934. put_bits(&s->pb, 16, q);
  935. break;
  936. default:
  937. put_bits(&s->pb, b - 1, q);
  938. break;
  939. }
  940. }
  941. }
  942. }
  943. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  944. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  945. {
  946. unsigned int c;
  947. c = 0;
  948. while (a) {
  949. if (a & 1)
  950. c ^= b;
  951. a = a >> 1;
  952. b = b << 1;
  953. if (b & (1 << 16))
  954. b ^= poly;
  955. }
  956. return c;
  957. }
  958. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  959. {
  960. unsigned int r;
  961. r = 1;
  962. while (n) {
  963. if (n & 1)
  964. r = mul_poly(r, a, poly);
  965. a = mul_poly(a, a, poly);
  966. n >>= 1;
  967. }
  968. return r;
  969. }
  970. /* compute log2(max(abs(tab[]))) */
  971. static int log2_tab(int16_t *tab, int n)
  972. {
  973. int i, v;
  974. v = 0;
  975. for(i=0;i<n;i++) {
  976. v |= abs(tab[i]);
  977. }
  978. return av_log2(v);
  979. }
  980. static void lshift_tab(int16_t *tab, int n, int lshift)
  981. {
  982. int i;
  983. if (lshift > 0) {
  984. for(i=0;i<n;i++) {
  985. tab[i] <<= lshift;
  986. }
  987. } else if (lshift < 0) {
  988. lshift = -lshift;
  989. for(i=0;i<n;i++) {
  990. tab[i] >>= lshift;
  991. }
  992. }
  993. }
  994. /* fill the end of the frame and compute the two crcs */
  995. static int output_frame_end(AC3EncodeContext *s)
  996. {
  997. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  998. uint8_t *frame;
  999. frame_size = s->frame_size; /* frame size in words */
  1000. /* align to 8 bits */
  1001. flush_put_bits(&s->pb);
  1002. /* add zero bytes to reach the frame size */
  1003. frame = s->pb.buf;
  1004. n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2;
  1005. assert(n >= 0);
  1006. if(n>0)
  1007. memset(pbBufPtr(&s->pb), 0, n);
  1008. /* Now we must compute both crcs : this is not so easy for crc1
  1009. because it is at the beginning of the data... */
  1010. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  1011. crc1 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1012. frame + 4, 2 * frame_size_58 - 4));
  1013. /* XXX: could precompute crc_inv */
  1014. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  1015. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  1016. AV_WB16(frame+2,crc1);
  1017. crc2 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1018. frame + 2 * frame_size_58,
  1019. (frame_size - frame_size_58) * 2 - 2));
  1020. AV_WB16(frame+2*frame_size-2,crc2);
  1021. // printf("n=%d frame_size=%d\n", n, frame_size);
  1022. return frame_size * 2;
  1023. }
  1024. static int AC3_encode_frame(AVCodecContext *avctx,
  1025. unsigned char *frame, int buf_size, void *data)
  1026. {
  1027. AC3EncodeContext *s = avctx->priv_data;
  1028. int16_t *samples = data;
  1029. int i, j, k, v, ch;
  1030. int16_t input_samples[N];
  1031. int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1032. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1033. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
  1034. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1035. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1036. int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
  1037. int frame_bits;
  1038. frame_bits = 0;
  1039. for(ch=0;ch<s->nb_all_channels;ch++) {
  1040. /* fixed mdct to the six sub blocks & exponent computation */
  1041. for(i=0;i<NB_BLOCKS;i++) {
  1042. int16_t *sptr;
  1043. int sinc;
  1044. /* compute input samples */
  1045. memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t));
  1046. sinc = s->nb_all_channels;
  1047. sptr = samples + (sinc * (N/2) * i) + ch;
  1048. for(j=0;j<N/2;j++) {
  1049. v = *sptr;
  1050. input_samples[j + N/2] = v;
  1051. s->last_samples[ch][j] = v;
  1052. sptr += sinc;
  1053. }
  1054. /* apply the MDCT window */
  1055. for(j=0;j<N/2;j++) {
  1056. input_samples[j] = MUL16(input_samples[j],
  1057. ff_ac3_window[j]) >> 15;
  1058. input_samples[N-j-1] = MUL16(input_samples[N-j-1],
  1059. ff_ac3_window[j]) >> 15;
  1060. }
  1061. /* Normalize the samples to use the maximum available
  1062. precision */
  1063. v = 14 - log2_tab(input_samples, N);
  1064. if (v < 0)
  1065. v = 0;
  1066. exp_samples[i][ch] = v - 9;
  1067. lshift_tab(input_samples, N, v);
  1068. /* do the MDCT */
  1069. mdct512(mdct_coef[i][ch], input_samples);
  1070. /* compute "exponents". We take into account the
  1071. normalization there */
  1072. for(j=0;j<N/2;j++) {
  1073. int e;
  1074. v = abs(mdct_coef[i][ch][j]);
  1075. if (v == 0)
  1076. e = 24;
  1077. else {
  1078. e = 23 - av_log2(v) + exp_samples[i][ch];
  1079. if (e >= 24) {
  1080. e = 24;
  1081. mdct_coef[i][ch][j] = 0;
  1082. }
  1083. }
  1084. exp[i][ch][j] = e;
  1085. }
  1086. }
  1087. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  1088. /* compute the exponents as the decoder will see them. The
  1089. EXP_REUSE case must be handled carefully : we select the
  1090. min of the exponents */
  1091. i = 0;
  1092. while (i < NB_BLOCKS) {
  1093. j = i + 1;
  1094. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  1095. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  1096. j++;
  1097. }
  1098. frame_bits += encode_exp(encoded_exp[i][ch],
  1099. exp[i][ch], s->nb_coefs[ch],
  1100. exp_strategy[i][ch]);
  1101. /* copy encoded exponents for reuse case */
  1102. for(k=i+1;k<j;k++) {
  1103. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  1104. s->nb_coefs[ch] * sizeof(uint8_t));
  1105. }
  1106. i = j;
  1107. }
  1108. }
  1109. /* adjust for fractional frame sizes */
  1110. while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
  1111. s->bits_written -= s->bit_rate;
  1112. s->samples_written -= s->sample_rate;
  1113. }
  1114. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
  1115. s->bits_written += s->frame_size * 16;
  1116. s->samples_written += AC3_FRAME_SIZE;
  1117. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  1118. /* everything is known... let's output the frame */
  1119. output_frame_header(s, frame);
  1120. for(i=0;i<NB_BLOCKS;i++) {
  1121. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  1122. bap[i], mdct_coef[i], exp_samples[i], i);
  1123. }
  1124. return output_frame_end(s);
  1125. }
  1126. static av_cold int AC3_encode_close(AVCodecContext *avctx)
  1127. {
  1128. av_freep(&avctx->coded_frame);
  1129. return 0;
  1130. }
  1131. #if 0
  1132. /*************************************************************************/
  1133. /* TEST */
  1134. #undef random
  1135. #define FN (N/4)
  1136. void fft_test(void)
  1137. {
  1138. IComplex in[FN], in1[FN];
  1139. int k, n, i;
  1140. float sum_re, sum_im, a;
  1141. /* FFT test */
  1142. for(i=0;i<FN;i++) {
  1143. in[i].re = random() % 65535 - 32767;
  1144. in[i].im = random() % 65535 - 32767;
  1145. in1[i] = in[i];
  1146. }
  1147. fft(in, 7);
  1148. /* do it by hand */
  1149. for(k=0;k<FN;k++) {
  1150. sum_re = 0;
  1151. sum_im = 0;
  1152. for(n=0;n<FN;n++) {
  1153. a = -2 * M_PI * (n * k) / FN;
  1154. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1155. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1156. }
  1157. printf("%3d: %6d,%6d %6.0f,%6.0f\n",
  1158. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1159. }
  1160. }
  1161. void mdct_test(void)
  1162. {
  1163. int16_t input[N];
  1164. int32_t output[N/2];
  1165. float input1[N];
  1166. float output1[N/2];
  1167. float s, a, err, e, emax;
  1168. int i, k, n;
  1169. for(i=0;i<N;i++) {
  1170. input[i] = (random() % 65535 - 32767) * 9 / 10;
  1171. input1[i] = input[i];
  1172. }
  1173. mdct512(output, input);
  1174. /* do it by hand */
  1175. for(k=0;k<N/2;k++) {
  1176. s = 0;
  1177. for(n=0;n<N;n++) {
  1178. a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
  1179. s += input1[n] * cos(a);
  1180. }
  1181. output1[k] = -2 * s / N;
  1182. }
  1183. err = 0;
  1184. emax = 0;
  1185. for(i=0;i<N/2;i++) {
  1186. printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1187. e = output[i] - output1[i];
  1188. if (e > emax)
  1189. emax = e;
  1190. err += e * e;
  1191. }
  1192. printf("err2=%f emax=%f\n", err / (N/2), emax);
  1193. }
  1194. void test_ac3(void)
  1195. {
  1196. AC3EncodeContext ctx;
  1197. unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
  1198. short samples[AC3_FRAME_SIZE];
  1199. int ret, i;
  1200. AC3_encode_init(&ctx, 44100, 64000, 1);
  1201. fft_test();
  1202. mdct_test();
  1203. for(i=0;i<AC3_FRAME_SIZE;i++)
  1204. samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
  1205. ret = AC3_encode_frame(&ctx, frame, samples);
  1206. printf("ret=%d\n", ret);
  1207. }
  1208. #endif
  1209. AVCodec ac3_encoder = {
  1210. "ac3",
  1211. CODEC_TYPE_AUDIO,
  1212. CODEC_ID_AC3,
  1213. sizeof(AC3EncodeContext),
  1214. AC3_encode_init,
  1215. AC3_encode_frame,
  1216. AC3_encode_close,
  1217. NULL,
  1218. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  1219. .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
  1220. };