aac.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738
  1. /*
  2. * AAC decoder
  3. * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
  4. * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/aac.c
  24. * AAC decoder
  25. * @author Oded Shimon ( ods15 ods15 dyndns org )
  26. * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
  27. */
  28. /*
  29. * supported tools
  30. *
  31. * Support? Name
  32. * N (code in SoC repo) gain control
  33. * Y block switching
  34. * Y window shapes - standard
  35. * N window shapes - Low Delay
  36. * Y filterbank - standard
  37. * N (code in SoC repo) filterbank - Scalable Sample Rate
  38. * Y Temporal Noise Shaping
  39. * N (code in SoC repo) Long Term Prediction
  40. * Y intensity stereo
  41. * Y channel coupling
  42. * Y frequency domain prediction
  43. * Y Perceptual Noise Substitution
  44. * Y Mid/Side stereo
  45. * N Scalable Inverse AAC Quantization
  46. * N Frequency Selective Switch
  47. * N upsampling filter
  48. * Y quantization & coding - AAC
  49. * N quantization & coding - TwinVQ
  50. * N quantization & coding - BSAC
  51. * N AAC Error Resilience tools
  52. * N Error Resilience payload syntax
  53. * N Error Protection tool
  54. * N CELP
  55. * N Silence Compression
  56. * N HVXC
  57. * N HVXC 4kbits/s VR
  58. * N Structured Audio tools
  59. * N Structured Audio Sample Bank Format
  60. * N MIDI
  61. * N Harmonic and Individual Lines plus Noise
  62. * N Text-To-Speech Interface
  63. * N (in progress) Spectral Band Replication
  64. * Y (not in this code) Layer-1
  65. * Y (not in this code) Layer-2
  66. * Y (not in this code) Layer-3
  67. * N SinuSoidal Coding (Transient, Sinusoid, Noise)
  68. * N (planned) Parametric Stereo
  69. * N Direct Stream Transfer
  70. *
  71. * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
  72. * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
  73. Parametric Stereo.
  74. */
  75. #include "avcodec.h"
  76. #include "internal.h"
  77. #include "bitstream.h"
  78. #include "dsputil.h"
  79. #include "lpc.h"
  80. #include "aac.h"
  81. #include "aactab.h"
  82. #include "aacdectab.h"
  83. #include "mpeg4audio.h"
  84. #include "aac_parser.h"
  85. #include <assert.h>
  86. #include <errno.h>
  87. #include <math.h>
  88. #include <string.h>
  89. static VLC vlc_scalefactors;
  90. static VLC vlc_spectral[11];
  91. static ChannelElement* get_che(AACContext *ac, int type, int elem_id) {
  92. static const int8_t tags_per_config[16] = { 0, 1, 1, 2, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0 };
  93. if (ac->tag_che_map[type][elem_id]) {
  94. return ac->tag_che_map[type][elem_id];
  95. }
  96. if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
  97. return NULL;
  98. }
  99. switch (ac->m4ac.chan_config) {
  100. case 7:
  101. if (ac->tags_mapped == 3 && type == TYPE_CPE) {
  102. ac->tags_mapped++;
  103. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
  104. }
  105. case 6:
  106. /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
  107. instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
  108. encountered such a stream, transfer the LFE[0] element to SCE[1] */
  109. if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
  110. ac->tags_mapped++;
  111. return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
  112. }
  113. case 5:
  114. if (ac->tags_mapped == 2 && type == TYPE_CPE) {
  115. ac->tags_mapped++;
  116. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
  117. }
  118. case 4:
  119. if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
  120. ac->tags_mapped++;
  121. return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
  122. }
  123. case 3:
  124. case 2:
  125. if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
  126. ac->tags_mapped++;
  127. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
  128. } else if (ac->m4ac.chan_config == 2) {
  129. return NULL;
  130. }
  131. case 1:
  132. if (!ac->tags_mapped && type == TYPE_SCE) {
  133. ac->tags_mapped++;
  134. return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
  135. }
  136. default:
  137. return NULL;
  138. }
  139. }
  140. /**
  141. * Configure output channel order based on the current program configuration element.
  142. *
  143. * @param che_pos current channel position configuration
  144. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  145. *
  146. * @return Returns error status. 0 - OK, !0 - error
  147. */
  148. static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
  149. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], int channel_config) {
  150. AVCodecContext *avctx = ac->avccontext;
  151. int i, type, channels = 0;
  152. if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
  153. return 0; /* no change */
  154. memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  155. /* Allocate or free elements depending on if they are in the
  156. * current program configuration.
  157. *
  158. * Set up default 1:1 output mapping.
  159. *
  160. * For a 5.1 stream the output order will be:
  161. * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
  162. */
  163. for(i = 0; i < MAX_ELEM_ID; i++) {
  164. for(type = 0; type < 4; type++) {
  165. if(che_pos[type][i]) {
  166. if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
  167. return AVERROR(ENOMEM);
  168. if(type != TYPE_CCE) {
  169. ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
  170. if(type == TYPE_CPE) {
  171. ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
  172. }
  173. }
  174. } else
  175. av_freep(&ac->che[type][i]);
  176. }
  177. }
  178. if (channel_config) {
  179. memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
  180. ac->tags_mapped = 0;
  181. } else {
  182. memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
  183. ac->tags_mapped = 4*MAX_ELEM_ID;
  184. }
  185. avctx->channels = channels;
  186. return 0;
  187. }
  188. /**
  189. * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
  190. *
  191. * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
  192. * @param sce_map mono (Single Channel Element) map
  193. * @param type speaker type/position for these channels
  194. */
  195. static void decode_channel_map(enum ChannelPosition *cpe_map,
  196. enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
  197. while(n--) {
  198. enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
  199. map[get_bits(gb, 4)] = type;
  200. }
  201. }
  202. /**
  203. * Decode program configuration element; reference: table 4.2.
  204. *
  205. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  206. *
  207. * @return Returns error status. 0 - OK, !0 - error
  208. */
  209. static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  210. GetBitContext * gb) {
  211. int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
  212. skip_bits(gb, 2); // object_type
  213. sampling_index = get_bits(gb, 4);
  214. if(sampling_index > 12) {
  215. av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  216. return -1;
  217. }
  218. ac->m4ac.sampling_index = sampling_index;
  219. ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
  220. num_front = get_bits(gb, 4);
  221. num_side = get_bits(gb, 4);
  222. num_back = get_bits(gb, 4);
  223. num_lfe = get_bits(gb, 2);
  224. num_assoc_data = get_bits(gb, 3);
  225. num_cc = get_bits(gb, 4);
  226. if (get_bits1(gb))
  227. skip_bits(gb, 4); // mono_mixdown_tag
  228. if (get_bits1(gb))
  229. skip_bits(gb, 4); // stereo_mixdown_tag
  230. if (get_bits1(gb))
  231. skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
  232. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
  233. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
  234. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
  235. decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
  236. skip_bits_long(gb, 4 * num_assoc_data);
  237. decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
  238. align_get_bits(gb);
  239. /* comment field, first byte is length */
  240. skip_bits_long(gb, 8 * get_bits(gb, 8));
  241. return 0;
  242. }
  243. /**
  244. * Set up channel positions based on a default channel configuration
  245. * as specified in table 1.17.
  246. *
  247. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  248. *
  249. * @return Returns error status. 0 - OK, !0 - error
  250. */
  251. static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  252. int channel_config)
  253. {
  254. if(channel_config < 1 || channel_config > 7) {
  255. av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
  256. channel_config);
  257. return -1;
  258. }
  259. /* default channel configurations:
  260. *
  261. * 1ch : front center (mono)
  262. * 2ch : L + R (stereo)
  263. * 3ch : front center + L + R
  264. * 4ch : front center + L + R + back center
  265. * 5ch : front center + L + R + back stereo
  266. * 6ch : front center + L + R + back stereo + LFE
  267. * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
  268. */
  269. if(channel_config != 2)
  270. new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
  271. if(channel_config > 1)
  272. new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
  273. if(channel_config == 4)
  274. new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
  275. if(channel_config > 4)
  276. new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
  277. = AAC_CHANNEL_BACK; // back stereo
  278. if(channel_config > 5)
  279. new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
  280. if(channel_config == 7)
  281. new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
  282. return 0;
  283. }
  284. /**
  285. * Decode GA "General Audio" specific configuration; reference: table 4.1.
  286. *
  287. * @return Returns error status. 0 - OK, !0 - error
  288. */
  289. static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
  290. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  291. int extension_flag, ret;
  292. if(get_bits1(gb)) { // frameLengthFlag
  293. ff_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
  294. return -1;
  295. }
  296. if (get_bits1(gb)) // dependsOnCoreCoder
  297. skip_bits(gb, 14); // coreCoderDelay
  298. extension_flag = get_bits1(gb);
  299. if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
  300. ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
  301. skip_bits(gb, 3); // layerNr
  302. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  303. if (channel_config == 0) {
  304. skip_bits(gb, 4); // element_instance_tag
  305. if((ret = decode_pce(ac, new_che_pos, gb)))
  306. return ret;
  307. } else {
  308. if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
  309. return ret;
  310. }
  311. if((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config)))
  312. return ret;
  313. if (extension_flag) {
  314. switch (ac->m4ac.object_type) {
  315. case AOT_ER_BSAC:
  316. skip_bits(gb, 5); // numOfSubFrame
  317. skip_bits(gb, 11); // layer_length
  318. break;
  319. case AOT_ER_AAC_LC:
  320. case AOT_ER_AAC_LTP:
  321. case AOT_ER_AAC_SCALABLE:
  322. case AOT_ER_AAC_LD:
  323. skip_bits(gb, 3); /* aacSectionDataResilienceFlag
  324. * aacScalefactorDataResilienceFlag
  325. * aacSpectralDataResilienceFlag
  326. */
  327. break;
  328. }
  329. skip_bits1(gb); // extensionFlag3 (TBD in version 3)
  330. }
  331. return 0;
  332. }
  333. /**
  334. * Decode audio specific configuration; reference: table 1.13.
  335. *
  336. * @param data pointer to AVCodecContext extradata
  337. * @param data_size size of AVCCodecContext extradata
  338. *
  339. * @return Returns error status. 0 - OK, !0 - error
  340. */
  341. static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
  342. GetBitContext gb;
  343. int i;
  344. init_get_bits(&gb, data, data_size * 8);
  345. if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
  346. return -1;
  347. if(ac->m4ac.sampling_index > 12) {
  348. av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  349. return -1;
  350. }
  351. skip_bits_long(&gb, i);
  352. switch (ac->m4ac.object_type) {
  353. case AOT_AAC_MAIN:
  354. case AOT_AAC_LC:
  355. if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
  356. return -1;
  357. break;
  358. default:
  359. av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
  360. ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
  361. return -1;
  362. }
  363. return 0;
  364. }
  365. /**
  366. * linear congruential pseudorandom number generator
  367. *
  368. * @param previous_val pointer to the current state of the generator
  369. *
  370. * @return Returns a 32-bit pseudorandom integer
  371. */
  372. static av_always_inline int lcg_random(int previous_val) {
  373. return previous_val * 1664525 + 1013904223;
  374. }
  375. static void reset_predict_state(PredictorState * ps) {
  376. ps->r0 = 0.0f;
  377. ps->r1 = 0.0f;
  378. ps->cor0 = 0.0f;
  379. ps->cor1 = 0.0f;
  380. ps->var0 = 1.0f;
  381. ps->var1 = 1.0f;
  382. }
  383. static void reset_all_predictors(PredictorState * ps) {
  384. int i;
  385. for (i = 0; i < MAX_PREDICTORS; i++)
  386. reset_predict_state(&ps[i]);
  387. }
  388. static void reset_predictor_group(PredictorState * ps, int group_num) {
  389. int i;
  390. for (i = group_num-1; i < MAX_PREDICTORS; i+=30)
  391. reset_predict_state(&ps[i]);
  392. }
  393. static av_cold int aac_decode_init(AVCodecContext * avccontext) {
  394. AACContext * ac = avccontext->priv_data;
  395. int i;
  396. ac->avccontext = avccontext;
  397. if (avccontext->extradata_size > 0) {
  398. if(decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
  399. return -1;
  400. avccontext->sample_rate = ac->m4ac.sample_rate;
  401. } else if (avccontext->channels > 0) {
  402. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  403. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  404. if(set_default_channel_config(ac, new_che_pos, avccontext->channels - (avccontext->channels == 8)))
  405. return -1;
  406. if(output_configure(ac, ac->che_pos, new_che_pos, 1))
  407. return -1;
  408. ac->m4ac.sample_rate = avccontext->sample_rate;
  409. } else {
  410. ff_log_missing_feature(ac->avccontext, "Implicit channel configuration is", 0);
  411. return -1;
  412. }
  413. avccontext->sample_fmt = SAMPLE_FMT_S16;
  414. avccontext->frame_size = 1024;
  415. AAC_INIT_VLC_STATIC( 0, 144);
  416. AAC_INIT_VLC_STATIC( 1, 114);
  417. AAC_INIT_VLC_STATIC( 2, 188);
  418. AAC_INIT_VLC_STATIC( 3, 180);
  419. AAC_INIT_VLC_STATIC( 4, 172);
  420. AAC_INIT_VLC_STATIC( 5, 140);
  421. AAC_INIT_VLC_STATIC( 6, 168);
  422. AAC_INIT_VLC_STATIC( 7, 114);
  423. AAC_INIT_VLC_STATIC( 8, 262);
  424. AAC_INIT_VLC_STATIC( 9, 248);
  425. AAC_INIT_VLC_STATIC(10, 384);
  426. dsputil_init(&ac->dsp, avccontext);
  427. ac->random_state = 0x1f2e3d4c;
  428. // -1024 - Compensate wrong IMDCT method.
  429. // 32768 - Required to scale values to the correct range for the bias method
  430. // for float to int16 conversion.
  431. if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
  432. ac->add_bias = 385.0f;
  433. ac->sf_scale = 1. / (-1024. * 32768.);
  434. ac->sf_offset = 0;
  435. } else {
  436. ac->add_bias = 0.0f;
  437. ac->sf_scale = 1. / -1024.;
  438. ac->sf_offset = 60;
  439. }
  440. #if !CONFIG_HARDCODED_TABLES
  441. for (i = 0; i < 428; i++)
  442. ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
  443. #endif /* CONFIG_HARDCODED_TABLES */
  444. INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
  445. ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
  446. ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
  447. 352);
  448. ff_mdct_init(&ac->mdct, 11, 1);
  449. ff_mdct_init(&ac->mdct_small, 8, 1);
  450. // window initialization
  451. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  452. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  453. ff_sine_window_init(ff_sine_1024, 1024);
  454. ff_sine_window_init(ff_sine_128, 128);
  455. return 0;
  456. }
  457. /**
  458. * Skip data_stream_element; reference: table 4.10.
  459. */
  460. static void skip_data_stream_element(GetBitContext * gb) {
  461. int byte_align = get_bits1(gb);
  462. int count = get_bits(gb, 8);
  463. if (count == 255)
  464. count += get_bits(gb, 8);
  465. if (byte_align)
  466. align_get_bits(gb);
  467. skip_bits_long(gb, 8 * count);
  468. }
  469. static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) {
  470. int sfb;
  471. if (get_bits1(gb)) {
  472. ics->predictor_reset_group = get_bits(gb, 5);
  473. if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
  474. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
  475. return -1;
  476. }
  477. }
  478. for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
  479. ics->prediction_used[sfb] = get_bits1(gb);
  480. }
  481. return 0;
  482. }
  483. /**
  484. * Decode Individual Channel Stream info; reference: table 4.6.
  485. *
  486. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  487. */
  488. static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
  489. if (get_bits1(gb)) {
  490. av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
  491. memset(ics, 0, sizeof(IndividualChannelStream));
  492. return -1;
  493. }
  494. ics->window_sequence[1] = ics->window_sequence[0];
  495. ics->window_sequence[0] = get_bits(gb, 2);
  496. ics->use_kb_window[1] = ics->use_kb_window[0];
  497. ics->use_kb_window[0] = get_bits1(gb);
  498. ics->num_window_groups = 1;
  499. ics->group_len[0] = 1;
  500. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  501. int i;
  502. ics->max_sfb = get_bits(gb, 4);
  503. for (i = 0; i < 7; i++) {
  504. if (get_bits1(gb)) {
  505. ics->group_len[ics->num_window_groups-1]++;
  506. } else {
  507. ics->num_window_groups++;
  508. ics->group_len[ics->num_window_groups-1] = 1;
  509. }
  510. }
  511. ics->num_windows = 8;
  512. ics->swb_offset = swb_offset_128[ac->m4ac.sampling_index];
  513. ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
  514. ics->tns_max_bands = tns_max_bands_128[ac->m4ac.sampling_index];
  515. ics->predictor_present = 0;
  516. } else {
  517. ics->max_sfb = get_bits(gb, 6);
  518. ics->num_windows = 1;
  519. ics->swb_offset = swb_offset_1024[ac->m4ac.sampling_index];
  520. ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
  521. ics->tns_max_bands = tns_max_bands_1024[ac->m4ac.sampling_index];
  522. ics->predictor_present = get_bits1(gb);
  523. ics->predictor_reset_group = 0;
  524. if (ics->predictor_present) {
  525. if (ac->m4ac.object_type == AOT_AAC_MAIN) {
  526. if (decode_prediction(ac, ics, gb)) {
  527. memset(ics, 0, sizeof(IndividualChannelStream));
  528. return -1;
  529. }
  530. } else if (ac->m4ac.object_type == AOT_AAC_LC) {
  531. av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
  532. memset(ics, 0, sizeof(IndividualChannelStream));
  533. return -1;
  534. } else {
  535. ff_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
  536. memset(ics, 0, sizeof(IndividualChannelStream));
  537. return -1;
  538. }
  539. }
  540. }
  541. if(ics->max_sfb > ics->num_swb) {
  542. av_log(ac->avccontext, AV_LOG_ERROR,
  543. "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
  544. ics->max_sfb, ics->num_swb);
  545. memset(ics, 0, sizeof(IndividualChannelStream));
  546. return -1;
  547. }
  548. return 0;
  549. }
  550. /**
  551. * Decode band types (section_data payload); reference: table 4.46.
  552. *
  553. * @param band_type array of the used band type
  554. * @param band_type_run_end array of the last scalefactor band of a band type run
  555. *
  556. * @return Returns error status. 0 - OK, !0 - error
  557. */
  558. static int decode_band_types(AACContext * ac, enum BandType band_type[120],
  559. int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
  560. int g, idx = 0;
  561. const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
  562. for (g = 0; g < ics->num_window_groups; g++) {
  563. int k = 0;
  564. while (k < ics->max_sfb) {
  565. uint8_t sect_len = k;
  566. int sect_len_incr;
  567. int sect_band_type = get_bits(gb, 4);
  568. if (sect_band_type == 12) {
  569. av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
  570. return -1;
  571. }
  572. while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
  573. sect_len += sect_len_incr;
  574. sect_len += sect_len_incr;
  575. if (sect_len > ics->max_sfb) {
  576. av_log(ac->avccontext, AV_LOG_ERROR,
  577. "Number of bands (%d) exceeds limit (%d).\n",
  578. sect_len, ics->max_sfb);
  579. return -1;
  580. }
  581. for (; k < sect_len; k++) {
  582. band_type [idx] = sect_band_type;
  583. band_type_run_end[idx++] = sect_len;
  584. }
  585. }
  586. }
  587. return 0;
  588. }
  589. /**
  590. * Decode scalefactors; reference: table 4.47.
  591. *
  592. * @param global_gain first scalefactor value as scalefactors are differentially coded
  593. * @param band_type array of the used band type
  594. * @param band_type_run_end array of the last scalefactor band of a band type run
  595. * @param sf array of scalefactors or intensity stereo positions
  596. *
  597. * @return Returns error status. 0 - OK, !0 - error
  598. */
  599. static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
  600. unsigned int global_gain, IndividualChannelStream * ics,
  601. enum BandType band_type[120], int band_type_run_end[120]) {
  602. const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
  603. int g, i, idx = 0;
  604. int offset[3] = { global_gain, global_gain - 90, 100 };
  605. int noise_flag = 1;
  606. static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
  607. for (g = 0; g < ics->num_window_groups; g++) {
  608. for (i = 0; i < ics->max_sfb;) {
  609. int run_end = band_type_run_end[idx];
  610. if (band_type[idx] == ZERO_BT) {
  611. for(; i < run_end; i++, idx++)
  612. sf[idx] = 0.;
  613. }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
  614. for(; i < run_end; i++, idx++) {
  615. offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  616. if(offset[2] > 255U) {
  617. av_log(ac->avccontext, AV_LOG_ERROR,
  618. "%s (%d) out of range.\n", sf_str[2], offset[2]);
  619. return -1;
  620. }
  621. sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
  622. }
  623. }else if(band_type[idx] == NOISE_BT) {
  624. for(; i < run_end; i++, idx++) {
  625. if(noise_flag-- > 0)
  626. offset[1] += get_bits(gb, 9) - 256;
  627. else
  628. offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  629. if(offset[1] > 255U) {
  630. av_log(ac->avccontext, AV_LOG_ERROR,
  631. "%s (%d) out of range.\n", sf_str[1], offset[1]);
  632. return -1;
  633. }
  634. sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100];
  635. }
  636. }else {
  637. for(; i < run_end; i++, idx++) {
  638. offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  639. if(offset[0] > 255U) {
  640. av_log(ac->avccontext, AV_LOG_ERROR,
  641. "%s (%d) out of range.\n", sf_str[0], offset[0]);
  642. return -1;
  643. }
  644. sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
  645. }
  646. }
  647. }
  648. }
  649. return 0;
  650. }
  651. /**
  652. * Decode pulse data; reference: table 4.7.
  653. */
  654. static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
  655. int i, pulse_swb;
  656. pulse->num_pulse = get_bits(gb, 2) + 1;
  657. pulse_swb = get_bits(gb, 6);
  658. if (pulse_swb >= num_swb)
  659. return -1;
  660. pulse->pos[0] = swb_offset[pulse_swb];
  661. pulse->pos[0] += get_bits(gb, 5);
  662. if (pulse->pos[0] > 1023)
  663. return -1;
  664. pulse->amp[0] = get_bits(gb, 4);
  665. for (i = 1; i < pulse->num_pulse; i++) {
  666. pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
  667. if (pulse->pos[i] > 1023)
  668. return -1;
  669. pulse->amp[i] = get_bits(gb, 4);
  670. }
  671. return 0;
  672. }
  673. /**
  674. * Decode Temporal Noise Shaping data; reference: table 4.48.
  675. *
  676. * @return Returns error status. 0 - OK, !0 - error
  677. */
  678. static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
  679. GetBitContext * gb, const IndividualChannelStream * ics) {
  680. int w, filt, i, coef_len, coef_res, coef_compress;
  681. const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
  682. const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
  683. for (w = 0; w < ics->num_windows; w++) {
  684. if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
  685. coef_res = get_bits1(gb);
  686. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  687. int tmp2_idx;
  688. tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
  689. if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
  690. av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
  691. tns->order[w][filt], tns_max_order);
  692. tns->order[w][filt] = 0;
  693. return -1;
  694. }
  695. if (tns->order[w][filt]) {
  696. tns->direction[w][filt] = get_bits1(gb);
  697. coef_compress = get_bits1(gb);
  698. coef_len = coef_res + 3 - coef_compress;
  699. tmp2_idx = 2*coef_compress + coef_res;
  700. for (i = 0; i < tns->order[w][filt]; i++)
  701. tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
  702. }
  703. }
  704. }
  705. }
  706. return 0;
  707. }
  708. /**
  709. * Decode Mid/Side data; reference: table 4.54.
  710. *
  711. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  712. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  713. * [3] reserved for scalable AAC
  714. */
  715. static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
  716. int ms_present) {
  717. int idx;
  718. if (ms_present == 1) {
  719. for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
  720. cpe->ms_mask[idx] = get_bits1(gb);
  721. } else if (ms_present == 2) {
  722. memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
  723. }
  724. }
  725. /**
  726. * Decode spectral data; reference: table 4.50.
  727. * Dequantize and scale spectral data; reference: 4.6.3.3.
  728. *
  729. * @param coef array of dequantized, scaled spectral data
  730. * @param sf array of scalefactors or intensity stereo positions
  731. * @param pulse_present set if pulses are present
  732. * @param pulse pointer to pulse data struct
  733. * @param band_type array of the used band type
  734. *
  735. * @return Returns error status. 0 - OK, !0 - error
  736. */
  737. static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
  738. int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
  739. int i, k, g, idx = 0;
  740. const int c = 1024/ics->num_windows;
  741. const uint16_t * offsets = ics->swb_offset;
  742. float *coef_base = coef;
  743. static const float sign_lookup[] = { 1.0f, -1.0f };
  744. for (g = 0; g < ics->num_windows; g++)
  745. memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
  746. for (g = 0; g < ics->num_window_groups; g++) {
  747. for (i = 0; i < ics->max_sfb; i++, idx++) {
  748. const int cur_band_type = band_type[idx];
  749. const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
  750. const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
  751. int group;
  752. if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
  753. for (group = 0; group < ics->group_len[g]; group++) {
  754. memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
  755. }
  756. }else if (cur_band_type == NOISE_BT) {
  757. for (group = 0; group < ics->group_len[g]; group++) {
  758. float scale;
  759. float band_energy = 0;
  760. for (k = offsets[i]; k < offsets[i+1]; k++) {
  761. ac->random_state = lcg_random(ac->random_state);
  762. coef[group*128+k] = ac->random_state;
  763. band_energy += coef[group*128+k]*coef[group*128+k];
  764. }
  765. scale = sf[idx] / sqrtf(band_energy);
  766. for (k = offsets[i]; k < offsets[i+1]; k++) {
  767. coef[group*128+k] *= scale;
  768. }
  769. }
  770. }else {
  771. for (group = 0; group < ics->group_len[g]; group++) {
  772. for (k = offsets[i]; k < offsets[i+1]; k += dim) {
  773. const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
  774. const int coef_tmp_idx = (group << 7) + k;
  775. const float *vq_ptr;
  776. int j;
  777. if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
  778. av_log(ac->avccontext, AV_LOG_ERROR,
  779. "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
  780. cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
  781. return -1;
  782. }
  783. vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
  784. if (is_cb_unsigned) {
  785. if (vq_ptr[0]) coef[coef_tmp_idx ] = sign_lookup[get_bits1(gb)];
  786. if (vq_ptr[1]) coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)];
  787. if (dim == 4) {
  788. if (vq_ptr[2]) coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)];
  789. if (vq_ptr[3]) coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)];
  790. }
  791. if (cur_band_type == ESC_BT) {
  792. for (j = 0; j < 2; j++) {
  793. if (vq_ptr[j] == 64.0f) {
  794. int n = 4;
  795. /* The total length of escape_sequence must be < 22 bits according
  796. to the specification (i.e. max is 11111111110xxxxxxxxxx). */
  797. while (get_bits1(gb) && n < 15) n++;
  798. if(n == 15) {
  799. av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
  800. return -1;
  801. }
  802. n = (1<<n) + get_bits(gb, n);
  803. coef[coef_tmp_idx + j] *= cbrtf(n) * n;
  804. }else
  805. coef[coef_tmp_idx + j] *= vq_ptr[j];
  806. }
  807. }else
  808. {
  809. coef[coef_tmp_idx ] *= vq_ptr[0];
  810. coef[coef_tmp_idx + 1] *= vq_ptr[1];
  811. if (dim == 4) {
  812. coef[coef_tmp_idx + 2] *= vq_ptr[2];
  813. coef[coef_tmp_idx + 3] *= vq_ptr[3];
  814. }
  815. }
  816. }else {
  817. coef[coef_tmp_idx ] = vq_ptr[0];
  818. coef[coef_tmp_idx + 1] = vq_ptr[1];
  819. if (dim == 4) {
  820. coef[coef_tmp_idx + 2] = vq_ptr[2];
  821. coef[coef_tmp_idx + 3] = vq_ptr[3];
  822. }
  823. }
  824. coef[coef_tmp_idx ] *= sf[idx];
  825. coef[coef_tmp_idx + 1] *= sf[idx];
  826. if (dim == 4) {
  827. coef[coef_tmp_idx + 2] *= sf[idx];
  828. coef[coef_tmp_idx + 3] *= sf[idx];
  829. }
  830. }
  831. }
  832. }
  833. }
  834. coef += ics->group_len[g]<<7;
  835. }
  836. if (pulse_present) {
  837. idx = 0;
  838. for(i = 0; i < pulse->num_pulse; i++){
  839. float co = coef_base[ pulse->pos[i] ];
  840. while(offsets[idx + 1] <= pulse->pos[i])
  841. idx++;
  842. if (band_type[idx] != NOISE_BT && sf[idx]) {
  843. float ico = -pulse->amp[i];
  844. if (co) {
  845. co /= sf[idx];
  846. ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
  847. }
  848. coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
  849. }
  850. }
  851. }
  852. return 0;
  853. }
  854. static av_always_inline float flt16_round(float pf) {
  855. int exp;
  856. pf = frexpf(pf, &exp);
  857. pf = ldexpf(roundf(ldexpf(pf, 8)), exp-8);
  858. return pf;
  859. }
  860. static av_always_inline float flt16_even(float pf) {
  861. int exp;
  862. pf = frexpf(pf, &exp);
  863. pf = ldexpf(rintf(ldexpf(pf, 8)), exp-8);
  864. return pf;
  865. }
  866. static av_always_inline float flt16_trunc(float pf) {
  867. int exp;
  868. pf = frexpf(pf, &exp);
  869. pf = ldexpf(truncf(ldexpf(pf, 8)), exp-8);
  870. return pf;
  871. }
  872. static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) {
  873. const float a = 0.953125; // 61.0/64
  874. const float alpha = 0.90625; // 29.0/32
  875. float e0, e1;
  876. float pv;
  877. float k1, k2;
  878. k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
  879. k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
  880. pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
  881. if (output_enable)
  882. *coef += pv * ac->sf_scale;
  883. e0 = *coef / ac->sf_scale;
  884. e1 = e0 - k1 * ps->r0;
  885. ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
  886. ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
  887. ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
  888. ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
  889. ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
  890. ps->r0 = flt16_trunc(a * e0);
  891. }
  892. /**
  893. * Apply AAC-Main style frequency domain prediction.
  894. */
  895. static void apply_prediction(AACContext * ac, SingleChannelElement * sce) {
  896. int sfb, k;
  897. if (!sce->ics.predictor_initialized) {
  898. reset_all_predictors(sce->predictor_state);
  899. sce->ics.predictor_initialized = 1;
  900. }
  901. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  902. for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
  903. for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
  904. predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
  905. sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
  906. }
  907. }
  908. if (sce->ics.predictor_reset_group)
  909. reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
  910. } else
  911. reset_all_predictors(sce->predictor_state);
  912. }
  913. /**
  914. * Decode an individual_channel_stream payload; reference: table 4.44.
  915. *
  916. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  917. * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
  918. *
  919. * @return Returns error status. 0 - OK, !0 - error
  920. */
  921. static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
  922. Pulse pulse;
  923. TemporalNoiseShaping * tns = &sce->tns;
  924. IndividualChannelStream * ics = &sce->ics;
  925. float * out = sce->coeffs;
  926. int global_gain, pulse_present = 0;
  927. /* This assignment is to silence a GCC warning about the variable being used
  928. * uninitialized when in fact it always is.
  929. */
  930. pulse.num_pulse = 0;
  931. global_gain = get_bits(gb, 8);
  932. if (!common_window && !scale_flag) {
  933. if (decode_ics_info(ac, ics, gb, 0) < 0)
  934. return -1;
  935. }
  936. if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
  937. return -1;
  938. if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
  939. return -1;
  940. pulse_present = 0;
  941. if (!scale_flag) {
  942. if ((pulse_present = get_bits1(gb))) {
  943. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  944. av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
  945. return -1;
  946. }
  947. if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
  948. av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
  949. return -1;
  950. }
  951. }
  952. if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
  953. return -1;
  954. if (get_bits1(gb)) {
  955. ff_log_missing_feature(ac->avccontext, "SSR", 1);
  956. return -1;
  957. }
  958. }
  959. if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
  960. return -1;
  961. if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
  962. apply_prediction(ac, sce);
  963. return 0;
  964. }
  965. /**
  966. * Mid/Side stereo decoding; reference: 4.6.8.1.3.
  967. */
  968. static void apply_mid_side_stereo(ChannelElement * cpe) {
  969. const IndividualChannelStream * ics = &cpe->ch[0].ics;
  970. float *ch0 = cpe->ch[0].coeffs;
  971. float *ch1 = cpe->ch[1].coeffs;
  972. int g, i, k, group, idx = 0;
  973. const uint16_t * offsets = ics->swb_offset;
  974. for (g = 0; g < ics->num_window_groups; g++) {
  975. for (i = 0; i < ics->max_sfb; i++, idx++) {
  976. if (cpe->ms_mask[idx] &&
  977. cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
  978. for (group = 0; group < ics->group_len[g]; group++) {
  979. for (k = offsets[i]; k < offsets[i+1]; k++) {
  980. float tmp = ch0[group*128 + k] - ch1[group*128 + k];
  981. ch0[group*128 + k] += ch1[group*128 + k];
  982. ch1[group*128 + k] = tmp;
  983. }
  984. }
  985. }
  986. }
  987. ch0 += ics->group_len[g]*128;
  988. ch1 += ics->group_len[g]*128;
  989. }
  990. }
  991. /**
  992. * intensity stereo decoding; reference: 4.6.8.2.3
  993. *
  994. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  995. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  996. * [3] reserved for scalable AAC
  997. */
  998. static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
  999. const IndividualChannelStream * ics = &cpe->ch[1].ics;
  1000. SingleChannelElement * sce1 = &cpe->ch[1];
  1001. float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
  1002. const uint16_t * offsets = ics->swb_offset;
  1003. int g, group, i, k, idx = 0;
  1004. int c;
  1005. float scale;
  1006. for (g = 0; g < ics->num_window_groups; g++) {
  1007. for (i = 0; i < ics->max_sfb;) {
  1008. if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
  1009. const int bt_run_end = sce1->band_type_run_end[idx];
  1010. for (; i < bt_run_end; i++, idx++) {
  1011. c = -1 + 2 * (sce1->band_type[idx] - 14);
  1012. if (ms_present)
  1013. c *= 1 - 2 * cpe->ms_mask[idx];
  1014. scale = c * sce1->sf[idx];
  1015. for (group = 0; group < ics->group_len[g]; group++)
  1016. for (k = offsets[i]; k < offsets[i+1]; k++)
  1017. coef1[group*128 + k] = scale * coef0[group*128 + k];
  1018. }
  1019. } else {
  1020. int bt_run_end = sce1->band_type_run_end[idx];
  1021. idx += bt_run_end - i;
  1022. i = bt_run_end;
  1023. }
  1024. }
  1025. coef0 += ics->group_len[g]*128;
  1026. coef1 += ics->group_len[g]*128;
  1027. }
  1028. }
  1029. /**
  1030. * Decode a channel_pair_element; reference: table 4.4.
  1031. *
  1032. * @param elem_id Identifies the instance of a syntax element.
  1033. *
  1034. * @return Returns error status. 0 - OK, !0 - error
  1035. */
  1036. static int decode_cpe(AACContext * ac, GetBitContext * gb, ChannelElement * cpe) {
  1037. int i, ret, common_window, ms_present = 0;
  1038. common_window = get_bits1(gb);
  1039. if (common_window) {
  1040. if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
  1041. return -1;
  1042. i = cpe->ch[1].ics.use_kb_window[0];
  1043. cpe->ch[1].ics = cpe->ch[0].ics;
  1044. cpe->ch[1].ics.use_kb_window[1] = i;
  1045. ms_present = get_bits(gb, 2);
  1046. if(ms_present == 3) {
  1047. av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
  1048. return -1;
  1049. } else if(ms_present)
  1050. decode_mid_side_stereo(cpe, gb, ms_present);
  1051. }
  1052. if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
  1053. return ret;
  1054. if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
  1055. return ret;
  1056. if (common_window) {
  1057. if (ms_present)
  1058. apply_mid_side_stereo(cpe);
  1059. if (ac->m4ac.object_type == AOT_AAC_MAIN) {
  1060. apply_prediction(ac, &cpe->ch[0]);
  1061. apply_prediction(ac, &cpe->ch[1]);
  1062. }
  1063. }
  1064. apply_intensity_stereo(cpe, ms_present);
  1065. return 0;
  1066. }
  1067. /**
  1068. * Decode coupling_channel_element; reference: table 4.8.
  1069. *
  1070. * @param elem_id Identifies the instance of a syntax element.
  1071. *
  1072. * @return Returns error status. 0 - OK, !0 - error
  1073. */
  1074. static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
  1075. int num_gain = 0;
  1076. int c, g, sfb, ret;
  1077. int sign;
  1078. float scale;
  1079. SingleChannelElement * sce = &che->ch[0];
  1080. ChannelCoupling * coup = &che->coup;
  1081. coup->coupling_point = 2*get_bits1(gb);
  1082. coup->num_coupled = get_bits(gb, 3);
  1083. for (c = 0; c <= coup->num_coupled; c++) {
  1084. num_gain++;
  1085. coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
  1086. coup->id_select[c] = get_bits(gb, 4);
  1087. if (coup->type[c] == TYPE_CPE) {
  1088. coup->ch_select[c] = get_bits(gb, 2);
  1089. if (coup->ch_select[c] == 3)
  1090. num_gain++;
  1091. } else
  1092. coup->ch_select[c] = 2;
  1093. }
  1094. coup->coupling_point += get_bits1(gb);
  1095. if (coup->coupling_point == 2) {
  1096. av_log(ac->avccontext, AV_LOG_ERROR,
  1097. "Independently switched CCE with 'invalid' domain signalled.\n");
  1098. memset(coup, 0, sizeof(ChannelCoupling));
  1099. return -1;
  1100. }
  1101. sign = get_bits(gb, 1);
  1102. scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
  1103. if ((ret = decode_ics(ac, sce, gb, 0, 0)))
  1104. return ret;
  1105. for (c = 0; c < num_gain; c++) {
  1106. int idx = 0;
  1107. int cge = 1;
  1108. int gain = 0;
  1109. float gain_cache = 1.;
  1110. if (c) {
  1111. cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
  1112. gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
  1113. gain_cache = pow(scale, -gain);
  1114. }
  1115. if (coup->coupling_point == AFTER_IMDCT) {
  1116. coup->gain[c][0] = gain_cache;
  1117. } else {
  1118. for (g = 0; g < sce->ics.num_window_groups; g++) {
  1119. for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
  1120. if (sce->band_type[idx] != ZERO_BT) {
  1121. if (!cge) {
  1122. int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  1123. if (t) {
  1124. int s = 1;
  1125. t = gain += t;
  1126. if (sign) {
  1127. s -= 2 * (t & 0x1);
  1128. t >>= 1;
  1129. }
  1130. gain_cache = pow(scale, -t) * s;
  1131. }
  1132. }
  1133. coup->gain[c][idx] = gain_cache;
  1134. }
  1135. }
  1136. }
  1137. }
  1138. }
  1139. return 0;
  1140. }
  1141. /**
  1142. * Decode Spectral Band Replication extension data; reference: table 4.55.
  1143. *
  1144. * @param crc flag indicating the presence of CRC checksum
  1145. * @param cnt length of TYPE_FIL syntactic element in bytes
  1146. *
  1147. * @return Returns number of bytes consumed from the TYPE_FIL element.
  1148. */
  1149. static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
  1150. // TODO : sbr_extension implementation
  1151. ff_log_missing_feature(ac->avccontext, "SBR", 0);
  1152. skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
  1153. return cnt;
  1154. }
  1155. /**
  1156. * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
  1157. *
  1158. * @return Returns number of bytes consumed.
  1159. */
  1160. static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
  1161. int i;
  1162. int num_excl_chan = 0;
  1163. do {
  1164. for (i = 0; i < 7; i++)
  1165. che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
  1166. } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
  1167. return num_excl_chan / 7;
  1168. }
  1169. /**
  1170. * Decode dynamic range information; reference: table 4.52.
  1171. *
  1172. * @param cnt length of TYPE_FIL syntactic element in bytes
  1173. *
  1174. * @return Returns number of bytes consumed.
  1175. */
  1176. static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
  1177. int n = 1;
  1178. int drc_num_bands = 1;
  1179. int i;
  1180. /* pce_tag_present? */
  1181. if(get_bits1(gb)) {
  1182. che_drc->pce_instance_tag = get_bits(gb, 4);
  1183. skip_bits(gb, 4); // tag_reserved_bits
  1184. n++;
  1185. }
  1186. /* excluded_chns_present? */
  1187. if(get_bits1(gb)) {
  1188. n += decode_drc_channel_exclusions(che_drc, gb);
  1189. }
  1190. /* drc_bands_present? */
  1191. if (get_bits1(gb)) {
  1192. che_drc->band_incr = get_bits(gb, 4);
  1193. che_drc->interpolation_scheme = get_bits(gb, 4);
  1194. n++;
  1195. drc_num_bands += che_drc->band_incr;
  1196. for (i = 0; i < drc_num_bands; i++) {
  1197. che_drc->band_top[i] = get_bits(gb, 8);
  1198. n++;
  1199. }
  1200. }
  1201. /* prog_ref_level_present? */
  1202. if (get_bits1(gb)) {
  1203. che_drc->prog_ref_level = get_bits(gb, 7);
  1204. skip_bits1(gb); // prog_ref_level_reserved_bits
  1205. n++;
  1206. }
  1207. for (i = 0; i < drc_num_bands; i++) {
  1208. che_drc->dyn_rng_sgn[i] = get_bits1(gb);
  1209. che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
  1210. n++;
  1211. }
  1212. return n;
  1213. }
  1214. /**
  1215. * Decode extension data (incomplete); reference: table 4.51.
  1216. *
  1217. * @param cnt length of TYPE_FIL syntactic element in bytes
  1218. *
  1219. * @return Returns number of bytes consumed
  1220. */
  1221. static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
  1222. int crc_flag = 0;
  1223. int res = cnt;
  1224. switch (get_bits(gb, 4)) { // extension type
  1225. case EXT_SBR_DATA_CRC:
  1226. crc_flag++;
  1227. case EXT_SBR_DATA:
  1228. res = decode_sbr_extension(ac, gb, crc_flag, cnt);
  1229. break;
  1230. case EXT_DYNAMIC_RANGE:
  1231. res = decode_dynamic_range(&ac->che_drc, gb, cnt);
  1232. break;
  1233. case EXT_FILL:
  1234. case EXT_FILL_DATA:
  1235. case EXT_DATA_ELEMENT:
  1236. default:
  1237. skip_bits_long(gb, 8*cnt - 4);
  1238. break;
  1239. };
  1240. return res;
  1241. }
  1242. /**
  1243. * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
  1244. *
  1245. * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
  1246. * @param coef spectral coefficients
  1247. */
  1248. static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
  1249. const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
  1250. int w, filt, m, i;
  1251. int bottom, top, order, start, end, size, inc;
  1252. float lpc[TNS_MAX_ORDER];
  1253. for (w = 0; w < ics->num_windows; w++) {
  1254. bottom = ics->num_swb;
  1255. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  1256. top = bottom;
  1257. bottom = FFMAX(0, top - tns->length[w][filt]);
  1258. order = tns->order[w][filt];
  1259. if (order == 0)
  1260. continue;
  1261. // tns_decode_coef
  1262. compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
  1263. start = ics->swb_offset[FFMIN(bottom, mmm)];
  1264. end = ics->swb_offset[FFMIN( top, mmm)];
  1265. if ((size = end - start) <= 0)
  1266. continue;
  1267. if (tns->direction[w][filt]) {
  1268. inc = -1; start = end - 1;
  1269. } else {
  1270. inc = 1;
  1271. }
  1272. start += w * 128;
  1273. // ar filter
  1274. for (m = 0; m < size; m++, start += inc)
  1275. for (i = 1; i <= FFMIN(m, order); i++)
  1276. coef[start] -= coef[start - i*inc] * lpc[i-1];
  1277. }
  1278. }
  1279. }
  1280. /**
  1281. * Conduct IMDCT and windowing.
  1282. */
  1283. static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
  1284. IndividualChannelStream * ics = &sce->ics;
  1285. float * in = sce->coeffs;
  1286. float * out = sce->ret;
  1287. float * saved = sce->saved;
  1288. const float * swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1289. const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1290. const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  1291. float * buf = ac->buf_mdct;
  1292. float * temp = ac->temp;
  1293. int i;
  1294. // imdct
  1295. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1296. if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
  1297. av_log(ac->avccontext, AV_LOG_WARNING,
  1298. "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
  1299. "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
  1300. for (i = 0; i < 1024; i += 128)
  1301. ff_imdct_half(&ac->mdct_small, buf + i, in + i);
  1302. } else
  1303. ff_imdct_half(&ac->mdct, buf, in);
  1304. /* window overlapping
  1305. * NOTE: To simplify the overlapping code, all 'meaningless' short to long
  1306. * and long to short transitions are considered to be short to short
  1307. * transitions. This leaves just two cases (long to long and short to short)
  1308. * with a little special sauce for EIGHT_SHORT_SEQUENCE.
  1309. */
  1310. if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
  1311. (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
  1312. ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
  1313. } else {
  1314. for (i = 0; i < 448; i++)
  1315. out[i] = saved[i] + ac->add_bias;
  1316. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1317. ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
  1318. ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
  1319. ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
  1320. ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
  1321. ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
  1322. memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
  1323. } else {
  1324. ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
  1325. for (i = 576; i < 1024; i++)
  1326. out[i] = buf[i-512] + ac->add_bias;
  1327. }
  1328. }
  1329. // buffer update
  1330. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1331. for (i = 0; i < 64; i++)
  1332. saved[i] = temp[64 + i] - ac->add_bias;
  1333. ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
  1334. ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
  1335. ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
  1336. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1337. } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
  1338. memcpy( saved, buf + 512, 448 * sizeof(float));
  1339. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1340. } else { // LONG_STOP or ONLY_LONG
  1341. memcpy( saved, buf + 512, 512 * sizeof(float));
  1342. }
  1343. }
  1344. /**
  1345. * Apply dependent channel coupling (applied before IMDCT).
  1346. *
  1347. * @param index index into coupling gain array
  1348. */
  1349. static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
  1350. IndividualChannelStream * ics = &cce->ch[0].ics;
  1351. const uint16_t * offsets = ics->swb_offset;
  1352. float * dest = target->coeffs;
  1353. const float * src = cce->ch[0].coeffs;
  1354. int g, i, group, k, idx = 0;
  1355. if(ac->m4ac.object_type == AOT_AAC_LTP) {
  1356. av_log(ac->avccontext, AV_LOG_ERROR,
  1357. "Dependent coupling is not supported together with LTP\n");
  1358. return;
  1359. }
  1360. for (g = 0; g < ics->num_window_groups; g++) {
  1361. for (i = 0; i < ics->max_sfb; i++, idx++) {
  1362. if (cce->ch[0].band_type[idx] != ZERO_BT) {
  1363. for (group = 0; group < ics->group_len[g]; group++) {
  1364. for (k = offsets[i]; k < offsets[i+1]; k++) {
  1365. // XXX dsputil-ize
  1366. dest[group*128+k] += cce->coup.gain[index][idx] * src[group*128+k];
  1367. }
  1368. }
  1369. }
  1370. }
  1371. dest += ics->group_len[g]*128;
  1372. src += ics->group_len[g]*128;
  1373. }
  1374. }
  1375. /**
  1376. * Apply independent channel coupling (applied after IMDCT).
  1377. *
  1378. * @param index index into coupling gain array
  1379. */
  1380. static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
  1381. int i;
  1382. const float gain = cce->coup.gain[index][0];
  1383. const float bias = ac->add_bias;
  1384. const float* src = cce->ch[0].ret;
  1385. float* dest = target->ret;
  1386. for (i = 0; i < 1024; i++)
  1387. dest[i] += gain * (src[i] - bias);
  1388. }
  1389. /**
  1390. * channel coupling transformation interface
  1391. *
  1392. * @param index index into coupling gain array
  1393. * @param apply_coupling_method pointer to (in)dependent coupling function
  1394. */
  1395. static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
  1396. enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
  1397. void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
  1398. {
  1399. int i, c;
  1400. for (i = 0; i < MAX_ELEM_ID; i++) {
  1401. ChannelElement *cce = ac->che[TYPE_CCE][i];
  1402. int index = 0;
  1403. if (cce && cce->coup.coupling_point == coupling_point) {
  1404. ChannelCoupling * coup = &cce->coup;
  1405. for (c = 0; c <= coup->num_coupled; c++) {
  1406. if (coup->type[c] == type && coup->id_select[c] == elem_id) {
  1407. if (coup->ch_select[c] != 1) {
  1408. apply_coupling_method(ac, &cc->ch[0], cce, index);
  1409. if (coup->ch_select[c] != 0)
  1410. index++;
  1411. }
  1412. if (coup->ch_select[c] != 2)
  1413. apply_coupling_method(ac, &cc->ch[1], cce, index++);
  1414. } else
  1415. index += 1 + (coup->ch_select[c] == 3);
  1416. }
  1417. }
  1418. }
  1419. }
  1420. /**
  1421. * Convert spectral data to float samples, applying all supported tools as appropriate.
  1422. */
  1423. static void spectral_to_sample(AACContext * ac) {
  1424. int i, type;
  1425. for(type = 3; type >= 0; type--) {
  1426. for (i = 0; i < MAX_ELEM_ID; i++) {
  1427. ChannelElement *che = ac->che[type][i];
  1428. if(che) {
  1429. if(type <= TYPE_CPE)
  1430. apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
  1431. if(che->ch[0].tns.present)
  1432. apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
  1433. if(che->ch[1].tns.present)
  1434. apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
  1435. if(type <= TYPE_CPE)
  1436. apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
  1437. if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
  1438. imdct_and_windowing(ac, &che->ch[0]);
  1439. if(type == TYPE_CPE)
  1440. imdct_and_windowing(ac, &che->ch[1]);
  1441. if(type <= TYPE_CCE)
  1442. apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
  1443. }
  1444. }
  1445. }
  1446. }
  1447. static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) {
  1448. int size;
  1449. AACADTSHeaderInfo hdr_info;
  1450. size = ff_aac_parse_header(gb, &hdr_info);
  1451. if (size > 0) {
  1452. if (hdr_info.chan_config)
  1453. ac->m4ac.chan_config = hdr_info.chan_config;
  1454. ac->m4ac.sample_rate = hdr_info.sample_rate;
  1455. ac->m4ac.sampling_index = hdr_info.sampling_index;
  1456. ac->m4ac.object_type = hdr_info.object_type;
  1457. if (hdr_info.num_aac_frames == 1) {
  1458. if (!hdr_info.crc_absent)
  1459. skip_bits(gb, 16);
  1460. } else {
  1461. ff_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
  1462. return -1;
  1463. }
  1464. }
  1465. return size;
  1466. }
  1467. static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
  1468. AACContext * ac = avccontext->priv_data;
  1469. ChannelElement * che = NULL;
  1470. GetBitContext gb;
  1471. enum RawDataBlockType elem_type;
  1472. int err, elem_id, data_size_tmp;
  1473. init_get_bits(&gb, buf, buf_size*8);
  1474. if (show_bits(&gb, 12) == 0xfff) {
  1475. if ((err = parse_adts_frame_header(ac, &gb)) < 0) {
  1476. av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
  1477. return -1;
  1478. }
  1479. if (ac->m4ac.sampling_index > 12) {
  1480. av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  1481. return -1;
  1482. }
  1483. }
  1484. // parse
  1485. while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
  1486. elem_id = get_bits(&gb, 4);
  1487. err = -1;
  1488. if(elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
  1489. av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
  1490. return -1;
  1491. }
  1492. switch (elem_type) {
  1493. case TYPE_SCE:
  1494. err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
  1495. break;
  1496. case TYPE_CPE:
  1497. err = decode_cpe(ac, &gb, che);
  1498. break;
  1499. case TYPE_CCE:
  1500. err = decode_cce(ac, &gb, che);
  1501. break;
  1502. case TYPE_LFE:
  1503. err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
  1504. break;
  1505. case TYPE_DSE:
  1506. skip_data_stream_element(&gb);
  1507. err = 0;
  1508. break;
  1509. case TYPE_PCE:
  1510. {
  1511. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  1512. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  1513. if((err = decode_pce(ac, new_che_pos, &gb)))
  1514. break;
  1515. err = output_configure(ac, ac->che_pos, new_che_pos, 0);
  1516. break;
  1517. }
  1518. case TYPE_FIL:
  1519. if (elem_id == 15)
  1520. elem_id += get_bits(&gb, 8) - 1;
  1521. while (elem_id > 0)
  1522. elem_id -= decode_extension_payload(ac, &gb, elem_id);
  1523. err = 0; /* FIXME */
  1524. break;
  1525. default:
  1526. err = -1; /* should not happen, but keeps compiler happy */
  1527. break;
  1528. }
  1529. if(err)
  1530. return err;
  1531. }
  1532. spectral_to_sample(ac);
  1533. if (!ac->is_saved) {
  1534. ac->is_saved = 1;
  1535. *data_size = 0;
  1536. return buf_size;
  1537. }
  1538. data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
  1539. if(*data_size < data_size_tmp) {
  1540. av_log(avccontext, AV_LOG_ERROR,
  1541. "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
  1542. *data_size, data_size_tmp);
  1543. return -1;
  1544. }
  1545. *data_size = data_size_tmp;
  1546. ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
  1547. return buf_size;
  1548. }
  1549. static av_cold int aac_decode_close(AVCodecContext * avccontext) {
  1550. AACContext * ac = avccontext->priv_data;
  1551. int i, type;
  1552. for (i = 0; i < MAX_ELEM_ID; i++) {
  1553. for(type = 0; type < 4; type++)
  1554. av_freep(&ac->che[type][i]);
  1555. }
  1556. ff_mdct_end(&ac->mdct);
  1557. ff_mdct_end(&ac->mdct_small);
  1558. return 0 ;
  1559. }
  1560. AVCodec aac_decoder = {
  1561. "aac",
  1562. CODEC_TYPE_AUDIO,
  1563. CODEC_ID_AAC,
  1564. sizeof(AACContext),
  1565. aac_decode_init,
  1566. NULL,
  1567. aac_decode_close,
  1568. aac_decode_frame,
  1569. .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
  1570. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  1571. };