timefilter.c 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. /*
  2. * Delay Locked Loop based time filter
  3. * Copyright (c) 2009 Samalyse
  4. * Copyright (c) 2009 Michael Niedermayer
  5. * Author: Olivier Guilyardi <olivier samalyse com>
  6. * Michael Niedermayer <michaelni gmx at>
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "libavutil/mem.h"
  25. #include "config.h"
  26. #include "timefilter.h"
  27. struct TimeFilter {
  28. /// Delay Locked Loop data. These variables refer to mathematical
  29. /// concepts described in: http://www.kokkinizita.net/papers/usingdll.pdf
  30. double cycle_time;
  31. double feedback2_factor;
  32. double feedback3_factor;
  33. double clock_period;
  34. int count;
  35. };
  36. /* 1 - exp(-x) using a 3-order power series */
  37. static double qexpneg(double x)
  38. {
  39. return 1 - 1 / (1 + x * (1 + x / 2 * (1 + x / 3)));
  40. }
  41. TimeFilter *ff_timefilter_new(double time_base,
  42. double period,
  43. double bandwidth)
  44. {
  45. TimeFilter *self = av_mallocz(sizeof(TimeFilter));
  46. double o = 2 * M_PI * bandwidth * period * time_base;
  47. self->clock_period = time_base;
  48. self->feedback2_factor = qexpneg(M_SQRT2 * o);
  49. self->feedback3_factor = qexpneg(o * o) / period;
  50. return self;
  51. }
  52. void ff_timefilter_destroy(TimeFilter *self)
  53. {
  54. av_freep(&self);
  55. }
  56. void ff_timefilter_reset(TimeFilter *self)
  57. {
  58. self->count = 0;
  59. }
  60. double ff_timefilter_update(TimeFilter *self, double system_time, double period)
  61. {
  62. self->count++;
  63. if (self->count == 1) {
  64. /// init loop
  65. self->cycle_time = system_time;
  66. } else {
  67. double loop_error;
  68. self->cycle_time += self->clock_period * period;
  69. /// calculate loop error
  70. loop_error = system_time - self->cycle_time;
  71. /// update loop
  72. self->cycle_time += FFMAX(self->feedback2_factor, 1.0 / self->count) * loop_error;
  73. self->clock_period += self->feedback3_factor * loop_error;
  74. }
  75. return self->cycle_time;
  76. }
  77. double ff_timefilter_eval(TimeFilter *self, double delta)
  78. {
  79. return self->cycle_time + self->clock_period * delta;
  80. }
  81. #ifdef TEST
  82. #include "libavutil/lfg.h"
  83. #define LFG_MAX ((1LL << 32) - 1)
  84. #undef printf
  85. int main(void)
  86. {
  87. AVLFG prng;
  88. double n0, n1;
  89. #define SAMPLES 1000
  90. double ideal[SAMPLES];
  91. double samples[SAMPLES];
  92. double samplet[SAMPLES];
  93. #if 1
  94. for (n0 = 0; n0 < 40; n0 = 2 * n0 + 1) {
  95. for (n1 = 0; n1 < 10; n1 = 2 * n1 + 1) {
  96. #else
  97. {
  98. {
  99. n0 = 7;
  100. n1 = 1;
  101. #endif
  102. double best_error = 1000000000;
  103. double bestpar0 = 1;
  104. double bestpar1 = 1;
  105. int better, i;
  106. av_lfg_init(&prng, 123);
  107. for (i = 0; i < SAMPLES; i++) {
  108. samplet[i] = 10 + i + (av_lfg_get(&prng) < LFG_MAX/2 ? 0 : 0.999);
  109. ideal[i] = samplet[i] + n1 * i / (1000);
  110. samples[i] = ideal[i] + n0 * (av_lfg_get(&prng) - LFG_MAX / 2) / (LFG_MAX * 10LL);
  111. if(i && samples[i]<samples[i-1])
  112. samples[i]=samples[i-1]+0.001;
  113. }
  114. do {
  115. double par0, par1;
  116. better = 0;
  117. for (par0 = bestpar0 * 0.8; par0 <= bestpar0 * 1.21; par0 += bestpar0 * 0.05) {
  118. for (par1 = bestpar1 * 0.8; par1 <= bestpar1 * 1.21; par1 += bestpar1 * 0.05) {
  119. double error = 0;
  120. TimeFilter *tf = ff_timefilter_new(1, par0, par1);
  121. for (i = 0; i < SAMPLES; i++) {
  122. double filtered;
  123. filtered = ff_timefilter_update(tf, samples[i], i ? (samplet[i] - samplet[i-1]) : 1);
  124. if(filtered < 0 || filtered > 1000000000)
  125. printf("filter is unstable\n");
  126. error += (filtered - ideal[i]) * (filtered - ideal[i]);
  127. }
  128. ff_timefilter_destroy(tf);
  129. if (error < best_error) {
  130. best_error = error;
  131. bestpar0 = par0;
  132. bestpar1 = par1;
  133. better = 1;
  134. }
  135. }
  136. }
  137. } while (better);
  138. #if 0
  139. double lastfil = 9;
  140. TimeFilter *tf = ff_timefilter_new(1, bestpar0, bestpar1);
  141. for (i = 0; i < SAMPLES; i++) {
  142. double filtered;
  143. filtered = ff_timefilter_update(tf, samples[i], 1);
  144. printf("%f %f %f %f\n", i - samples[i] + 10, filtered - samples[i],
  145. samples[FFMAX(i, 1)] - samples[FFMAX(i - 1, 0)], filtered - lastfil);
  146. lastfil = filtered;
  147. }
  148. ff_timefilter_destroy(tf);
  149. #else
  150. printf(" [%f %f %9f]", bestpar0, bestpar1, best_error);
  151. #endif
  152. }
  153. printf("\n");
  154. }
  155. return 0;
  156. }
  157. #endif