muxers.texi 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498
  1. @chapter Muxers
  2. @c man begin MUXERS
  3. Muxers are configured elements in FFmpeg which allow writing
  4. multimedia streams to a particular type of file.
  5. When you configure your FFmpeg build, all the supported muxers
  6. are enabled by default. You can list all available muxers using the
  7. configure option @code{--list-muxers}.
  8. You can disable all the muxers with the configure option
  9. @code{--disable-muxers} and selectively enable / disable single muxers
  10. with the options @code{--enable-muxer=@var{MUXER}} /
  11. @code{--disable-muxer=@var{MUXER}}.
  12. The option @code{-formats} of the ff* tools will display the list of
  13. enabled muxers.
  14. A description of some of the currently available muxers follows.
  15. @anchor{aiff}
  16. @section aiff
  17. Audio Interchange File Format muxer.
  18. It accepts the following options:
  19. @table @option
  20. @item write_id3v2
  21. Enable ID3v2 tags writing when set to 1. Default is 0 (disabled).
  22. @item id3v2_version
  23. Select ID3v2 version to write. Currently only version 3 and 4 (aka.
  24. ID3v2.3 and ID3v2.4) are supported. The default is version 4.
  25. @end table
  26. @anchor{crc}
  27. @section crc
  28. CRC (Cyclic Redundancy Check) testing format.
  29. This muxer computes and prints the Adler-32 CRC of all the input audio
  30. and video frames. By default audio frames are converted to signed
  31. 16-bit raw audio and video frames to raw video before computing the
  32. CRC.
  33. The output of the muxer consists of a single line of the form:
  34. CRC=0x@var{CRC}, where @var{CRC} is a hexadecimal number 0-padded to
  35. 8 digits containing the CRC for all the decoded input frames.
  36. For example to compute the CRC of the input, and store it in the file
  37. @file{out.crc}:
  38. @example
  39. ffmpeg -i INPUT -f crc out.crc
  40. @end example
  41. You can print the CRC to stdout with the command:
  42. @example
  43. ffmpeg -i INPUT -f crc -
  44. @end example
  45. You can select the output format of each frame with @command{ffmpeg} by
  46. specifying the audio and video codec and format. For example to
  47. compute the CRC of the input audio converted to PCM unsigned 8-bit
  48. and the input video converted to MPEG-2 video, use the command:
  49. @example
  50. ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc -
  51. @end example
  52. See also the @ref{framecrc} muxer.
  53. @anchor{framecrc}
  54. @section framecrc
  55. Per-packet CRC (Cyclic Redundancy Check) testing format.
  56. This muxer computes and prints the Adler-32 CRC for each audio
  57. and video packet. By default audio frames are converted to signed
  58. 16-bit raw audio and video frames to raw video before computing the
  59. CRC.
  60. The output of the muxer consists of a line for each audio and video
  61. packet of the form:
  62. @example
  63. @var{stream_index}, @var{packet_dts}, @var{packet_pts}, @var{packet_duration}, @var{packet_size}, 0x@var{CRC}
  64. @end example
  65. @var{CRC} is a hexadecimal number 0-padded to 8 digits containing the
  66. CRC of the packet.
  67. For example to compute the CRC of the audio and video frames in
  68. @file{INPUT}, converted to raw audio and video packets, and store it
  69. in the file @file{out.crc}:
  70. @example
  71. ffmpeg -i INPUT -f framecrc out.crc
  72. @end example
  73. To print the information to stdout, use the command:
  74. @example
  75. ffmpeg -i INPUT -f framecrc -
  76. @end example
  77. With @command{ffmpeg}, you can select the output format to which the
  78. audio and video frames are encoded before computing the CRC for each
  79. packet by specifying the audio and video codec. For example, to
  80. compute the CRC of each decoded input audio frame converted to PCM
  81. unsigned 8-bit and of each decoded input video frame converted to
  82. MPEG-2 video, use the command:
  83. @example
  84. ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc -
  85. @end example
  86. See also the @ref{crc} muxer.
  87. @anchor{framemd5}
  88. @section framemd5
  89. Per-packet MD5 testing format.
  90. This muxer computes and prints the MD5 hash for each audio
  91. and video packet. By default audio frames are converted to signed
  92. 16-bit raw audio and video frames to raw video before computing the
  93. hash.
  94. The output of the muxer consists of a line for each audio and video
  95. packet of the form:
  96. @example
  97. @var{stream_index}, @var{packet_dts}, @var{packet_pts}, @var{packet_duration}, @var{packet_size}, @var{MD5}
  98. @end example
  99. @var{MD5} is a hexadecimal number representing the computed MD5 hash
  100. for the packet.
  101. For example to compute the MD5 of the audio and video frames in
  102. @file{INPUT}, converted to raw audio and video packets, and store it
  103. in the file @file{out.md5}:
  104. @example
  105. ffmpeg -i INPUT -f framemd5 out.md5
  106. @end example
  107. To print the information to stdout, use the command:
  108. @example
  109. ffmpeg -i INPUT -f framemd5 -
  110. @end example
  111. See also the @ref{md5} muxer.
  112. @anchor{image2}
  113. @section image2
  114. Image file muxer.
  115. The image file muxer writes video frames to image files.
  116. The output filenames are specified by a pattern, which can be used to
  117. produce sequentially numbered series of files.
  118. The pattern may contain the string "%d" or "%0@var{N}d", this string
  119. specifies the position of the characters representing a numbering in
  120. the filenames. If the form "%0@var{N}d" is used, the string
  121. representing the number in each filename is 0-padded to @var{N}
  122. digits. The literal character '%' can be specified in the pattern with
  123. the string "%%".
  124. If the pattern contains "%d" or "%0@var{N}d", the first filename of
  125. the file list specified will contain the number 1, all the following
  126. numbers will be sequential.
  127. The pattern may contain a suffix which is used to automatically
  128. determine the format of the image files to write.
  129. For example the pattern "img-%03d.bmp" will specify a sequence of
  130. filenames of the form @file{img-001.bmp}, @file{img-002.bmp}, ...,
  131. @file{img-010.bmp}, etc.
  132. The pattern "img%%-%d.jpg" will specify a sequence of filenames of the
  133. form @file{img%-1.jpg}, @file{img%-2.jpg}, ..., @file{img%-10.jpg},
  134. etc.
  135. The following example shows how to use @command{ffmpeg} for creating a
  136. sequence of files @file{img-001.jpeg}, @file{img-002.jpeg}, ...,
  137. taking one image every second from the input video:
  138. @example
  139. ffmpeg -i in.avi -vsync 1 -r 1 -f image2 'img-%03d.jpeg'
  140. @end example
  141. Note that with @command{ffmpeg}, if the format is not specified with the
  142. @code{-f} option and the output filename specifies an image file
  143. format, the image2 muxer is automatically selected, so the previous
  144. command can be written as:
  145. @example
  146. ffmpeg -i in.avi -vsync 1 -r 1 'img-%03d.jpeg'
  147. @end example
  148. Note also that the pattern must not necessarily contain "%d" or
  149. "%0@var{N}d", for example to create a single image file
  150. @file{img.jpeg} from the input video you can employ the command:
  151. @example
  152. ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg
  153. @end example
  154. The image muxer supports the .Y.U.V image file format. This format is
  155. special in that that each image frame consists of three files, for
  156. each of the YUV420P components. To read or write this image file format,
  157. specify the name of the '.Y' file. The muxer will automatically open the
  158. '.U' and '.V' files as required.
  159. @anchor{md5}
  160. @section md5
  161. MD5 testing format.
  162. This muxer computes and prints the MD5 hash of all the input audio
  163. and video frames. By default audio frames are converted to signed
  164. 16-bit raw audio and video frames to raw video before computing the
  165. hash.
  166. The output of the muxer consists of a single line of the form:
  167. MD5=@var{MD5}, where @var{MD5} is a hexadecimal number representing
  168. the computed MD5 hash.
  169. For example to compute the MD5 hash of the input converted to raw
  170. audio and video, and store it in the file @file{out.md5}:
  171. @example
  172. ffmpeg -i INPUT -f md5 out.md5
  173. @end example
  174. You can print the MD5 to stdout with the command:
  175. @example
  176. ffmpeg -i INPUT -f md5 -
  177. @end example
  178. See also the @ref{framemd5} muxer.
  179. @section MOV/MP4/ISMV
  180. The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4
  181. file has all the metadata about all packets stored in one location
  182. (written at the end of the file, it can be moved to the start for
  183. better playback using the @command{qt-faststart} tool). A fragmented
  184. file consists of a number of fragments, where packets and metadata
  185. about these packets are stored together. Writing a fragmented
  186. file has the advantage that the file is decodable even if the
  187. writing is interrupted (while a normal MOV/MP4 is undecodable if
  188. it is not properly finished), and it requires less memory when writing
  189. very long files (since writing normal MOV/MP4 files stores info about
  190. every single packet in memory until the file is closed). The downside
  191. is that it is less compatible with other applications.
  192. Fragmentation is enabled by setting one of the AVOptions that define
  193. how to cut the file into fragments:
  194. @table @option
  195. @item -moov_size @var{bytes}
  196. Reserves space for the moov atom at the beginning of the file instead of placing the
  197. moov atom at the end. If the space reserved is insufficient, muxing will fail.
  198. @item -movflags frag_keyframe
  199. Start a new fragment at each video keyframe.
  200. @item -frag_duration @var{duration}
  201. Create fragments that are @var{duration} microseconds long.
  202. @item -frag_size @var{size}
  203. Create fragments that contain up to @var{size} bytes of payload data.
  204. @item -movflags frag_custom
  205. Allow the caller to manually choose when to cut fragments, by
  206. calling @code{av_write_frame(ctx, NULL)} to write a fragment with
  207. the packets written so far. (This is only useful with other
  208. applications integrating libavformat, not from @command{ffmpeg}.)
  209. @item -min_frag_duration @var{duration}
  210. Don't create fragments that are shorter than @var{duration} microseconds long.
  211. @end table
  212. If more than one condition is specified, fragments are cut when
  213. one of the specified conditions is fulfilled. The exception to this is
  214. @code{-min_frag_duration}, which has to be fulfilled for any of the other
  215. conditions to apply.
  216. Additionally, the way the output file is written can be adjusted
  217. through a few other options:
  218. @table @option
  219. @item -movflags empty_moov
  220. Write an initial moov atom directly at the start of the file, without
  221. describing any samples in it. Generally, an mdat/moov pair is written
  222. at the start of the file, as a normal MOV/MP4 file, containing only
  223. a short portion of the file. With this option set, there is no initial
  224. mdat atom, and the moov atom only describes the tracks but has
  225. a zero duration.
  226. Files written with this option set do not work in QuickTime.
  227. This option is implicitly set when writing ismv (Smooth Streaming) files.
  228. @item -movflags separate_moof
  229. Write a separate moof (movie fragment) atom for each track. Normally,
  230. packets for all tracks are written in a moof atom (which is slightly
  231. more efficient), but with this option set, the muxer writes one moof/mdat
  232. pair for each track, making it easier to separate tracks.
  233. This option is implicitly set when writing ismv (Smooth Streaming) files.
  234. @end table
  235. Smooth Streaming content can be pushed in real time to a publishing
  236. point on IIS with this muxer. Example:
  237. @example
  238. ffmpeg -re @var{<normal input/transcoding options>} -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1)
  239. @end example
  240. @section mpegts
  241. MPEG transport stream muxer.
  242. This muxer implements ISO 13818-1 and part of ETSI EN 300 468.
  243. The muxer options are:
  244. @table @option
  245. @item -mpegts_original_network_id @var{number}
  246. Set the original_network_id (default 0x0001). This is unique identifier
  247. of a network in DVB. Its main use is in the unique identification of a
  248. service through the path Original_Network_ID, Transport_Stream_ID.
  249. @item -mpegts_transport_stream_id @var{number}
  250. Set the transport_stream_id (default 0x0001). This identifies a
  251. transponder in DVB.
  252. @item -mpegts_service_id @var{number}
  253. Set the service_id (default 0x0001) also known as program in DVB.
  254. @item -mpegts_pmt_start_pid @var{number}
  255. Set the first PID for PMT (default 0x1000, max 0x1f00).
  256. @item -mpegts_start_pid @var{number}
  257. Set the first PID for data packets (default 0x0100, max 0x0f00).
  258. @end table
  259. The recognized metadata settings in mpegts muxer are @code{service_provider}
  260. and @code{service_name}. If they are not set the default for
  261. @code{service_provider} is "FFmpeg" and the default for
  262. @code{service_name} is "Service01".
  263. @example
  264. ffmpeg -i file.mpg -c copy \
  265. -mpegts_original_network_id 0x1122 \
  266. -mpegts_transport_stream_id 0x3344 \
  267. -mpegts_service_id 0x5566 \
  268. -mpegts_pmt_start_pid 0x1500 \
  269. -mpegts_start_pid 0x150 \
  270. -metadata service_provider="Some provider" \
  271. -metadata service_name="Some Channel" \
  272. -y out.ts
  273. @end example
  274. @section null
  275. Null muxer.
  276. This muxer does not generate any output file, it is mainly useful for
  277. testing or benchmarking purposes.
  278. For example to benchmark decoding with @command{ffmpeg} you can use the
  279. command:
  280. @example
  281. ffmpeg -benchmark -i INPUT -f null out.null
  282. @end example
  283. Note that the above command does not read or write the @file{out.null}
  284. file, but specifying the output file is required by the @command{ffmpeg}
  285. syntax.
  286. Alternatively you can write the command as:
  287. @example
  288. ffmpeg -benchmark -i INPUT -f null -
  289. @end example
  290. @section matroska
  291. Matroska container muxer.
  292. This muxer implements the matroska and webm container specs.
  293. The recognized metadata settings in this muxer are:
  294. @table @option
  295. @item title=@var{title name}
  296. Name provided to a single track
  297. @end table
  298. @table @option
  299. @item language=@var{language name}
  300. Specifies the language of the track in the Matroska languages form
  301. @end table
  302. @table @option
  303. @item stereo_mode=@var{mode}
  304. Stereo 3D video layout of two views in a single video track
  305. @table @option
  306. @item mono
  307. video is not stereo
  308. @item left_right
  309. Both views are arranged side by side, Left-eye view is on the left
  310. @item bottom_top
  311. Both views are arranged in top-bottom orientation, Left-eye view is at bottom
  312. @item top_bottom
  313. Both views are arranged in top-bottom orientation, Left-eye view is on top
  314. @item checkerboard_rl
  315. Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first
  316. @item checkerboard_lr
  317. Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first
  318. @item row_interleaved_rl
  319. Each view is constituted by a row based interleaving, Right-eye view is first row
  320. @item row_interleaved_lr
  321. Each view is constituted by a row based interleaving, Left-eye view is first row
  322. @item col_interleaved_rl
  323. Both views are arranged in a column based interleaving manner, Right-eye view is first column
  324. @item col_interleaved_lr
  325. Both views are arranged in a column based interleaving manner, Left-eye view is first column
  326. @item anaglyph_cyan_red
  327. All frames are in anaglyph format viewable through red-cyan filters
  328. @item right_left
  329. Both views are arranged side by side, Right-eye view is on the left
  330. @item anaglyph_green_magenta
  331. All frames are in anaglyph format viewable through green-magenta filters
  332. @item block_lr
  333. Both eyes laced in one Block, Left-eye view is first
  334. @item block_rl
  335. Both eyes laced in one Block, Right-eye view is first
  336. @end table
  337. @end table
  338. For example a 3D WebM clip can be created using the following command line:
  339. @example
  340. ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm
  341. @end example
  342. @section segment
  343. Basic stream segmenter.
  344. The segmenter muxer outputs streams to a number of separate files of nearly
  345. fixed duration. Output filename pattern can be set in a fashion similar to
  346. @ref{image2}.
  347. Every segment starts with a video keyframe, if a video stream is present.
  348. The segment muxer works best with a single constant frame rate video.
  349. Optionally it can generate a flat list of the created segments, one segment
  350. per line.
  351. @table @option
  352. @item segment_format @var{format}
  353. Override the inner container format, by default it is guessed by the filename
  354. extension.
  355. @item segment_time @var{t}
  356. Set segment duration to @var{t} seconds.
  357. @item segment_list @var{name}
  358. Generate also a listfile named @var{name}.
  359. @item segment_list_size @var{size}
  360. Overwrite the listfile once it reaches @var{size} entries.
  361. @item segment_wrap @var{limit}
  362. Wrap around segment index once it reaches @var{limit}.
  363. @end table
  364. @example
  365. ffmpeg -i in.mkv -c copy -map 0 -f segment -list out.list out%03d.nut
  366. @end example
  367. @section mp3
  368. The MP3 muxer writes a raw MP3 stream with an ID3v2 header at the beginning and
  369. optionally an ID3v1 tag at the end. ID3v2.3 and ID3v2.4 are supported, the
  370. @code{id3v2_version} option controls which one is used. The legacy ID3v1 tag is
  371. not written by default, but may be enabled with the @code{write_id3v1} option.
  372. For seekable output the muxer also writes a Xing frame at the beginning, which
  373. contains the number of frames in the file. It is useful for computing duration
  374. of VBR files.
  375. The muxer supports writing ID3v2 attached pictures (APIC frames). The pictures
  376. are supplied to the muxer in form of a video stream with a single packet. There
  377. can be any number of those streams, each will correspond to a single APIC frame.
  378. The stream metadata tags @var{title} and @var{comment} map to APIC
  379. @var{description} and @var{picture type} respectively. See
  380. @url{http://id3.org/id3v2.4.0-frames} for allowed picture types.
  381. Note that the APIC frames must be written at the beginning, so the muxer will
  382. buffer the audio frames until it gets all the pictures. It is therefore advised
  383. to provide the pictures as soon as possible to avoid excessive buffering.
  384. Examples:
  385. Write an mp3 with an ID3v2.3 header and an ID3v1 footer:
  386. @example
  387. ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3
  388. @end example
  389. Attach a picture to an mp3:
  390. @example
  391. ffmpeg -i input.mp3 -i cover.png -c copy -metadata:s:v title="Album cover"
  392. -metadata:s:v comment="Cover (Front)" out.mp3
  393. @end example
  394. @c man end MUXERS