swscale_unscaled.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090
  1. /*
  2. * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <inttypes.h>
  21. #include <string.h>
  22. #include <math.h>
  23. #include <stdio.h>
  24. #include "config.h"
  25. #include <assert.h>
  26. #include "swscale.h"
  27. #include "swscale_internal.h"
  28. #include "rgb2rgb.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/cpu.h"
  31. #include "libavutil/avutil.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/bswap.h"
  34. #include "libavutil/pixdesc.h"
  35. #define RGB2YUV_SHIFT 15
  36. #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  37. #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  38. #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  39. #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  40. #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  41. #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  42. #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  43. #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  44. #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  45. static void fillPlane(uint8_t *plane, int stride, int width, int height, int y,
  46. uint8_t val)
  47. {
  48. int i;
  49. uint8_t *ptr = plane + stride * y;
  50. for (i = 0; i < height; i++) {
  51. memset(ptr, val, width);
  52. ptr += stride;
  53. }
  54. }
  55. static void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
  56. int alpha, int bits)
  57. {
  58. int i, j;
  59. uint8_t *ptr = plane + stride * y;
  60. int v = alpha ? -1 : (1<<bits);
  61. for (i = 0; i < height; i++) {
  62. for (j = 0; j < width; j++) {
  63. AV_WN16(ptr+2*j, v);
  64. }
  65. ptr += stride;
  66. }
  67. }
  68. static void copyPlane(const uint8_t *src, int srcStride,
  69. int srcSliceY, int srcSliceH, int width,
  70. uint8_t *dst, int dstStride)
  71. {
  72. dst += dstStride * srcSliceY;
  73. if (dstStride == srcStride && srcStride > 0) {
  74. memcpy(dst, src, srcSliceH * dstStride);
  75. } else {
  76. int i;
  77. for (i = 0; i < srcSliceH; i++) {
  78. memcpy(dst, src, width);
  79. src += srcStride;
  80. dst += dstStride;
  81. }
  82. }
  83. }
  84. static int planarToNv12Wrapper(SwsContext *c, const uint8_t *src[],
  85. int srcStride[], int srcSliceY,
  86. int srcSliceH, uint8_t *dstParam[],
  87. int dstStride[])
  88. {
  89. uint8_t *dst = dstParam[1] + dstStride[1] * srcSliceY / 2;
  90. copyPlane(src[0], srcStride[0], srcSliceY, srcSliceH, c->srcW,
  91. dstParam[0], dstStride[0]);
  92. if (c->dstFormat == PIX_FMT_NV12)
  93. interleaveBytes(src[1], src[2], dst, c->srcW / 2, srcSliceH / 2,
  94. srcStride[1], srcStride[2], dstStride[0]);
  95. else
  96. interleaveBytes(src[2], src[1], dst, c->srcW / 2, srcSliceH / 2,
  97. srcStride[2], srcStride[1], dstStride[0]);
  98. return srcSliceH;
  99. }
  100. static int planarToYuy2Wrapper(SwsContext *c, const uint8_t *src[],
  101. int srcStride[], int srcSliceY, int srcSliceH,
  102. uint8_t *dstParam[], int dstStride[])
  103. {
  104. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  105. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  106. srcStride[1], dstStride[0]);
  107. return srcSliceH;
  108. }
  109. static int planarToUyvyWrapper(SwsContext *c, const uint8_t *src[],
  110. int srcStride[], int srcSliceY, int srcSliceH,
  111. uint8_t *dstParam[], int dstStride[])
  112. {
  113. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  114. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  115. srcStride[1], dstStride[0]);
  116. return srcSliceH;
  117. }
  118. static int yuv422pToYuy2Wrapper(SwsContext *c, const uint8_t *src[],
  119. int srcStride[], int srcSliceY, int srcSliceH,
  120. uint8_t *dstParam[], int dstStride[])
  121. {
  122. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  123. yuv422ptoyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  124. srcStride[1], dstStride[0]);
  125. return srcSliceH;
  126. }
  127. static int yuv422pToUyvyWrapper(SwsContext *c, const uint8_t *src[],
  128. int srcStride[], int srcSliceY, int srcSliceH,
  129. uint8_t *dstParam[], int dstStride[])
  130. {
  131. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  132. yuv422ptouyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  133. srcStride[1], dstStride[0]);
  134. return srcSliceH;
  135. }
  136. static int yuyvToYuv420Wrapper(SwsContext *c, const uint8_t *src[],
  137. int srcStride[], int srcSliceY, int srcSliceH,
  138. uint8_t *dstParam[], int dstStride[])
  139. {
  140. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  141. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY / 2;
  142. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY / 2;
  143. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  144. dstStride[1], srcStride[0]);
  145. if (dstParam[3])
  146. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  147. return srcSliceH;
  148. }
  149. static int yuyvToYuv422Wrapper(SwsContext *c, const uint8_t *src[],
  150. int srcStride[], int srcSliceY, int srcSliceH,
  151. uint8_t *dstParam[], int dstStride[])
  152. {
  153. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  154. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY;
  155. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY;
  156. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  157. dstStride[1], srcStride[0]);
  158. return srcSliceH;
  159. }
  160. static int uyvyToYuv420Wrapper(SwsContext *c, const uint8_t *src[],
  161. int srcStride[], int srcSliceY, int srcSliceH,
  162. uint8_t *dstParam[], int dstStride[])
  163. {
  164. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  165. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY / 2;
  166. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY / 2;
  167. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  168. dstStride[1], srcStride[0]);
  169. if (dstParam[3])
  170. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  171. return srcSliceH;
  172. }
  173. static int uyvyToYuv422Wrapper(SwsContext *c, const uint8_t *src[],
  174. int srcStride[], int srcSliceY, int srcSliceH,
  175. uint8_t *dstParam[], int dstStride[])
  176. {
  177. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  178. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY;
  179. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY;
  180. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  181. dstStride[1], srcStride[0]);
  182. return srcSliceH;
  183. }
  184. static void gray8aToPacked32(const uint8_t *src, uint8_t *dst, int num_pixels,
  185. const uint8_t *palette)
  186. {
  187. int i;
  188. for (i = 0; i < num_pixels; i++)
  189. ((uint32_t *) dst)[i] = ((const uint32_t *) palette)[src[i << 1]] | (src[(i << 1) + 1] << 24);
  190. }
  191. static void gray8aToPacked32_1(const uint8_t *src, uint8_t *dst, int num_pixels,
  192. const uint8_t *palette)
  193. {
  194. int i;
  195. for (i = 0; i < num_pixels; i++)
  196. ((uint32_t *) dst)[i] = ((const uint32_t *) palette)[src[i << 1]] | src[(i << 1) + 1];
  197. }
  198. static void gray8aToPacked24(const uint8_t *src, uint8_t *dst, int num_pixels,
  199. const uint8_t *palette)
  200. {
  201. int i;
  202. for (i = 0; i < num_pixels; i++) {
  203. //FIXME slow?
  204. dst[0] = palette[src[i << 1] * 4 + 0];
  205. dst[1] = palette[src[i << 1] * 4 + 1];
  206. dst[2] = palette[src[i << 1] * 4 + 2];
  207. dst += 3;
  208. }
  209. }
  210. static int packed_16bpc_bswap(SwsContext *c, const uint8_t *src[],
  211. int srcStride[], int srcSliceY, int srcSliceH,
  212. uint8_t *dst[], int dstStride[])
  213. {
  214. int i, j;
  215. int srcstr = srcStride[0] >> 1;
  216. int dststr = dstStride[0] >> 1;
  217. uint16_t *dstPtr = (uint16_t *) dst[0];
  218. const uint16_t *srcPtr = (const uint16_t *) src[0];
  219. int min_stride = FFMIN(srcstr, dststr);
  220. for (i = 0; i < srcSliceH; i++) {
  221. for (j = 0; j < min_stride; j++) {
  222. dstPtr[j] = av_bswap16(srcPtr[j]);
  223. }
  224. srcPtr += srcstr;
  225. dstPtr += dststr;
  226. }
  227. return srcSliceH;
  228. }
  229. static int palToRgbWrapper(SwsContext *c, const uint8_t *src[], int srcStride[],
  230. int srcSliceY, int srcSliceH, uint8_t *dst[],
  231. int dstStride[])
  232. {
  233. const enum PixelFormat srcFormat = c->srcFormat;
  234. const enum PixelFormat dstFormat = c->dstFormat;
  235. void (*conv)(const uint8_t *src, uint8_t *dst, int num_pixels,
  236. const uint8_t *palette) = NULL;
  237. int i;
  238. uint8_t *dstPtr = dst[0] + dstStride[0] * srcSliceY;
  239. const uint8_t *srcPtr = src[0];
  240. if (srcFormat == PIX_FMT_GRAY8A) {
  241. switch (dstFormat) {
  242. case PIX_FMT_RGB32 : conv = gray8aToPacked32; break;
  243. case PIX_FMT_BGR32 : conv = gray8aToPacked32; break;
  244. case PIX_FMT_BGR32_1: conv = gray8aToPacked32_1; break;
  245. case PIX_FMT_RGB32_1: conv = gray8aToPacked32_1; break;
  246. case PIX_FMT_RGB24 : conv = gray8aToPacked24; break;
  247. case PIX_FMT_BGR24 : conv = gray8aToPacked24; break;
  248. }
  249. } else if (usePal(srcFormat)) {
  250. switch (dstFormat) {
  251. case PIX_FMT_RGB32 : conv = sws_convertPalette8ToPacked32; break;
  252. case PIX_FMT_BGR32 : conv = sws_convertPalette8ToPacked32; break;
  253. case PIX_FMT_BGR32_1: conv = sws_convertPalette8ToPacked32; break;
  254. case PIX_FMT_RGB32_1: conv = sws_convertPalette8ToPacked32; break;
  255. case PIX_FMT_RGB24 : conv = sws_convertPalette8ToPacked24; break;
  256. case PIX_FMT_BGR24 : conv = sws_convertPalette8ToPacked24; break;
  257. }
  258. }
  259. if (!conv)
  260. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  261. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  262. else {
  263. for (i = 0; i < srcSliceH; i++) {
  264. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  265. srcPtr += srcStride[0];
  266. dstPtr += dstStride[0];
  267. }
  268. }
  269. return srcSliceH;
  270. }
  271. static void gbr24ptopacked24(const uint8_t* src[], int srcStride[], uint8_t* dst, int dstStride, int srcSliceH, int width)
  272. {
  273. int x, h, i;
  274. for (h = 0; h < srcSliceH; h++) {
  275. uint8_t *dest = dst + dstStride * h;
  276. for (x = 0; x < width; x++) {
  277. *dest++ = src[0][x];
  278. *dest++ = src[1][x];
  279. *dest++ = src[2][x];
  280. }
  281. for (i = 0; i < 3; i++)
  282. src[i] += srcStride[i];
  283. }
  284. }
  285. static void gbr24ptopacked32(const uint8_t* src[], int srcStride[], uint8_t* dst, int dstStride, int srcSliceH, int alpha_first, int width)
  286. {
  287. int x, h, i;
  288. for (h = 0; h < srcSliceH; h++) {
  289. uint8_t *dest = dst + dstStride * h;
  290. if (alpha_first) {
  291. for (x = 0; x < width; x++) {
  292. *dest++ = 0xff;
  293. *dest++ = src[0][x];
  294. *dest++ = src[1][x];
  295. *dest++ = src[2][x];
  296. }
  297. } else {
  298. for (x = 0; x < width; x++) {
  299. *dest++ = src[0][x];
  300. *dest++ = src[1][x];
  301. *dest++ = src[2][x];
  302. *dest++ = 0xff;
  303. }
  304. }
  305. for (i = 0; i < 3; i++)
  306. src[i] += srcStride[i];
  307. }
  308. }
  309. static int planarRgbToRgbWrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
  310. int srcSliceH, uint8_t* dst[], int dstStride[])
  311. {
  312. int alpha_first = 0;
  313. if (c->srcFormat != PIX_FMT_GBR24P) {
  314. av_log(c, AV_LOG_ERROR, "unsupported planar RGB conversion %s -> %s\n",
  315. av_get_pix_fmt_name(c->srcFormat), av_get_pix_fmt_name(c->dstFormat));
  316. return srcSliceH;
  317. }
  318. switch (c->dstFormat) {
  319. case PIX_FMT_BGR24:
  320. gbr24ptopacked24((const uint8_t* []) {src[1], src[0], src[2]}, (int []) {srcStride[1], srcStride[0], srcStride[2]},
  321. dst[0] + srcSliceY * dstStride[0], dstStride[0], srcSliceH, c->srcW);
  322. break;
  323. case PIX_FMT_RGB24:
  324. gbr24ptopacked24((const uint8_t* []) {src[2], src[0], src[1]}, (int []) {srcStride[2], srcStride[0], srcStride[1]},
  325. dst[0] + srcSliceY * dstStride[0], dstStride[0], srcSliceH, c->srcW);
  326. break;
  327. case PIX_FMT_ARGB:
  328. alpha_first = 1;
  329. case PIX_FMT_RGBA:
  330. gbr24ptopacked32((const uint8_t* []) {src[2], src[0], src[1]}, (int []) {srcStride[2], srcStride[0], srcStride[1]},
  331. dst[0] + srcSliceY * dstStride[0], dstStride[0], srcSliceH, alpha_first, c->srcW);
  332. break;
  333. case PIX_FMT_ABGR:
  334. alpha_first = 1;
  335. case PIX_FMT_BGRA:
  336. gbr24ptopacked32((const uint8_t* []) {src[1], src[0], src[2]}, (int []) {srcStride[1], srcStride[0], srcStride[2]},
  337. dst[0] + srcSliceY * dstStride[0], dstStride[0], srcSliceH, alpha_first, c->srcW);
  338. break;
  339. default:
  340. av_log(c, AV_LOG_ERROR, "unsupported planar RGB conversion %s -> %s\n",
  341. av_get_pix_fmt_name(c->srcFormat), av_get_pix_fmt_name(c->dstFormat));
  342. }
  343. return srcSliceH;
  344. }
  345. #define isRGBA32(x) ( \
  346. (x) == PIX_FMT_ARGB \
  347. || (x) == PIX_FMT_RGBA \
  348. || (x) == PIX_FMT_BGRA \
  349. || (x) == PIX_FMT_ABGR \
  350. )
  351. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  352. typedef void (* rgbConvFn) (const uint8_t *, uint8_t *, int);
  353. static rgbConvFn findRgbConvFn(SwsContext *c)
  354. {
  355. const enum PixelFormat srcFormat = c->srcFormat;
  356. const enum PixelFormat dstFormat = c->dstFormat;
  357. const int srcId = c->srcFormatBpp;
  358. const int dstId = c->dstFormatBpp;
  359. rgbConvFn conv = NULL;
  360. #define IS_NOT_NE(bpp, fmt) \
  361. (((bpp + 7) >> 3) == 2 && \
  362. (!(av_pix_fmt_descriptors[fmt].flags & PIX_FMT_BE) != !HAVE_BIGENDIAN))
  363. /* if this is non-native rgb444/555/565, don't handle it here. */
  364. if (IS_NOT_NE(srcId, srcFormat) || IS_NOT_NE(dstId, dstFormat))
  365. return NULL;
  366. #define CONV_IS(src, dst) (srcFormat == PIX_FMT_##src && dstFormat == PIX_FMT_##dst)
  367. if (isRGBA32(srcFormat) && isRGBA32(dstFormat)) {
  368. if ( CONV_IS(ABGR, RGBA)
  369. || CONV_IS(ARGB, BGRA)
  370. || CONV_IS(BGRA, ARGB)
  371. || CONV_IS(RGBA, ABGR)) conv = shuffle_bytes_3210;
  372. else if (CONV_IS(ABGR, ARGB)
  373. || CONV_IS(ARGB, ABGR)) conv = shuffle_bytes_0321;
  374. else if (CONV_IS(ABGR, BGRA)
  375. || CONV_IS(ARGB, RGBA)) conv = shuffle_bytes_1230;
  376. else if (CONV_IS(BGRA, RGBA)
  377. || CONV_IS(RGBA, BGRA)) conv = shuffle_bytes_2103;
  378. else if (CONV_IS(BGRA, ABGR)
  379. || CONV_IS(RGBA, ARGB)) conv = shuffle_bytes_3012;
  380. } else
  381. /* BGR -> BGR */
  382. if ((isBGRinInt(srcFormat) && isBGRinInt(dstFormat)) ||
  383. (isRGBinInt(srcFormat) && isRGBinInt(dstFormat))) {
  384. switch (srcId | (dstId << 16)) {
  385. case 0x000F000C: conv = rgb12to15; break;
  386. case 0x000F0010: conv = rgb16to15; break;
  387. case 0x000F0018: conv = rgb24to15; break;
  388. case 0x000F0020: conv = rgb32to15; break;
  389. case 0x0010000F: conv = rgb15to16; break;
  390. case 0x00100018: conv = rgb24to16; break;
  391. case 0x00100020: conv = rgb32to16; break;
  392. case 0x0018000F: conv = rgb15to24; break;
  393. case 0x00180010: conv = rgb16to24; break;
  394. case 0x00180020: conv = rgb32to24; break;
  395. case 0x0020000F: conv = rgb15to32; break;
  396. case 0x00200010: conv = rgb16to32; break;
  397. case 0x00200018: conv = rgb24to32; break;
  398. }
  399. } else if ((isBGRinInt(srcFormat) && isRGBinInt(dstFormat)) ||
  400. (isRGBinInt(srcFormat) && isBGRinInt(dstFormat))) {
  401. switch (srcId | (dstId << 16)) {
  402. case 0x000C000C: conv = rgb12tobgr12; break;
  403. case 0x000F000F: conv = rgb15tobgr15; break;
  404. case 0x000F0010: conv = rgb16tobgr15; break;
  405. case 0x000F0018: conv = rgb24tobgr15; break;
  406. case 0x000F0020: conv = rgb32tobgr15; break;
  407. case 0x0010000F: conv = rgb15tobgr16; break;
  408. case 0x00100010: conv = rgb16tobgr16; break;
  409. case 0x00100018: conv = rgb24tobgr16; break;
  410. case 0x00100020: conv = rgb32tobgr16; break;
  411. case 0x0018000F: conv = rgb15tobgr24; break;
  412. case 0x00180010: conv = rgb16tobgr24; break;
  413. case 0x00180018: conv = rgb24tobgr24; break;
  414. case 0x00180020: conv = rgb32tobgr24; break;
  415. case 0x0020000F: conv = rgb15tobgr32; break;
  416. case 0x00200010: conv = rgb16tobgr32; break;
  417. case 0x00200018: conv = rgb24tobgr32; break;
  418. }
  419. }
  420. if ((dstFormat == PIX_FMT_RGB32_1 || dstFormat == PIX_FMT_BGR32_1) && !isRGBA32(srcFormat) && ALT32_CORR<0)
  421. return NULL;
  422. return conv;
  423. }
  424. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  425. static int rgbToRgbWrapper(SwsContext *c, const uint8_t *src[], int srcStride[],
  426. int srcSliceY, int srcSliceH, uint8_t *dst[],
  427. int dstStride[])
  428. {
  429. const enum PixelFormat srcFormat = c->srcFormat;
  430. const enum PixelFormat dstFormat = c->dstFormat;
  431. const int srcBpp = (c->srcFormatBpp + 7) >> 3;
  432. const int dstBpp = (c->dstFormatBpp + 7) >> 3;
  433. rgbConvFn conv = findRgbConvFn(c);
  434. if (!conv) {
  435. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  436. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  437. } else {
  438. const uint8_t *srcPtr = src[0];
  439. uint8_t *dstPtr = dst[0];
  440. if ((srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1) &&
  441. !isRGBA32(dstFormat))
  442. srcPtr += ALT32_CORR;
  443. if ((dstFormat == PIX_FMT_RGB32_1 || dstFormat == PIX_FMT_BGR32_1) &&
  444. !isRGBA32(srcFormat))
  445. dstPtr += ALT32_CORR;
  446. if (dstStride[0] * srcBpp == srcStride[0] * dstBpp && srcStride[0] > 0 &&
  447. !(srcStride[0] % srcBpp))
  448. conv(srcPtr, dstPtr + dstStride[0] * srcSliceY,
  449. srcSliceH * srcStride[0]);
  450. else {
  451. int i;
  452. dstPtr += dstStride[0] * srcSliceY;
  453. for (i = 0; i < srcSliceH; i++) {
  454. conv(srcPtr, dstPtr, c->srcW * srcBpp);
  455. srcPtr += srcStride[0];
  456. dstPtr += dstStride[0];
  457. }
  458. }
  459. }
  460. return srcSliceH;
  461. }
  462. static int bgr24ToYv12Wrapper(SwsContext *c, const uint8_t *src[],
  463. int srcStride[], int srcSliceY, int srcSliceH,
  464. uint8_t *dst[], int dstStride[])
  465. {
  466. rgb24toyv12(
  467. src[0],
  468. dst[0] + srcSliceY * dstStride[0],
  469. dst[1] + (srcSliceY >> 1) * dstStride[1],
  470. dst[2] + (srcSliceY >> 1) * dstStride[2],
  471. c->srcW, srcSliceH,
  472. dstStride[0], dstStride[1], srcStride[0]);
  473. if (dst[3])
  474. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  475. return srcSliceH;
  476. }
  477. static int yvu9ToYv12Wrapper(SwsContext *c, const uint8_t *src[],
  478. int srcStride[], int srcSliceY, int srcSliceH,
  479. uint8_t *dst[], int dstStride[])
  480. {
  481. copyPlane(src[0], srcStride[0], srcSliceY, srcSliceH, c->srcW,
  482. dst[0], dstStride[0]);
  483. planar2x(src[1], dst[1] + dstStride[1] * (srcSliceY >> 1), c->chrSrcW,
  484. srcSliceH >> 2, srcStride[1], dstStride[1]);
  485. planar2x(src[2], dst[2] + dstStride[2] * (srcSliceY >> 1), c->chrSrcW,
  486. srcSliceH >> 2, srcStride[2], dstStride[2]);
  487. if (dst[3])
  488. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  489. return srcSliceH;
  490. }
  491. /* unscaled copy like stuff (assumes nearly identical formats) */
  492. static int packedCopyWrapper(SwsContext *c, const uint8_t *src[],
  493. int srcStride[], int srcSliceY, int srcSliceH,
  494. uint8_t *dst[], int dstStride[])
  495. {
  496. if (dstStride[0] == srcStride[0] && srcStride[0] > 0)
  497. memcpy(dst[0] + dstStride[0] * srcSliceY, src[0], srcSliceH * dstStride[0]);
  498. else {
  499. int i;
  500. const uint8_t *srcPtr = src[0];
  501. uint8_t *dstPtr = dst[0] + dstStride[0] * srcSliceY;
  502. int length = 0;
  503. /* universal length finder */
  504. while (length + c->srcW <= FFABS(dstStride[0]) &&
  505. length + c->srcW <= FFABS(srcStride[0]))
  506. length += c->srcW;
  507. assert(length != 0);
  508. for (i = 0; i < srcSliceH; i++) {
  509. memcpy(dstPtr, srcPtr, length);
  510. srcPtr += srcStride[0];
  511. dstPtr += dstStride[0];
  512. }
  513. }
  514. return srcSliceH;
  515. }
  516. #define DITHER_COPY(dst, dstStride, src, srcStride, bswap, dbswap)\
  517. uint16_t scale= dither_scale[dst_depth-1][src_depth-1];\
  518. int shift= src_depth-dst_depth + dither_scale[src_depth-2][dst_depth-1];\
  519. for (i = 0; i < height; i++) {\
  520. const uint8_t *dither= dithers[src_depth-9][i&7];\
  521. for (j = 0; j < length-7; j+=8){\
  522. dst[j+0] = dbswap((bswap(src[j+0]) + dither[0])*scale>>shift);\
  523. dst[j+1] = dbswap((bswap(src[j+1]) + dither[1])*scale>>shift);\
  524. dst[j+2] = dbswap((bswap(src[j+2]) + dither[2])*scale>>shift);\
  525. dst[j+3] = dbswap((bswap(src[j+3]) + dither[3])*scale>>shift);\
  526. dst[j+4] = dbswap((bswap(src[j+4]) + dither[4])*scale>>shift);\
  527. dst[j+5] = dbswap((bswap(src[j+5]) + dither[5])*scale>>shift);\
  528. dst[j+6] = dbswap((bswap(src[j+6]) + dither[6])*scale>>shift);\
  529. dst[j+7] = dbswap((bswap(src[j+7]) + dither[7])*scale>>shift);\
  530. }\
  531. for (; j < length; j++)\
  532. dst[j] = dbswap((bswap(src[j]) + dither[j&7])*scale>>shift);\
  533. dst += dstStride;\
  534. src += srcStride;\
  535. }
  536. static int planarCopyWrapper(SwsContext *c, const uint8_t *src[],
  537. int srcStride[], int srcSliceY, int srcSliceH,
  538. uint8_t *dst[], int dstStride[])
  539. {
  540. int plane, i, j;
  541. for (plane = 0; plane < 4; plane++) {
  542. int length = (plane == 0 || plane == 3) ? c->srcW : -((-c->srcW ) >> c->chrDstHSubSample);
  543. int y = (plane == 0 || plane == 3) ? srcSliceY: -((-srcSliceY) >> c->chrDstVSubSample);
  544. int height = (plane == 0 || plane == 3) ? srcSliceH: -((-srcSliceH) >> c->chrDstVSubSample);
  545. const uint8_t *srcPtr = src[plane];
  546. uint8_t *dstPtr = dst[plane] + dstStride[plane] * y;
  547. int shiftonly= plane==1 || plane==2 || (!c->srcRange && plane==0);
  548. if (!dst[plane])
  549. continue;
  550. // ignore palette for GRAY8
  551. if (plane == 1 && !dst[2]) continue;
  552. if (!src[plane] || (plane == 1 && !src[2])) {
  553. if (is16BPS(c->dstFormat) || isNBPS(c->dstFormat)) {
  554. fillPlane16(dst[plane], dstStride[plane], length, height, y,
  555. plane == 3, av_pix_fmt_descriptors[c->dstFormat].comp[plane].depth_minus1);
  556. } else {
  557. fillPlane(dst[plane], dstStride[plane], length, height, y,
  558. (plane == 3) ? 255 : 128);
  559. }
  560. } else {
  561. if(isNBPS(c->srcFormat) || isNBPS(c->dstFormat)
  562. || (is16BPS(c->srcFormat) != is16BPS(c->dstFormat))
  563. ) {
  564. const int src_depth = av_pix_fmt_descriptors[c->srcFormat].comp[plane].depth_minus1 + 1;
  565. const int dst_depth = av_pix_fmt_descriptors[c->dstFormat].comp[plane].depth_minus1 + 1;
  566. const uint16_t *srcPtr2 = (const uint16_t *) srcPtr;
  567. uint16_t *dstPtr2 = (uint16_t*)dstPtr;
  568. if (dst_depth == 8) {
  569. if(isBE(c->srcFormat) == HAVE_BIGENDIAN){
  570. DITHER_COPY(dstPtr, dstStride[plane], srcPtr2, srcStride[plane]/2, , )
  571. } else {
  572. DITHER_COPY(dstPtr, dstStride[plane], srcPtr2, srcStride[plane]/2, av_bswap16, )
  573. }
  574. } else if (src_depth == 8) {
  575. for (i = 0; i < height; i++) {
  576. #define COPY816(w)\
  577. if(shiftonly){\
  578. for (j = 0; j < length; j++)\
  579. w(&dstPtr2[j], srcPtr[j]<<(dst_depth-8));\
  580. }else{\
  581. for (j = 0; j < length; j++)\
  582. w(&dstPtr2[j], (srcPtr[j]<<(dst_depth-8)) |\
  583. (srcPtr[j]>>(2*8-dst_depth)));\
  584. }
  585. if(isBE(c->dstFormat)){
  586. COPY816(AV_WB16)
  587. } else {
  588. COPY816(AV_WL16)
  589. }
  590. dstPtr2 += dstStride[plane]/2;
  591. srcPtr += srcStride[plane];
  592. }
  593. } else if (src_depth <= dst_depth) {
  594. for (i = 0; i < height; i++) {
  595. #define COPY_UP(r,w) \
  596. if(shiftonly){\
  597. for (j = 0; j < length; j++){ \
  598. unsigned int v= r(&srcPtr2[j]);\
  599. w(&dstPtr2[j], v<<(dst_depth-src_depth));\
  600. }\
  601. }else{\
  602. for (j = 0; j < length; j++){ \
  603. unsigned int v= r(&srcPtr2[j]);\
  604. w(&dstPtr2[j], (v<<(dst_depth-src_depth)) | \
  605. (v>>(2*src_depth-dst_depth)));\
  606. }\
  607. }
  608. if(isBE(c->srcFormat)){
  609. if(isBE(c->dstFormat)){
  610. COPY_UP(AV_RB16, AV_WB16)
  611. } else {
  612. COPY_UP(AV_RB16, AV_WL16)
  613. }
  614. } else {
  615. if(isBE(c->dstFormat)){
  616. COPY_UP(AV_RL16, AV_WB16)
  617. } else {
  618. COPY_UP(AV_RL16, AV_WL16)
  619. }
  620. }
  621. dstPtr2 += dstStride[plane]/2;
  622. srcPtr2 += srcStride[plane]/2;
  623. }
  624. } else {
  625. if(isBE(c->srcFormat) == HAVE_BIGENDIAN){
  626. if(isBE(c->dstFormat) == HAVE_BIGENDIAN){
  627. DITHER_COPY(dstPtr2, dstStride[plane]/2, srcPtr2, srcStride[plane]/2, , )
  628. } else {
  629. DITHER_COPY(dstPtr2, dstStride[plane]/2, srcPtr2, srcStride[plane]/2, , av_bswap16)
  630. }
  631. }else{
  632. if(isBE(c->dstFormat) == HAVE_BIGENDIAN){
  633. DITHER_COPY(dstPtr2, dstStride[plane]/2, srcPtr2, srcStride[plane]/2, av_bswap16, )
  634. } else {
  635. DITHER_COPY(dstPtr2, dstStride[plane]/2, srcPtr2, srcStride[plane]/2, av_bswap16, av_bswap16)
  636. }
  637. }
  638. }
  639. } else if (is16BPS(c->srcFormat) && is16BPS(c->dstFormat) &&
  640. isBE(c->srcFormat) != isBE(c->dstFormat)) {
  641. for (i = 0; i < height; i++) {
  642. for (j = 0; j < length; j++)
  643. ((uint16_t *) dstPtr)[j] = av_bswap16(((const uint16_t *) srcPtr)[j]);
  644. srcPtr += srcStride[plane];
  645. dstPtr += dstStride[plane];
  646. }
  647. } else if (dstStride[plane] == srcStride[plane] &&
  648. srcStride[plane] > 0 && srcStride[plane] == length) {
  649. memcpy(dst[plane] + dstStride[plane] * y, src[plane],
  650. height * dstStride[plane]);
  651. } else {
  652. if (is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
  653. length *= 2;
  654. else if (!av_pix_fmt_descriptors[c->srcFormat].comp[0].depth_minus1)
  655. length >>= 3; // monowhite/black
  656. for (i = 0; i < height; i++) {
  657. memcpy(dstPtr, srcPtr, length);
  658. srcPtr += srcStride[plane];
  659. dstPtr += dstStride[plane];
  660. }
  661. }
  662. }
  663. }
  664. return srcSliceH;
  665. }
  666. #define IS_DIFFERENT_ENDIANESS(src_fmt, dst_fmt, pix_fmt) \
  667. ((src_fmt == pix_fmt ## BE && dst_fmt == pix_fmt ## LE) || \
  668. (src_fmt == pix_fmt ## LE && dst_fmt == pix_fmt ## BE))
  669. void ff_get_unscaled_swscale(SwsContext *c)
  670. {
  671. const enum PixelFormat srcFormat = c->srcFormat;
  672. const enum PixelFormat dstFormat = c->dstFormat;
  673. const int flags = c->flags;
  674. const int dstH = c->dstH;
  675. int needsDither;
  676. needsDither = isAnyRGB(dstFormat) &&
  677. c->dstFormatBpp < 24 &&
  678. (c->dstFormatBpp < c->srcFormatBpp || (!isAnyRGB(srcFormat)));
  679. /* yv12_to_nv12 */
  680. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) &&
  681. (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21)) {
  682. c->swScale = planarToNv12Wrapper;
  683. }
  684. /* yuv2bgr */
  685. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUV422P ||
  686. srcFormat == PIX_FMT_YUVA420P) && isAnyRGB(dstFormat) &&
  687. !(flags & SWS_ACCURATE_RND) && !(dstH & 1)) {
  688. c->swScale = ff_yuv2rgb_get_func_ptr(c);
  689. }
  690. if (srcFormat == PIX_FMT_YUV410P &&
  691. (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P) &&
  692. !(flags & SWS_BITEXACT)) {
  693. c->swScale = yvu9ToYv12Wrapper;
  694. }
  695. /* bgr24toYV12 */
  696. if (srcFormat == PIX_FMT_BGR24 &&
  697. (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P) &&
  698. !(flags & SWS_ACCURATE_RND))
  699. c->swScale = bgr24ToYv12Wrapper;
  700. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  701. if (isAnyRGB(srcFormat) && isAnyRGB(dstFormat) && findRgbConvFn(c)
  702. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  703. c->swScale= rgbToRgbWrapper;
  704. #define isByteRGB(f) (\
  705. f == PIX_FMT_RGB32 ||\
  706. f == PIX_FMT_RGB32_1 ||\
  707. f == PIX_FMT_RGB24 ||\
  708. f == PIX_FMT_BGR32 ||\
  709. f == PIX_FMT_BGR32_1 ||\
  710. f == PIX_FMT_BGR24)
  711. if (isAnyRGB(srcFormat) && isPlanar(srcFormat) && isByteRGB(dstFormat))
  712. c->swScale= planarRgbToRgbWrapper;
  713. /* bswap 16 bits per pixel/component packed formats */
  714. if (IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_BGR444) ||
  715. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_BGR48) ||
  716. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_BGR555) ||
  717. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_BGR565) ||
  718. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_GRAY16) ||
  719. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_RGB444) ||
  720. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_RGB48) ||
  721. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_RGB555) ||
  722. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_RGB565))
  723. c->swScale = packed_16bpc_bswap;
  724. if (usePal(srcFormat) && isByteRGB(dstFormat))
  725. c->swScale = palToRgbWrapper;
  726. if (srcFormat == PIX_FMT_YUV422P) {
  727. if (dstFormat == PIX_FMT_YUYV422)
  728. c->swScale = yuv422pToYuy2Wrapper;
  729. else if (dstFormat == PIX_FMT_UYVY422)
  730. c->swScale = yuv422pToUyvyWrapper;
  731. }
  732. /* LQ converters if -sws 0 or -sws 4*/
  733. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)) {
  734. /* yv12_to_yuy2 */
  735. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) {
  736. if (dstFormat == PIX_FMT_YUYV422)
  737. c->swScale = planarToYuy2Wrapper;
  738. else if (dstFormat == PIX_FMT_UYVY422)
  739. c->swScale = planarToUyvyWrapper;
  740. }
  741. }
  742. if (srcFormat == PIX_FMT_YUYV422 &&
  743. (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  744. c->swScale = yuyvToYuv420Wrapper;
  745. if (srcFormat == PIX_FMT_UYVY422 &&
  746. (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  747. c->swScale = uyvyToYuv420Wrapper;
  748. if (srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  749. c->swScale = yuyvToYuv422Wrapper;
  750. if (srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  751. c->swScale = uyvyToYuv422Wrapper;
  752. #define isPlanarGray(x) (isGray(x) && (x) != PIX_FMT_GRAY8A)
  753. /* simple copy */
  754. if ( srcFormat == dstFormat ||
  755. (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P) ||
  756. (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P) ||
  757. (isPlanarYUV(srcFormat) && isPlanarGray(dstFormat)) ||
  758. (isPlanarYUV(dstFormat) && isPlanarGray(srcFormat)) ||
  759. (isPlanarGray(dstFormat) && isPlanarGray(srcFormat)) ||
  760. (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat) &&
  761. c->chrDstHSubSample == c->chrSrcHSubSample &&
  762. c->chrDstVSubSample == c->chrSrcVSubSample &&
  763. dstFormat != PIX_FMT_NV12 && dstFormat != PIX_FMT_NV21 &&
  764. srcFormat != PIX_FMT_NV12 && srcFormat != PIX_FMT_NV21))
  765. {
  766. if (isPacked(c->srcFormat))
  767. c->swScale = packedCopyWrapper;
  768. else /* Planar YUV or gray */
  769. c->swScale = planarCopyWrapper;
  770. }
  771. if (ARCH_BFIN)
  772. ff_bfin_get_unscaled_swscale(c);
  773. if (HAVE_ALTIVEC)
  774. ff_swscale_get_unscaled_altivec(c);
  775. }
  776. static void reset_ptr(const uint8_t *src[], int format)
  777. {
  778. if (!isALPHA(format))
  779. src[3] = NULL;
  780. if (!isPlanar(format)) {
  781. src[3] = src[2] = NULL;
  782. if (!usePal(format))
  783. src[1] = NULL;
  784. }
  785. }
  786. static int check_image_pointers(const uint8_t * const data[4], enum PixelFormat pix_fmt,
  787. const int linesizes[4])
  788. {
  789. const AVPixFmtDescriptor *desc = &av_pix_fmt_descriptors[pix_fmt];
  790. int i;
  791. for (i = 0; i < 4; i++) {
  792. int plane = desc->comp[i].plane;
  793. if (!data[plane] || !linesizes[plane])
  794. return 0;
  795. }
  796. return 1;
  797. }
  798. /**
  799. * swscale wrapper, so we don't need to export the SwsContext.
  800. * Assumes planar YUV to be in YUV order instead of YVU.
  801. */
  802. int attribute_align_arg sws_scale(struct SwsContext *c,
  803. const uint8_t * const srcSlice[],
  804. const int srcStride[], int srcSliceY,
  805. int srcSliceH, uint8_t *const dst[],
  806. const int dstStride[])
  807. {
  808. int i, ret;
  809. const uint8_t *src2[4] = { srcSlice[0], srcSlice[1], srcSlice[2], srcSlice[3] };
  810. uint8_t *dst2[4] = { dst[0], dst[1], dst[2], dst[3] };
  811. uint8_t *rgb0_tmp = NULL;
  812. // do not mess up sliceDir if we have a "trailing" 0-size slice
  813. if (srcSliceH == 0)
  814. return 0;
  815. if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
  816. av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
  817. return 0;
  818. }
  819. if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) {
  820. av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
  821. return 0;
  822. }
  823. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  824. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  825. return 0;
  826. }
  827. if (c->sliceDir == 0) {
  828. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  829. }
  830. if (usePal(c->srcFormat)) {
  831. for (i = 0; i < 256; i++) {
  832. int p, r, g, b, y, u, v, a = 0xff;
  833. if (c->srcFormat == PIX_FMT_PAL8) {
  834. p = ((const uint32_t *)(srcSlice[1]))[i];
  835. a = (p >> 24) & 0xFF;
  836. r = (p >> 16) & 0xFF;
  837. g = (p >> 8) & 0xFF;
  838. b = p & 0xFF;
  839. } else if (c->srcFormat == PIX_FMT_RGB8) {
  840. r = ( i >> 5 ) * 36;
  841. g = ((i >> 2) & 7) * 36;
  842. b = ( i & 3) * 85;
  843. } else if (c->srcFormat == PIX_FMT_BGR8) {
  844. b = ( i >> 6 ) * 85;
  845. g = ((i >> 3) & 7) * 36;
  846. r = ( i & 7) * 36;
  847. } else if (c->srcFormat == PIX_FMT_RGB4_BYTE) {
  848. r = ( i >> 3 ) * 255;
  849. g = ((i >> 1) & 3) * 85;
  850. b = ( i & 1) * 255;
  851. } else if (c->srcFormat == PIX_FMT_GRAY8 || c->srcFormat == PIX_FMT_GRAY8A) {
  852. r = g = b = i;
  853. } else {
  854. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  855. b = ( i >> 3 ) * 255;
  856. g = ((i >> 1) & 3) * 85;
  857. r = ( i & 1) * 255;
  858. }
  859. y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
  860. u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
  861. v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
  862. c->pal_yuv[i]= y + (u<<8) + (v<<16) + (a<<24);
  863. switch (c->dstFormat) {
  864. case PIX_FMT_BGR32:
  865. #if !HAVE_BIGENDIAN
  866. case PIX_FMT_RGB24:
  867. #endif
  868. c->pal_rgb[i]= r + (g<<8) + (b<<16) + (a<<24);
  869. break;
  870. case PIX_FMT_BGR32_1:
  871. #if HAVE_BIGENDIAN
  872. case PIX_FMT_BGR24:
  873. #endif
  874. c->pal_rgb[i]= a + (r<<8) + (g<<16) + (b<<24);
  875. break;
  876. case PIX_FMT_RGB32_1:
  877. #if HAVE_BIGENDIAN
  878. case PIX_FMT_RGB24:
  879. #endif
  880. c->pal_rgb[i]= a + (b<<8) + (g<<16) + (r<<24);
  881. break;
  882. case PIX_FMT_RGB32:
  883. #if !HAVE_BIGENDIAN
  884. case PIX_FMT_BGR24:
  885. #endif
  886. default:
  887. c->pal_rgb[i]= b + (g<<8) + (r<<16) + (a<<24);
  888. }
  889. }
  890. }
  891. if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {
  892. uint8_t *base;
  893. int x,y;
  894. rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
  895. base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
  896. for (y=0; y<srcSliceH; y++){
  897. memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);
  898. for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {
  899. base[ srcStride[0]*y + x] = 0xFF;
  900. }
  901. }
  902. src2[0] = base;
  903. }
  904. // copy strides, so they can safely be modified
  905. if (c->sliceDir == 1) {
  906. // slices go from top to bottom
  907. int srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2],
  908. srcStride[3] };
  909. int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2],
  910. dstStride[3] };
  911. reset_ptr(src2, c->srcFormat);
  912. reset_ptr((void*)dst2, c->dstFormat);
  913. /* reset slice direction at end of frame */
  914. if (srcSliceY + srcSliceH == c->srcH)
  915. c->sliceDir = 0;
  916. ret = c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2,
  917. dstStride2);
  918. } else {
  919. // slices go from bottom to top => we flip the image internally
  920. int srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2],
  921. -srcStride[3] };
  922. int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2],
  923. -dstStride[3] };
  924. src2[0] += (srcSliceH - 1) * srcStride[0];
  925. if (!usePal(c->srcFormat))
  926. src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
  927. src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
  928. src2[3] += (srcSliceH - 1) * srcStride[3];
  929. dst2[0] += ( c->dstH - 1) * dstStride[0];
  930. dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
  931. dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
  932. dst2[3] += ( c->dstH - 1) * dstStride[3];
  933. reset_ptr(src2, c->srcFormat);
  934. reset_ptr((void*)dst2, c->dstFormat);
  935. /* reset slice direction at end of frame */
  936. if (!srcSliceY)
  937. c->sliceDir = 0;
  938. ret = c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH,
  939. srcSliceH, dst2, dstStride2);
  940. }
  941. av_free(rgb0_tmp);
  942. return ret;
  943. }
  944. /* Convert the palette to the same packed 32-bit format as the palette */
  945. void sws_convertPalette8ToPacked32(const uint8_t *src, uint8_t *dst,
  946. int num_pixels, const uint8_t *palette)
  947. {
  948. int i;
  949. for (i = 0; i < num_pixels; i++)
  950. ((uint32_t *) dst)[i] = ((const uint32_t *) palette)[src[i]];
  951. }
  952. /* Palette format: ABCD -> dst format: ABC */
  953. void sws_convertPalette8ToPacked24(const uint8_t *src, uint8_t *dst,
  954. int num_pixels, const uint8_t *palette)
  955. {
  956. int i;
  957. for (i = 0; i < num_pixels; i++) {
  958. //FIXME slow?
  959. dst[0] = palette[src[i] * 4 + 0];
  960. dst[1] = palette[src[i] * 4 + 1];
  961. dst[2] = palette[src[i] * 4 + 2];
  962. dst += 3;
  963. }
  964. }